Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk; Malureanu, Radu; Stamate, Eugen; Hansen, Ole

Published in:
Proceedings of 32nd European Photovoltaic Solar Energy Conference and Exhibition

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
LIFETIME OF NANO-STRUCTURED BLACK SILICON FOR PHOTOVOLTAIC APPLICATIONS
Maksym Plakhotnyuk*, Rasmus Schmidt Davidsen*, Michael Stenbæk Schmidt*,
Radu Malureanuc, Eugen Stamatec, Ole Hansen*

*Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads building 345East, DK-2800
Kgs. Lyngby, Denmark
b Department of Photonics, Technical University of Denmark, Ørsteds Plads Building 345West, DK-2800 Kgs. Lyngby,
Denmark
c Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksbergvej 399, DK-4000
Roskilde, Denmark
*Corresponding author: makpl@nanotech.dtu.dk, phone: +45 27575092

ABSTRACT: In this work, we present recent results of lifetime optimization for nano-structured black silicon and its
photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due
to highly corrugated nanostructures with excellent light trapping properties. We applied reactive ion etching technology
at -20ºC to create nano-structures on silicon samples and obtained an average reflectance below 0.5%. For passivation
purposes, we used 37 nm ALD Al2O3 films. Lifetime measurements resulted in 1220 µs and to 4170 µs for p- and n-
type CZ silicon wafers, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell
process flow.

Keywords: c-Si, black silicon, ALD Al2O3, passivation, lifetime, light trapping, nano-structured silicon

1 INTRODUCTION

Nano-textured silicon, known as black silicon, is currently a subject of great interest in photovoltaics [1–4, 5]. It has
extremely low surface reflectance, in some cases below 1%, in a broad range of wavelengths and incident angles
even with a simple antireflective coating [6, 7]. Reactive plasma etching is a most promising alternative to any other
silicon texturing method like wet etching [8–11], plasma immersion ion implantation etching, metal nanoparticles
assisted etching and laser induced etching [12–15]. Key advantages of dry plasma silicon structuring are no usage of
toxic chemicals, easy morphology control of structure size and shape, less silicon waste and mask-less processing.
Solar cells with improved light trapping nano-structures show improved characteristics, such as high open circuit voltage and large short circuit current. However, surface-texturing methods like RIE also induce
surface damage and potentially contamination, and therefore increased surface recombination velocity resulting in poor performance of nano-structured solar cells [3, 5, 16, 17]. Thus, effective surface passivation of
nano-textured surfaces and optimization of the texturing process towards reduction of surface defect damage is
required for further black silicon application in photovoltaics [18–22]. Atomic layer deposition (ALD) of
Al2O3 is one of the best methods for black silicon passivation, since it has conformal coverage of plane and
corrugated surfaces. Thermal ALD of Al2O3 leads to high chemical interface quality on crystalline silicon, low
density of defect states, and the strongest known field effect due to fixed negative charges [18, 20, 21, 23–32].

2 EXPERIMENT

2.1 Sample Details and Black Silicon Etching

Black silicon nanostructuring was realized on Czochralski (CZ) mono-crystalline Si 4” (100) n- and p-
type (1-20 Ωcm) wafers with thickness 350 µm by mask-less reactive ion etching (RIE) in SF6 and O2 inductively
coupled plasma at -20°C in DRIE SPTS Pegasus (Fig.1). Prior to final sample preparation, the RIE process was
optimized: platen power was reduced from 50 to 10 W to reduce kinetic energy of ions, directed towards the
substrate surface; coil power was increased from 2500 to 3000 W to increase homogenous ion plasma density and
maintain a stable etch rate; aspect ratio of nanostructures was controlled via the low gas pressure (38 mTorr) which
determined the directionality of the ions and the physical etching components by reducing the mean free path of the
plasma species; average flow of SF6 gas (70 sccm) allowed to a stable Si etch rate and high O2 flow (100 sccm)
allowed to passivate Si surface and reduce etch rate. The first samples had shown low lifetime after ALD Al2O3
passivation and are not referred in this report. For conducting the experiment we used six silicon wafers of n-
and p-type: two wafers had single side RIE processing for 16 min, another two wafers had double sided RIE
processing for 16 min on each side and the last two wafer were kept as plain polished references.

Figure 1: Schematic of inductive coupled plasma system used for RIE

The black silicon nano-structuring process was conducted in the following order as shown on Fig. 2. A sample wafer
was loaded in to the ICP RIE chamber and cooled to -20°C. SF6 gas was supplied to the chamber and fluorine radicals
rapidly attacked the silicon and destroyed native oxide on top of the wafer forming volatile SiF4. In the next step,
oxygen was supplied to the chamber. Oxygen radicals form silicon-oxyfluoride SiF4+O*=SiO2F2 at low
temperature (-20°C), SiO2F2 acts as an etch stop for F* and passivated sample surface. Horizontal planes were more
intensively bombarded by ions from plasma while on the vertical sidewalls the ion bombardment was weaker due to directionality of the plasma ions and the sidewalls therefore remained protected from chemical etching by fluorine radical [1-2].

Figure 2: Schematic view of black silicon nanostructures formation

2.2 Surface cleaning and ALD Al₂O₃ passivation

After RIE all samples were cleaned in standard RCA cleaning solutions, RCA1 and RCA2, each with a subsequent HF-dip, rinsed in deionized water and spin dried. Subsequently, wafers were coated with 380 cycles of ALD Al₂O₃ synthesized from trimethylaluminium (TMA) and H₂O. For reference purposes two polished wafers (p- and n-type) were also included in ALD Al₂O₃ passivation procedure. The passivation layers were activated by post-deposition in-situ annealing in N₂ ambient at 375-390 ºC for 30 min. The resulting Al₂O₃ thickness of 37 nm was measured from polished reference samples using ellipsometry. Charge carrier lifetime was measured after annealing with the microwave detected photoconductivity (MDP) method in transient as well as in injection dependent single point modes, and lifetime mapping mode using a MDPmap setup from Freiburg Instruments.

3 RESULTS AND DISCUSSIONS

3.1 Black Silicon SEM Morphology Study

In Fig. 3 scanning electron microscope (SEM) images of the resulting black silicon nano-structures are shown without Al₂O₃ coating. The nanostructure topology consists of slightly rounded conical-like hillocks with average height of 500 nm and average spacing of 250 nm. There is a slight variation in the dimensions of the surface structures. The height of the nanostructures was controlled by etching time with an average etch rate of 30 nm/min.

Figure 3: SEM image of the black silicon nano-structure topology processed with plasma assisted mask-less reactive ion etching: a) side view with scale 500 nm, b) top views with scale 500 nm and 200 nm

3.2 Reflectance

The main purpose of nanostructuring is to reduce reflectance and improve light trapping properties of the Si surface [3, 33]. The spectral reflectance of black silicon and polished samples were measured in the wavelength range from 500 to 1100 nm. Fig. 4 shows the reflectance of the samples as a function of wavelength. Photographic images are inserted in the reflectance figure to illustrate the difference between polished and nanostructured samples. It can be seen that polished silicon wafer in average has reflectance of 30%, while the black silicon sample has reflectance below 1% up to 1000 nm. Above 1000 nm the reflectance still remains low but shows a slight increase up to 5% which is still much lower than that of the polished wafer, and this long wavelength reflectance may partly be due to reflectance of the chuck below the silicon sample.

Figure 4: Experimental reflectance spectra of polished and black silicon without Al₂O₃ coating
3.3 Minority Carrier Lifetime

Fig. 5 shows measured effective minority carrier lifetime for p- and n-type wafers for polished as well as for nano-textured samples. MDP measurements were conducted with a MDPmap setup from Freiberg Instruments to determine the effective carrier lifetimes as a function of injection level. The effective minority lifetime is a figure of merit to estimate surface recombination and surface damage [18, 21, 25, 34, 35].

![Lifetime vs Injection Level](image)

Figure 5: Comparative graph of average lifetime wafer mapping values with standard deviation for p- and n-type silicon samples with polished, single side nanostructured and double side nanostructured black silicon, passivated with ALD Al₂O₃ 37 nm film. Legend: SS BSi - single side nanostructured black silicon, DS BSi - double side nanostructured black silicon

For p-type Si wafers, the lifetime difference between polished and textured samples is a factor of two. For some samples we have recorded a lifetime approaching 1 ms and higher, however to report these results additional testing is required. Injection dependent lifetime for p-type samples shown in Fig. 6 confirms stability of above results. A similar tendency is present for n-type samples, however lifetime difference between polished and nanostructured samples is in that case a factor of four.

![Lifetime vs Injection Level](image)

Figure 6: Lifetime dependency on injection level

The surface recombination velocity was calculated from effective minority carrier lifetime from the equation shown in Fig. 6 [25].

\[S_{\text{eff}} \frac{d}{2\tau_{\text{eff}}} \]

Figure 7: Surface recombination velocity dependencies on injection level

where \(d \) is the wafer thickness, \(\tau_{\text{eff}} \) is the measured effective lifetime. Fig. 7 shows the calculated surface recombination velocity as a function of injection level.

4 CONCLUSION

We have presented recent results of effect of reactive ion process optimization for improvement of minority carrier lifetime. The optimized RIE recipe with reduced ion damage of the surface allows us to achieve comparatively high effective lifetime for n- and p-type wafers and for single and double side nano-textured samples. For further investigation of electro-optical properties all samples were passivated with Al₂O₃ and annealed at 375-390°C for 30 min. The surface morphology of textured samples was studied using SEM, and the optical reflectance was measured with an integrated sphere in the range of 500-1100 nm. Reflectance measurements allow us to evaluate the antireflective properties of nanostructures. With the plasma-assisted mask-less etching method we achieved broad spectral reflectance below 0.5%. Finally, the effective lifetime was measured on all textured and reference polished samples to evaluate the passivation effect and to estimate surface recombination velocity. Our overall results are promising for black silicon fabrication and lifetime improvement to facilitate incorporation in solar cell fabrication.

5 REFERENCES