Positive streamer initiation from raindrops in thundercloud fields

Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, Torsten; Chanrion, Olivier

Published in:
Journal of Geophysical Research: Atmospheres

Link to article, DOI:
10.1002/2016JD024901

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Positive streamer initiation from raindrops in thundercloud fields

L. P. Babich¹, E. I. Bochkov¹, I. M. Kutsyk¹, T. Neubert², and O. Chanrion²

¹Russian Federal Nuclear Center-VNIIEF, Nizhni Novgorod Oblast, Russia, ²National Space Institute, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract The threshold field for the electric gas discharge in air is ≈26 kV cm⁻¹ atm⁻¹, yet the maximum field measured (from balloons) is ≈3 kV cm⁻¹ atm⁻¹. The question of how lightning is stimulated is therefore one of the outstanding problems in atmospheric electricity. According to the popular idea first suggested by Loeb and developed further by Phelps, lightning can be initiated from streamers developed in the enhanced electric field around hydrometeors. In our paper, we prove by numerical simulations that positive streamers are initiated, specifically, around charged water drops. The simulation model includes the kinetics of free electrons, and positive and negative ions, the electron impact ionization and photon ionization of the neutral atmospheric constituents, and the formation of space charge electric fields. Simulations were conducted at air pressure 0.4 atm, typical at thundercloud altitudes, and at different background electric fields, drop sizes, and charges. We show that the avalanche-to-streamer transition is possible near drops carrying 63–485 pC in thundercloud fields with intensity of 10 kV cm⁻¹ atm⁻¹ and 15 kV cm⁻¹ atm⁻¹ for drops sizes of 1 mm and 0.5 mm, respectively. Thus, the electric field required for the streamer formation is larger than the measured thunderstorm fields. Therefore, the results of simulations suggest that second mechanisms must operate to amplify the local field. Such mechanisms could be electric field space variations via collective effects of many hydrometeors or runaway breakdown.

1. Introduction

Lightning discharge initiation remains one of the unresolved problems in the physics of atmospheric electricity despite a long history of research. A two-stage initiation process is commonly accepted [e.g., Petersen et al., 2008]. In the first stage, the thundercloud electric field is amplified locally to the threshold field for the breakdown, E_br, where the source rate of electrons from ionization of neutral molecules equals the loss rate of electrons from their attachment to oxygen molecules. For fields above the threshold, electron avalanches form and transition into streamers can occur. The threshold field is proportional to the air density. For dry air at standard temperature and pressure (STP) conditions the threshold is E_br ≈ 26 kV cm⁻¹ [Raizer, 1991, p. 427], scaling to ≈10 kV cm⁻¹ at 0.4 atm typical at thundercloud altitudes. The reduced field, independent of the density (pressure), is in both cases ≈26 kV cm⁻¹ atm⁻¹. During the second stage, a multitude of streamers forming the streamer corona heats the atmospheric gas and a hot leader channel is developed. Most research in lightning initiation is devoted to the first stage [Loeb, 1966; Phelps, 1974; Griffiths and Phelps, 1976; Nguyen and Michnowski, 1996; Blyth et al., 1998; Gurevich et al., 1997, 1999; Solomon et al., 2001; Dwyer, 2005; Petersen et al., 2008; Babich et al., 2009, 2011, 2012; Dubinova et al., 2015; Sadighi et al., 2015].

The main difficulty with the first stage is that the electric fields measured in thunderclouds do not exceed 3–4 kV cm⁻¹ atm⁻¹ [Marshall et al., 1995, 2005; Thomas and Rison, 2005], which is significantly below the threshold. Nevertheless, to initiate lightning, the field must be above the threshold, at least locally. One problem in measuring atmospheric DC electric fields is the electromagnetic noise connected with fluctuations in the space charge density caused by inhomogeneities of the air, ionization sources, etc. To counter this, probes have spheres with radii that are large relative to the spatial scales of the worst fluctuations. For balloon measurements, boom lengths are typically larger than 1 m and sphere diameters are larger than 10 cm. Therefore, such sensors cannot resolve scales below ~1 m. In addition, the temporal resolution of balloon experiments ~0.1 s [e.g., Marshall et al., 2005] is far from the requirements for detection of the transient fields of the streamer initiation.

The most accepted and fundamental building block of lightning initiation is the field enhancement from hydrometeor seeds where the thunderstorm field is enhanced in the vicinity of hydrometeors as a result of
their polarization or accumulated electric charge [Blyth et al., 1998]. This mechanism simulated and discussed in our paper is at the smallest scales of millimeters and nanoseconds.

Another proposed process for thundercloud field intensification is connected with the relativistic runaway electron avalanche (RREA) seeded by MeV-energy electrons of cosmic ray air showers [Gurevich et al., 1997]. However, numerical simulations [Babich et al., 2009, 2012] demonstrate that the achievable field is ≈8.5 kV cm⁻¹ atm⁻¹ and that the external field must be ≈4 kV cm⁻¹ atm⁻¹ over a length of 2 km, which surpasses a fundamental limit of the size and extension of the electric field in air [Dwyer, 2003].

The stationary background cosmic radiation in a thundercloud electric field can also be a source of RREAs. An RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region. During the channel development, a RREA may lead to the formation of a conducting channel sprouting downward from the upper edge of the negative cloud region to the bottom edge of the positive region.

The other coefficients used are the same as in papers [Babich et al., 2014, 2015]. The kinetic equation of electrons (e), positive (p), and negative (n) ions in a streamer discharge is described by the conventional set of equations:

\[
\frac{\partial n_e}{\partial t} + \text{div} \vec{j}_e = (\alpha_{ion} - \alpha_{att}) |\vec{j}_e| - \beta_{ep} n_e n_p + S_{ph},
\]

\[
\frac{\partial n_p}{\partial t} + \text{div} \vec{j}_p = \alpha_{ion} |\vec{j}_e| - \beta_{ep} n_e n_p - \beta_{pn} n_p n_n + S_{ph},
\]

\[
\frac{\partial n_n}{\partial t} + \text{div} \vec{j}_n = \alpha_{att} |\vec{j}_e| - \beta_{pn} n_p n_n.
\]

The photoionization source \(S_{ph} \) is computed using a model by Bourdon et al. [2007], in which a calculation of the integral in the classic model by Zheleznyak et al. [1982] is replaced with a solution of three Helmholtz's equations.

We investigate a formation of positive streamers around water drops carrying a positive charge \(Q_{dr} \) in an external electric field. While falling in a vertical electric field the drops are extended along the vertical direction [Shishkin, 1964, page 326]. Therefore, we model drops as rotation ellipsoids with a minor semiaxis,
The vector \vec{E}_{ext} is directed downward as in typical thunderclouds where the positive charge is located in the cloud top and the negative charge in the bottom; hence, the axis OZ in Figure 1 also is directed downward. In view of the cylindrical symmetry, the problem is two-dimensional and is solved in cylindrical coordinates (z, r).

In an external field, a drop is polarized. As a result, the positive charge is concentrated at the ellipsoid bottom and the negative at the top. The charge motion in the drop is described by the following set of equations:

$$\frac{\epsilon}{c} \frac{\rho_{dr}}{dt} + \text{div} \, \vec{J}_{dr} = 0,$$

$$\vec{J}_{dr} = \sigma_{dr} \vec{E},$$

where $\vec{J}_{dr}, \rho_{dr}, \sigma_{dr}$ are the current density, charge density, and electrical conductivity in the drop. The raindrop conductivity is within the limits from 5×10^{-4} to $100 \times 10^{-4} \text{Sm}^{-1}$ [Muchnik, 1974, p. 167] and we use

$$\sigma_{dr}(z, r) = \begin{cases} 100 \times 10^{-4} \text{S m}^{-1}, & (z, r) \in D_{dr}, \\ 0, & (z, r) \notin D_{dr}. \end{cases}$$

Here D_{dr} is the space domain occupied by the ellipsoid (drop). The background conductivity inside thunderstorms ($\sim 10^{-13} \text{Sm}^{-1}$) [Rycroft et al., 2007] at an altitude of 7 km can be neglected.

The set of equations (1) and (2) is closed by the equations for the self-consistent electric field

$$\text{div} \left(\frac{\epsilon}{c} \vec{V} \Phi \right) = \frac{\rho_{dr}}{\epsilon_0} - \frac{P_{dis}}{\epsilon_0},$$

$$\vec{E} = - \vec{V} \Phi,$$

where $P_{dis} = e(n_p - n_n - n_e)$ is the charge density in the avalanche/streamer, e is the elementary charge, ϵ_0 is the dielectric permittivity of the free space, and ϵ is the media relative permittivity

$$\epsilon(z, r) = \begin{cases} 1, & (z, r) \in D_{dr}; \\ 80, & (z, r) \notin D_{dr}, \end{cases}$$

where 1 and 80 are magnitudes of the dielectric permittivity of air and water correspondingly.

Let us now formulate the boundary conditions for equations (1), (2) and (4). On the border of the computation domain, G_{sim}, zero boundary conditions for equations (1) are accepted

$$\vec{j}_e(z, r) = \vec{j}_p(z, r) = \vec{j}_n(z, r) = 0, \quad (z, r) \in G_{sim}.$$

On the drop surface, G_{dr}, we accept the boundary condition according to which charged particles (electrons and ions) penetrate into the drop volume if the particle velocity vector is directed inward the drop, otherwise $\vec{j} = 0$; i.e., particle do not leave the drop.
The boundary condition for equation (2) on G_{dr} is as follows:

$$
\vec{J}_{dr}(z, r) = \begin{cases}
\vec{e} \cdot j_{p}(z, r), & \left(\vec{E} (z, r) \cdot \vec{n}_{dr}(z, r) \right) < 0; \\
-e \left(\vec{j}_{e}(z, r) + \vec{j}_{n}(z, r) \right), & \left(\vec{E} (z, r) \cdot \vec{n}_{dr}(z, r) \right) > 0.
\end{cases}
$$

(7)

Here \vec{n}_{dr} is a normal to the drop outer surface.

The electric potential ϕ on the border of the computation domain G_{sim} is a sum of the external field potential ϕ_{ext} and the potential of the space charge field ϕ_{int}:

$$
\phi(z, r) = \phi_{ext}(z, r) + \phi_{int}(z, r), \quad (z, r) \in G_{sim}.
$$

(8)

The ϕ_{ext} satisfies the equation $\vec{E}_{ext} = -\nabla \phi_{ext}$ and ϕ_{int} is given by the Poisson’s equation:

$$
\phi_{int}(z, r) = \frac{1}{4\pi\epsilon_{0}D_{sim}} \int \left(\rho_{att}(z', r') + \rho_{dis}(z', r') \right) \frac{2\pi r' dr' dz'}{\sqrt{(z-z')^2 + (r-r')^2}}.
$$

(9)

where D_{sim} a volume of the computation domain.

3. The Condition for the Streamer Initiation

At least one free electron is required to start an electron avalanche (in the atmosphere free electrons are permanently produced by cosmic rays and natural radioactivity). If the external field intensity exceeds E_{br}, the primary electron initiates an electron avalanche. When the avalanche has grown to a stage where the space charge field of the avalanche is comparable to the background field, the avalanche transition into a streamer (an ionization wave) can occur. The well-known criterion for the transition in a gas discharge gap is [Raizer, 1991, p. 426]

$$
(a_{ion}(E_{ext}) - a_{att}(E_{ext}))d = 18 - 20.
$$

(10)

where d is the interelectrode spacing and E_{ext} is the electric field intensity in the gap.

In our case, the electric field is strongly inhomogeneous. Its intensity maximizes at the ellipsoid tops and rapidly decreases with distance from the ellipsoid, reaching E_{ext} at infinity. Accordingly, we reformulate condition (10) as follows:

$$
\int_{l_{a}/2}^{z_{n}} \left(a_{ion}(E(z, r = 0), P_{g}) - a_{att}(E(z, r = 0), P_{g}) \right) dz = 20.
$$

(11)

where z_{n} is the coordinate at which $a_{ion} = a_{att}$ and P_{g} is the gas pressure.

The minimum value of the field intensity at which a cathode-directed (positive) streamer can develop in air at STP is 4.65 kV cm$^{-1}$ [Bazelyan and Raizer, 2001, p. 55]. We therefore chose to simulate the reduced external electric field intensities $E_{ext}/P_{g} = 5, 8, 10, 15$ and 20 kV cm$^{-1}$ atm$^{-1}$. With the used in our simulations, air pressure $P_{g} = 0.4$ atm, corresponding to the altitude of \approx8 km above sea level, magnitudes of the field strength E_{ext} are equal to 2, 3.2, 4, 6, and 8 kV cm$^{-1}$ accordingly.

At fixed drop dimensions (d_{dr}, l_{dr}) and in a given E_{ext}, the drop charge, Q_{dr}, is the unique parameter defining the field intensity distribution. Hence, there exists a charge Q_{dr}, for which condition (11) will be satisfied. To find the required Q_{dr}, we, in the absence of the background plasma ($\rho_{dis} = 0$), calculated the stationary drop charge distribution in an external field. With this goal, we solve equations (2) and (4). As the stationary charge distribution in the given external field is unique, it does not depend on the choice of the initial charge distribution. We use the following initial conditions with homogeneous charge density in the drop:

$$
\rho_{g}(z, r = 0) = Q_{dr}/V_{dr},
$$

(12)

$$
\vec{E} (z, r = 0) = \vec{E}_{ext},
$$

where V_{dr} is the drop volume. In reality, the charge always is distributed along the drop surface. Therefore, the first equation in equation (12) is not physical; we use it for the sake of simplicity just to start simulations.
The time step used here to solve equation (2) was set \(\Delta t = 0.1 \tau_m \), where \(\tau_m = (\varepsilon_{\text{water}} / \varepsilon_0) / \sigma_r \approx 70 \, \text{ns} \) is the Maxwellian electric field relaxation time inside the drop. The simulations were run until the field distribution was stationary (simulation time \(t_{\text{run}} \approx 10 \tau_m \)). The various configurations for which condition (11) is satisfied are shown in Table 1. The values of \(Q_{dr} \) are quite realistic. They are in the range of measured charge on particles with 1–3 mm diameter inside thunderclouds, which are between 10 and 200 pC with a few particles having charges from 200 to 400 pC [Marshall and Winn, 1982]. In Figure 2 a relaxation process of the space charge density and electric field inside the drop is illustrated for the case \(d_{dr} = 1.0 \, \text{mm}, l_{dr} = 1.0 \, \text{mm}, Q_{dr} = 200 \, \text{pC}, E_{\text{ext}} = 4 \, \text{kVcm}^{-1} \). It is seen, at the end of the simulation the drop charge accumulates in thin presurface layer and, as a result, the electric field in the drop reduces almost to zero with the exception of the presurface layer.

The obtained stationary drop charge density and electric field distribution are used as initial in the next section while simulating the streamer discharge development.

As charged drops in an external electric field may be unstable, it is necessary to analyze this problem. A charged ball drop in the absence of an external field is unstable if the Rayleigh’s criterion is satisfied [Rayleigh, 1882]:

\[
W = \frac{Q_{dr}}{64\pi^2 \varepsilon_0 \sigma r_{dr}^5} \geq 1, \quad (13)
\]

where \(Q_{dr} \) and \(r_{dr} \) are the drop charge and radius and \(\sigma \) is the surface tension.

An uncharged drop in a uniform electric field is unstable if the Taylor’s criterion is satisfied [Taylor, 1964]:

\[
w = \frac{4\pi \varepsilon_0 E^2 r_{dr}}{\sigma} \geq 2.6 \quad (14)
\]

Table 1. Drop Charge \(Q_{dr} \) With Which the Condition (11) is Satisfied. Parameters Characterizing Drop Stability Conditions (13)–(15) \(W, w, X \). Streamer Velocity \(\upsilon_f \). \(P_g = 0.4 \, \text{atm} \)

<table>
<thead>
<tr>
<th>(d_{dr}) (mm)</th>
<th>(l_{dr}) (mm)</th>
<th>(E_{\text{ext}}) (kVcm(^{-1}))</th>
<th>(Q_{dr}) (pC)</th>
<th>(W)</th>
<th>(w)</th>
<th>(X)</th>
<th>(\upsilon_f) (ms(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>400</td>
<td>0.88</td>
<td>0.04</td>
<td>1.01</td>
<td>(<1.2 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>377</td>
<td>0.78</td>
<td>0.11</td>
<td>0.95</td>
<td>(<2.9 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>355</td>
<td>0.69</td>
<td>0.17</td>
<td>0.87</td>
<td>(1.4 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>315</td>
<td>0.55</td>
<td>0.39</td>
<td>0.79</td>
<td>(2.8 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>270</td>
<td>0.40</td>
<td>0.69</td>
<td>0.73</td>
<td>(3.9 \times 10^5)</td>
</tr>
<tr>
<td>3.0</td>
<td>2</td>
<td>485</td>
<td>0.32</td>
<td>0.07</td>
<td>0.34</td>
<td>(<1.3 \times 10^4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>445</td>
<td>0.27</td>
<td>0.18</td>
<td>0.32</td>
<td>(6.9 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>405</td>
<td>0.22</td>
<td>0.28</td>
<td>0.29</td>
<td>(1.5 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>340</td>
<td>0.16</td>
<td>0.62</td>
<td>0.31</td>
<td>(2.8 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>250</td>
<td>0.09</td>
<td>1.10</td>
<td>0.37</td>
<td>(3.8 \times 10^5)</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>2</td>
<td>220</td>
<td>0.90</td>
<td>0.03</td>
<td>(\bf{1.00})</td>
<td>(<6.9 \times 10^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>210</td>
<td>0.82</td>
<td>0.07</td>
<td>0.95</td>
<td>(<9.8 \times 10^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>200</td>
<td>0.74</td>
<td>0.12</td>
<td>0.86</td>
<td>(1.1 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>178</td>
<td>0.59</td>
<td>0.26</td>
<td>0.77</td>
<td>(2.2 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>157</td>
<td>0.46</td>
<td>0.46</td>
<td>0.69</td>
<td>(3.1 \times 10^5)</td>
</tr>
<tr>
<td>2.0</td>
<td>2</td>
<td>270</td>
<td>0.34</td>
<td>0.05</td>
<td>0.35</td>
<td>(7.7 \times 10^5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>252</td>
<td>0.29</td>
<td>0.12</td>
<td>0.32</td>
<td>(<1.3 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>235</td>
<td>0.26</td>
<td>0.18</td>
<td>0.30</td>
<td>(8.6 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>200</td>
<td>0.18</td>
<td>0.41</td>
<td>0.28</td>
<td>(2.1 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>165</td>
<td>0.13</td>
<td>0.73</td>
<td>0.30</td>
<td>(3.0 \times 10^5)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
<td>80</td>
<td>0.95</td>
<td>0.01</td>
<td>(\bf{1.06})</td>
<td>(<1.4 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>77</td>
<td>0.88</td>
<td>0.04</td>
<td>0.99</td>
<td>(<4.0 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>75</td>
<td>0.84</td>
<td>0.06</td>
<td>0.95</td>
<td>(6.8 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>69</td>
<td>0.71</td>
<td>0.13</td>
<td>0.84</td>
<td>(1.3 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>63</td>
<td>0.59</td>
<td>0.23</td>
<td>0.75</td>
<td>(2.0 \times 10^5)</td>
</tr>
<tr>
<td>1.0</td>
<td>2</td>
<td>103</td>
<td>0.39</td>
<td>0.02</td>
<td>0.40</td>
<td>(<3.0 \times 10^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>98</td>
<td>0.36</td>
<td>0.06</td>
<td>0.37</td>
<td>(<6.4 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>93</td>
<td>0.32</td>
<td>0.09</td>
<td>0.35</td>
<td>(8.4 \times 10^4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>84</td>
<td>0.26</td>
<td>0.21</td>
<td>0.31</td>
<td>(1.4 \times 10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>74</td>
<td>0.20</td>
<td>0.37</td>
<td>0.29</td>
<td>(2.1 \times 10^5)</td>
</tr>
</tbody>
</table>

The sign “<” means that the velocity does not reach a stationary value.
For a charged drop in a uniform field, the instability criterion by Grigor’ev and Shiryaeva [1989] holds

\[X = (1 + 2.07e_0^2)W + 0.092(1 + 6.62e_0^2)w \geq 1, \]

where \(e_0^2 = 0.18w/(1 - W) \).

In Table 1, the magnitudes of \(W, w, \) and \(X \) are presented for an accepted magnitude of the surface tension \(\sigma = 77 \text{ N m}^{-1} \) for supercooled water at \(-10^\circ\text{C}\) [Hruby et al., 2014]. It is seen that the drops are stable relative to the criteria (13) and (14) but marginally unstable according to criterion (15) in some configurations if the field is \(2 \text{ kV cm}^{-1} \). However, as shown later (see the last paragraph of section 5), streamer initiation in these configurations is unlikely; therefore, in these cases a question about drops stability is irrelevant.

4. The Simulation Approach to the Streamer Discharge Development

To simulate the streamer discharge, equations (1), (2), and (4) are solved using a homogeneous square spatial mesh with steps \(\Delta z = \Delta r = 2.5 \times 10^{-6}, 5 \times 10^{-6}, \) and \(5 \times 10^{-6} \text{ m} \) for \(d_{dr} = 0.5, 1.0, \) and \(1.5 \text{ mm}, \) respectively, and \(\Delta t = 2 \times 10^{-13} \text{ s} \). The numerical diffusion when calculating the flux terms in equation (1) is minimized using the method by Zalesak [1979] in the same way as in [Babich et al., 2014]. The stationary electric field around the charged ellipsoid and drop charge density at \(t = 0 \) are determined as described in the previous section.

Although an electron avalanche can be initiated by one electron in the drop vicinity, however, fluid equations describe the evolution of a large number of particles. The conventional solution to this dilemma is to prescribe the initial conditions \(n_e(z, r, 0) = n_p(z, r, 0) = \delta(z - z_{in}), \) but this leads to too large electron diffusion at the initial stage of the avalanche. Instead, we set \(n_e(z, r, 0) = n_p(z, r, 0) = N_0^e \delta(z - z_{st}), \) where \(N_0^e \) is set 100 and \(z_{st} \) is found from the equation:

\[
\int \frac{z}{\sqrt{2}} \left(\mu_{\text{ion}}(E(z, r = 0), P_9) - \mu_{\text{ele}}(E(z, r = 0), P_9) \right) dz = 20 - \ln(N_0^e). \tag{16}
\]

Condition (16) allows preserving condition (11), and our approach is simply not to follow the early stage of the avalanche. As a result, the initial conditions for (equation (1)) are as follows:

\[
\begin{align*}
n_e(z, r, 0) &= N_0^e \delta(z - z_{st}), \\
n_p(z, r, 0) &= n_e(z, r, 0), \\
n_n(z, r, 0) &= 0.
\end{align*}
\tag{17}
\]

Simulations executed with \(N_0^e = 1000 \) did not alter significantly results. Discharge simulations are run until \(t_{\text{run}} = 40 \text{ ns} \) or until the streamer front reaches the simulation domain boundary.
5. Results

In the following, we define the streamer front position as the location of the maximum electric field. Initially, the electron avalanches develop from \(z = z_0 \) toward the drop, whereas photoionization creates new free electrons also at farther distance from the drop, which in turn may develop avalanches toward the drop. In all the simulated configurations, the streamer front passed \(z = z_{\text{fin}} \), i.e., entered into the domain where at the initial moment of time \(\alpha_{\text{fin}} < \alpha_{\text{att}} \). The distributions of the field intensity and electron number density along the discharge symmetry axis are shown as functions of time in Figure 3. They have the typical characteristics of a streamer. Scaled to STP conditions the electron number density in the channel is \(\approx 10^{20} \text{m}^{-3} \) (the electron number density scales as \(\sim D_0 \) [Pasko et al., 1998]) and the reduced field intensity at the streamer front is \(\approx 160 \text{kVcm}^{-1} \text{atm}^{-1} \).

When the streamer propagates farther from the drop, the front field decreases. The streamer leaving the enhanced field region near the drop and an increase in the streamer radius cause this. The electric field and electron densities in the \((z, r)\) plane are illustrated in Figure 4 for \(d_{dr} = 1.0 \text{ mm}, I_{dr} = 1.0 \text{ mm}, E_{\text{ext}} = 4 \text{kVcm}^{-1} \) at three different times. It is seen that the radius of the streamer channel is growing, reaching \(\approx 0.25 \text{ mm} \). The plots of Figures 3 and 4 are typical for all configurations in Table 1.

As the streamer propagates, negative charge is transferred from the streamer channel to the drop, which reduces the initially positive charge on the drop and the field around the drop. The question is now if the streamer will continue to propagate after the positive drop charge is annihilated or after the streamer front leaves the domain of enhanced field around the drop. To address this question, we show in Figure 5 the time dependences of the streamer velocity, the front field intensity, the number of free electrons, and the drop charge for \(d_{dr} = 1.0 \text{ mm}, I_{dr} = 1.0 \text{ mm}, E_{\text{ext}} = 4 \text{kVcm}^{-1} \). We note that that the positive drop charge disappears at \(t = 15 \text{ ns} \) and afterward the drop very slowly accumulates negative charge. The field intensity at the streamer front achieves a stationary magnitude \(E = 62 \text{kVcm}^{-1} \) at \(t = 12 \text{ ns} \) and the electron number approaches a linear growth rate after \(t = 8 \text{ ns} \). The streamer velocity initially decreases and approaches a stationary magnitude equal \(\nu_f \approx 1.1 \times 10^5 \text{m} \text{s}^{-1} \) toward the end of the run, which is consistent with the observed minimum value of the streamer speed at STP conditions \(\nu_{s, \text{min}} \approx 10^5 \text{m} \text{s}^{-1} \) [Briels et al., 2008]. Noting that our simulations were carried out for \(P_g = 0.4 \text{ atm} \) and that there is some uncertainty of the \(\nu_{s, \text{min}} \) magnitude, we conclude that for the configuration shown in Figures 3 and 4, the streamer will continue to propagate.

The final streamer velocity for all the simulated configurations is given in Table 1. It is seen that for all configurations with \(E_{\text{ext}} = 2 \text{kVcm}^{-1} \) and \(3.2 \text{kVcm}^{-1} \) the velocity is much less than \(\nu_{s, \text{min}} \). In addition, we find that at some point in time, the number of electrons begins to decrease (not shown). This means that streamers will not be initiated at such fields. The conclusion follows from our model that stable propagation of streamers requires higher fields. Adopting the criterion that \(\nu_f > \nu_{s, \text{min}} \) we find that streamer initiation is possible in external fields with strength \(E_{\text{ext}} \geq 4 \text{kVcm}^{-1} \) and \(6 \text{kVcm}^{-1} \) from drops with \(d_{dr} \geq 1.0 \text{ mm}, Q_{dr} \geq 200 \text{ pC} \), and \(d_{dr} \geq 0.5 \text{ mm}, Q_{dr} \geq 70 \text{ pC} \), respectively.
6. Discussions and Conclusions

A number of numerical simulation studies have been carried out to study streamer discharge initiation in thundercloud electric fields. Solomon et al. [2001] presented results of one-dimensional simulations of positive discharge initiation at $P_g = 0.5$ atm from hydrometeors. They found that streamers can be initiated in the following cases: (1) during collisions of water drops with radius of 2.7 mm and 0.65 mm in a field of $4 \text{ kV cm}^{-1} \text{ atm}^{-1}$, (2) from isolated ice needles in a field of $22 \text{ kV cm}^{-1} \text{ atm}^{-1}$, or (3) in a field of $18 \text{ kV cm}^{-1} \text{ atm}^{-1}$ if the needle is charged up to 100 pC.

In Sadighi [2015], a two-dimensional model of streamers initiated from uncharged dielectric hydrometeors in a uniform electric field is presented. Two cases were simulated: (1) a spherical ice hydrometeor with a radius 3.1 mm in an ambient electric field value of $0.9 \ E_{br}$ and (2) a columniform liquid water filament with a length 2.9 mm and a radius 0.44 mm in a field of $0.8 \ E_{br}$. The initial seed electrons were a plasma cloud containing $\sim 10^{7}$ electron-ion pairs. In both cases, a stable streamer discharge develops. Sadighi et al. [2015] study streamer formation from thundercloud hydrometeors in a field of $0.3 \ E_{br}$. The hydrometeor was represented by an ionized, cylindrical column with hemispherical caps containing an equal number of electrons and positive ions. The study concludes that the minimum length required for the streamer initiation is from 5 to 8 mm with a background
electron density of $\sim 10^{15}$ m$^{-3}$. In addition, it was found that the electron density must be nonuniform, otherwise the streamer branches. The authors suggested that such nonuniform spatial distribution could be created by pervious corona discharges. However, replacing a hydrometeor with a strongly ionized patch of air the authors lost an opportunity of reproducing the most important process of the avalanche to streamer transition.

In Dubinova et al. [2015], results of simulations of positive streamer development are presented near an elongated ice hydrometeor, approximated as a prolate ellipsoid. Uncharged hydrometeor polarizes in the electric field due to the ice dielectric permittivity. To start the streamer process, a concentration of 10^{10} cm$^{-3}$ of free seed electrons around the hydrometeor was assumed. This large concentration was hypothesized to be a result of a cosmic ray shower. The authors for a number of the field strength and hydrometeor length magnitudes computed a radius of the ellipsoid tip curvature required to fit the Meek number 10 (unlike the conventional magnitude 20: cf. equation (11)), which they state is sufficient for the streamer inception. Actually, Dubinova et al. simulated the streamer development near the hydrometeor of 6 cm length in the field of 0.15 E_{br} and obtained a streamer moving with an average velocity of $\approx 10^5$ m/s.

As we can see, most published studies are focused on uncharged hydrometeors as a source of positive streamer origin. In contrast, our own work considers streamer initiation in self-consistent electric field in the vicinity of a charged raindrop. Unlike Sadighi et al. [2015], we started the simulation with a condition corresponding to only one seed electron in the hydrometeor vicinity and did not require enhanced (above the background) preionization. We found that avalanche-to-streamer transition is possible if the drop charge is in the range of $Q_{dr} = 63$–485 pC. For drops with $d_{dr} \geq 1.0$ mm and $d_{dr} \geq 0.5$ mm streamers can be initiated and can propagate for $E_{ext} \geq 4$ kV cm$^{-1}$ and 6 kV cm$^{-1}$, respectively, corresponding to $E_{br} \approx 0.31$ E_{br} and ≈ 0.47 E_{br} (in our model $E_{br} = 12.8$ kV cm$^{-1}$ at $P_g = 0.4$ atm). The magnitudes of drop size and charge are quite realistic unlike in [Dubinova et al., 2015], where extremely large hydrometeor dimensions were required to start the streamer discharge.

As in the earlier publications [Sadighi, 2015; Sadighi et al., 2015; Dubinova et al., 2015], we have simulated the important “smallest” seeding element. However, the problem remains that the scale is so small, and the
required fields are larger than observed fields, that a second stage of larger scale must be brought in play to amplify the field in larger volume. The scale of the second stage must also satisfy the limitation imposed by the spatial and temporal resolution of instruments measuring the intracloud electric field (see Introduction); otherwise, this stage would be detected. Collective effects of many hydrometeors and spatial variations in a cloud space charge density up to about 0.1–1 m (instrumental spatial resolution) could be causal to the development of enhanced fields in regions that larger than those of individual hydrometeors.

References

Sadighi, S. (2015), Initiation of Streamers from Thundercloud Hydrometeors and Implications to Lightning Initiation. A dissertation submitted to the College of Science at Florida Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics, Melbourne, Fla. [Available at http://hdl.handle.net/11141/6771].

Acknowledgments

The VNIEF coauthors express the deepest gratitude to C. Caltoudi who, in cooperation with T. Neubert, has been an international collaborator in the completed ISTC project 3993–2010 and to N. Crosby, S. Cummner, A. van Deursen, J.R. Dwyer, R. Roussel-Dupre, D. Smith, T. Torii, and E. Williams for their support of the project proposal. They thank R.A. Roussel-Dupre and E.M.D. Symbalisty for the long-term collaboration, the continuation of which is this paper. The authors would like to thank the reviewers whose invaluable comments have allowed significant improvement of this paper. Readers can access the data from the paper via authors by emails: babich@elph.vnief.ru and neubert@space.dtu.dk. The work has benefited from collaborations within the European Science Foundation Research Networking Project “Thunderstorm Effects on the Atmosphere-ionosphere System.”
Shishkin, N. S. (1964), Clouds, Precipitations and Thunderstorm Electricity [In Russian], Gydrometeoizdat ed., Leningrad.