Low-sludge age EBPR process for resource recovery – microbial and biochemical process characterization

Valverde Pérez, Borja; Wágner, Dorottya Sarolta; Lóránt, Bálint; Gúlay, Arda; Radovici, Maria; Angelidaki, Irini; Smets, Barth F.; Plósz, Benedek G.

Publication date:
2016

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Low-sludge age EBPR process for resource recovery – microbial and biochemical process characterization

Borja Valverde-Pérez*, Doroty Sa Wágner, Bálint Lóránt, Arda Gúlay, Maria Radovici, Irini Angelidaki, Barth F. Smets, Benedek Gy. Plósz*

1. INTRODUCTION
Current research promotes resource recovery using different strategies:
- Energy recovery using A-stage systems [1]
- Phosphorus recovery using low-SRT EBPR systems [2]
- To minimize nitrification, thus producing ammonium rich medium for phototrophic organisms [2]
- Water reuse for “fertigation” [2,4]

2. OBJECTIVES
- To start-up a short-SRT EBPR system and describe process performance
- To define the microbial community, affecting the performance of the short-SRT EBPR system
- To quantify energy recovery

3. RESULTS

1. Process Performance:

2. Microbial community:

3. Biomethane potential:

4. Highlights:
- EBPR effectively removed phosphorus at SRT=3 d and *Accumulibacter phosphatis* was the main PAO (based on qFISH)
- Bulking correlates with poor phosphate removal (highlighted in red, in Fig. 1)
- High abundance of *Thiotrichia* filamentous bacteria
- Sulfate reduction during the anaerobic phase (about 30% of influent sulfate)
- Sulfate reducers outcompeted PAO by
 1. Competing for influent COD
 2. Inhibiting phosphorus release
- Phosphate removal restored by reducing the anaerobic phase length (highlighted in green in Fig. 1)
- Up to 40% of influent carbon is recovered as methane at SRT=3 d

References: