Emergence of a new predator in the North Sea: evaluation of potential trophic impacts focused on hake, saithe, and Norway pout

Cormon, Xochitl; Kempf, Alexander; Vermard, Youen; Vinther, Morten; Marchal, Paul

Published in:
ICES Journal of Marine Science

Link to article, DOI:
10.1093/icesjms/fsw050

Publication date:
2016

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Emergence of a new predator in the North Sea: evaluation of potential trophic impacts focused on hake, saithe, and Norway pout

Xochitl Cormon1*, Alexander Kempf2, Youen Vermard3, Morten Vinther4, and Paul Marchal1

1 Channel and North Sea Fisheries Research Unit, IFREMER, 150 quai Gambetta, B.P. 699, Boulogne-sur-Mer 62321, France
2 Thünen Institute of Sea Fisheries, Palmaille 9, Hamburg 22767, Germany
3 Unit of Fisheries Ecology and Modelling, IFREMER, Nantes B.P. 21105, Cedex 03 44311, France
4 DTU Aqua Technical University of Denmark, Jægersborg Alle 1, Charlottenlund 2920, Denmark

*Corresponding author: tel: +33 321 995 684; e-mail: xochitl.cormon@ifremer.fr

Received 15 July 2015; accepted 9 March 2016; advance access publication 24 April 2016.

During the last 15 years, northern European hake (Merluccius merluccius) has increased in abundance, and its spatial distribution has expanded in the North Sea region in correlation with temperature. In a context of global warming, this spatial shift could impact local trophic interactions: direct impacts may affect forage fish through modified predator–prey interactions, and indirect impacts may materialize through competition with other resident predators. For instance, North Sea saithe (Pollachius virens) spatial overlap with hake has increased while saithe spawning-stock biomass has decreased recently notwithstanding a sustainable exploitation. In this context, we investigated the range of potential impacts resulting from most recent hake emergence in the North Sea, with a particular focus on saithe. We carried out a multispecies assessment of North Sea saithe, using the Stochastic MultiSpecies (SMS) model. In addition to top-down processes already implemented in SMS, we built in the model bottom-up processes, relating Norway pout (Trisopterus esmarkii) abundance and saithe weight-at-age. We simulated the effects, on all North Sea species being considered but focusing on Norway pout and saithe, of combining different hake abundance trends scenarios with the inclusion of bottom-up processes in SMS. North Sea saithe FMSY was then evaluated in a multispecies context and contrasted with single-species value. The different scenarios tested revealed a negative impact of hake emergence on saithe biomass, resulting from an increase of predation pressure on Norway pout. These results confirm the competition assumption between saithe and hake in the North Sea and might partially explain the most recent decrease of saithe biomass. This study also highlighted that taking into account bottom-up processes in the stock assessment had a limited effect on the estimation of saithe FMSY which was consistent with single-species value.

Keywords: hake, interspecific competition, maximum sustainable yield, multispecies stock assessment, Norway pout, predator – prey interactions, saithe, simple foodweb, SMS.

Introduction

In 2002, the Johannesburg World Summit on Sustainable Development provided a legally binding framework to implement and develop science relevant to the Ecosystem Approach to Fisheries and associated management tools (FAO, 2003). In that context, Plaganyi (2007) reviewed models available to take into account species interactions in fisheries research and management. Models are ranging from complex and holistic ecosystem models to minimum realistic models, which are restricted to marine organisms known to have strong interactions with the species of interest. Such minimum realistic models have been preferred by different advisory agencies worldwide to account for multispecies interactions in stock assessment-based fisheries advice, because of their flexibility and ability to fit to observations (Plaganyi, 2007). The International Council for the Exploration of the Sea (ICES), i.e. the main advisory body of fisheries management in the Northeast Atlantic, has promoted multispecies assessments, building in biological...
Emergence of a new predator in the North Sea

For these reasons, it is reasonable to assume that both species are Sea, which was positively correlated with Norway pout presence. and hake are top-predators and have similar diet with Norway pout being an important prey for both species (Bergstad, 1991b; and e.g. dependency of predators on forage fish (Frederiksen et al., 2006; Engelhard et al., 2014; Pikitch et al., 2014), and competitive interactions, are often not taken into account in multispecies stock assessment models, even if their importance is acknowledged (Hollowed et al., 2000).

Changes in environmental factors reported during the last 20 years in the North Sea (ICES, 2008) have led to changes in species distribution and abundances (Beaupre, 2004; Perry et al., 2005; Jones et al., 2013) but also in ecosystem functioning. The recent increase of Northern hake (Merluccius merluccius) abundance in the North Sea (Baudron and Fernandoes, 2014; Cormon et al., 2014) could impact other exploited species through changes in the foodweb. These trophic impacts could be direct, e.g. on prey species, or indirect, e.g. on other predator species feeding on similar prey assemblages, i.e. competitors. These concerns led in 2013 to an initiative to collect diet data from stomach contents within an EU-funded project (MARE/2012/02) to include in the North Sea multispecies assessment. North Sea hake is currently considered as a small component of the larger Northern hake stock (ranging from the Spanish to the Norwegian coast; ICES, 2013a). As a result, the biomass of North Sea hake is input in SMS as an exogenous factor and it is not explicitly modelled. However, the recent increase of Northern hake abundance in the North Sea might then affect food availability and, as a result, the recruitment occurring in summer (third quarter), with a quarterly time-step with spawning occurring in winter (first quarter) and recruitment occurring in summer (third quarter), while yearly biomass is calculated at the beginning of the year. The model can be used in hindcast and forecast mode and it is subject to competitive interactions (Link and Auster, 2013) particularly when feeding on Norway pout. The emergence of hake in the North Sea might then affect food availability and, as a result, the growth of North Sea saithe (Cormon et al., 2016) with knock-on effects on saithe biomass, spawning success, and recruitment (Jakobsen et al., 2009). These might partly explain the recent decline in saithe biomass and weight-at-age, notwithstanding an exploitation at around maximum sustainable yield (MSY) for several years (ICES, 2013d).

Fishing mortality corresponding to MSY or F_{MSY} is a commonly used limit or target reference point based on long-term yield predictions. Species interactions may adversely affect the estimation of F_{MSY} and therefore the reliability of fisheries advice (ICES, 1997; Gislason, 1999; Collie and Gislason, 2001). Gislason (1999) compared several reference points (including F_{MSY}) estimated in single- and multispecies models for the main Baltic Sea species, i.e. cod (Gadus morhua), herring and sprat (Sprattus sprattus). Collie and Gislason (2001) investigated the sensitivity of reference points to changes in natural mortality (changes of predation pressure on prey population) and growth changes (changes of prey availability to predators). However, to our best knowledge, the sensitivity of predator’s F_{MSY} estimates to prey availability and growth changes, have never been investigated, when bottom-up processes are built in multispecies stock assessments.

This study focuses on the hake, Norway pout, and saithe trio. The SMS model was extended with a correlation between Norwegian pout abundance and saithe growth (Cormon et al., 2016) and the estimation of consumption rates as a function of predator’s estimated mean weight-at-age. Including these bottom-up processes allowed the investigation not only of direct impacts of hake on Norway pout but also of the indirect impacts of hake on saithe. We investigated the effects of increased future levels of abundance, reflecting that in the context of global warming (Portner et al., 2014) hake might settle or even expand in the North Sea (Cormon et al., 2014). In addition, North Sea saithe MSY and its associated fishing mortality F_{MSY} were investigated taking into account bottom-up processes between saithe and Norway pout, and potential competitive interactions with hake.

Material and methods

Model presentation

SMS model

The SMS model (Lewy and Vinther, 2004) was used to study the biological interactions between Norway pout, saithe, and hake. SMS is an age–length structured model extending the MultiSpecies Virtual Population Analysis (Helgason and Gislason, 1979; Pope, 1979) used by the ICES to carry out multispecies fish stock assessments in the North Sea and the Baltic Sea. SMS allows the estimation of predation mortality based on prey suitability, prey availability, predators’ stomach contents, and predators’ consumption rates (Andersen and Ursin, 1977; Gislason and Helgason, 1985). Estimated prey suitability is constant over time leading to a Holling type II feeding functional response in the model (Magnusson, 1995). SMS is operated with a quarterly time-step with spawning occurring in winter (first quarter) and recruitment occurring in summer (third quarter), while yearly biomass is calculated at the beginning of the year. The model can be used in hindcast and forecast mode and it is subject to a so-called key-run every 3 years within the ICES WGSAM, which aims to include and validate updates of input data and potential modifications of the model structures.
Table 1. Species included in the Stochastic MultiSpecies model.

<table>
<thead>
<tr>
<th>Assessed species</th>
<th>Predator only</th>
<th>Prey only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saithe (Pollachius virens)</td>
<td>Predator only</td>
<td>Prey only</td>
</tr>
<tr>
<td>Cod (Gadus morhua)</td>
<td>Predator only</td>
<td>Prey only</td>
</tr>
<tr>
<td>Haddock (Melanogrammus aeglefinus)</td>
<td>Prey only</td>
<td>Norwey pout (Trisopterus esmarkii)</td>
</tr>
<tr>
<td>Whiting (Merlangius merlangus)</td>
<td>Prey only</td>
<td>Herring (Clupeus harengus)</td>
</tr>
<tr>
<td>Sprat (Sprattus sprattus)</td>
<td>Prey only</td>
<td>Sandeel (Ammodytes sp.)</td>
</tr>
<tr>
<td>No predator-prey interaction</td>
<td></td>
<td>Common sole (Solea solea)</td>
</tr>
<tr>
<td>“Other” predators (biomass assumed known)</td>
<td></td>
<td>Plaice (Pleuronectes platessa)</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td>Grey gurnard (Eutrigla gurnardus)</td>
</tr>
<tr>
<td>Hake (Merluccius merluccius)</td>
<td></td>
<td>Horse mackerel (Trachurus trachurus)</td>
</tr>
<tr>
<td>Grey gurnard (Eutrigla gurnardus)</td>
<td></td>
<td>Mackerel (Scomber scombrus)</td>
</tr>
<tr>
<td>Starry ray (Raja radiata)</td>
<td></td>
<td>Seabird</td>
</tr>
<tr>
<td>Seabird</td>
<td></td>
<td>Fulmar (Fulmarus sp.)</td>
</tr>
<tr>
<td>Guillemot (Uria aalge)</td>
<td></td>
<td>Herring gull (Larus argentatus)</td>
</tr>
<tr>
<td>Kittiwake (Rissa sp.)</td>
<td></td>
<td>Razorbill (Alca torda)</td>
</tr>
<tr>
<td>Great-black-backed gull (Larus marinus)</td>
<td></td>
<td>Sea mammal</td>
</tr>
<tr>
<td>Gannet (Morus sp.)</td>
<td></td>
<td>Grey seals (Halichoerus grypus)</td>
</tr>
<tr>
<td>Puffin (Fratercula sp.)</td>
<td></td>
<td>Harbour porpoise (Phocoena phocoena)</td>
</tr>
</tbody>
</table>

The present study is based upon the last key-run (ICES, 2014a), which includes 10 dynamically assessed fish species (predators and prey), four “other” fish predators as well as seabirds and marine mammal species (see Table 1 for details about species included in the model).

Implementation of bottom-up process

As a first step, we modified SMS 2014 key-run version to model the extent to which bottom-up processes (availability of Norway pout (Trisopterus esmarkii)) may limit the growth and consumption rates of saithe (Pollachius virens) and ultimately impact its spawning-stock biomass (SSB). We focused on the hake (Merluccius merluccius), saithe and Norway pout trio even if methods presented here could in principle be applied to other species. The implementation of bottom-up processes in the model had two components: (i) the implementation of saithe mean weight-at-age calculation depending on Norway pout biomass and (ii) the calculation of consumption rates as a function of saithe mean weights. All parameters described below and the values used in this study are presented in Table 2.

Saithe weight calculation

As highlighted by Cormon et al. (2016), saithe growth was assumed to follow a sigmoidal relationship correlating length, l, and age, a, as described by Equation (1). The asymptotic length, l_{∞}, was expressed in centimetres, the relative growth constant, K_{LG}, in years$^{-1}$, and the sigmoidal curve inflection point, which represents the theoretical age at which individuals growth trajectory changes, a_{i}, in years.

$$l_{a} = l_{\infty} - \frac{1}{1 + e^{-K_{LG}(a-a_{i})}}. \quad (1)$$

The two growth parameters, a_{i} and l_{∞}, were fixed as the median values of Cormon et al. (2016) estimations excluding years where these two parameters had no biological meaning ($l_{\infty} > 500 \text{ cm}$ and $a_{i} > 15 \text{ years}$). Based on the empirical conclusions of Cormon et al. (2016), saithe growth constant K_{LG} was assumed to vary linearly, at a rate defined by coefficient β_{1}, in relation to previous year’s Norway pout total-stock biomass (TSB) (NP_{TSB-1}, in tonnes), see Equation (2).

$$K_{LG} = \mu + \beta_{1} \cdot NP_{TSB-1}. \quad (2)$$

where t is the time in years and μ the intercept.

To estimate β_{1}, we first realized a multiple regression of K_{LG} as a function of TSB, a_{i} and l_{∞} using annual time-series of K_{LG} provided by Cormon et al. (2016). The strong correlation between a_{i} and l_{∞} led to drop the variable with the highest variance inflation factor. This procedure allowed the estimation of the partial regression coefficient β_{1} describing the effect of previous year abundance on K_{LG} taking into account the two other parameters effects. All these preliminary analyses were conducted using R 2.15.3.

Estimated saithe length-at-ages l_{a} were transformed in millimetres and weights-at-age w_{a} in kg were derived from Equation (3):

$$w_{a} = a_{1}^{b} \cdot a_{2}, \quad (3)$$

where a and b are the allometric coefficients assumed constant over time and extracted from Froese and Pauly (2014).

Table 2. Parameters used for the implementation of bottom-up process between saithe and Norway pout. q: quarter.

<table>
<thead>
<tr>
<th>Value</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{LG}</td>
<td>1,2</td>
</tr>
<tr>
<td>μ</td>
<td>2</td>
</tr>
<tr>
<td>β_{1}</td>
<td>1.01×10^{-7}</td>
</tr>
<tr>
<td>a_{i}</td>
<td>5,9</td>
</tr>
<tr>
<td>l_{∞}</td>
<td>131</td>
</tr>
<tr>
<td>Length–weight relationship</td>
<td>a_{2} = 2.8322×10^{-8}</td>
</tr>
<tr>
<td>b</td>
<td>2.7374</td>
</tr>
<tr>
<td>Consumption rates</td>
<td>d_{q}</td>
</tr>
<tr>
<td>$q = 1$</td>
<td>0.4528</td>
</tr>
<tr>
<td>$q = 2$</td>
<td>1.3127</td>
</tr>
<tr>
<td>$q = 3$</td>
<td>0.6991</td>
</tr>
<tr>
<td>$q = 4$</td>
<td>0.8230</td>
</tr>
<tr>
<td>$q = 1$</td>
<td>1.0334</td>
</tr>
<tr>
<td>$q = 2$</td>
<td>1.0160</td>
</tr>
<tr>
<td>$q = 3$</td>
<td>1.0153</td>
</tr>
<tr>
<td>$q = 4$</td>
<td>1.0123</td>
</tr>
</tbody>
</table>
Emergence of a new predator in the North Sea

Fishery context scenario

Species interactions scenario

an increase rate (%·year⁻¹) over the period (year) indicated between brackets.

Forecast

Fishery context

<table>
<thead>
<tr>
<th>Species interactions scenario</th>
<th>Status-quo fishery (FSQ)</th>
<th>Sustainable fishery (FST, FSTx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishing mortality</td>
<td>ƒ</td>
<td>ƒₚₜₐₜ</td>
</tr>
<tr>
<td>Fishery context mortality</td>
<td>ƒ</td>
<td>ƒₚₜₐₜ</td>
</tr>
<tr>
<td>Cod [2–4]</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>Whiting [2–6]</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Haddock [2–6]</td>
<td>0.16</td>
<td>0.30</td>
</tr>
<tr>
<td>Saithe [3–6]</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>Herring [2–6]</td>
<td>0.26</td>
<td>0.30</td>
</tr>
<tr>
<td>Sandeel [1–2]</td>
<td>0.30</td>
<td>0.06</td>
</tr>
<tr>
<td>Norway pout [1–2]</td>
<td>0.06</td>
<td>0.60</td>
</tr>
<tr>
<td>Sprat [1–2]</td>
<td>0.30</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Average fishing mortalities (year⁻¹) are computed for ages indicated in square brackets. BAS, baseline scenario; CST, constant hake abundance scenario; MOD, moderate hake abundance scenario; HIG, high hake abundance scenario; –, constant parameter; ~, varying parameter. Non-constant hake abundance indicates an increase rate (%·year⁻¹) over the period (year) indicated between brackets.

Consumption rate calculation

Saithe consumption rate rₐ, at age a and time t, was calculated as a function of weight-at-age wₐ, following Equation (4):

\[
rₐ = cₐ wₐ^d,
\]

where c and d are the quarterly-dependent (q) allometric coefficients, estimated during model calibration or hindcast (see Section 2.2) using historical consumption rates and historical mean weight-at-ages.

Hindcast

To fit the model to historical data and to estimate the parameters needed for multispecies stock assessment, a hindcast was conducted based on the last model key-run that was conducted over the period 1974–2013 (ICES, 2014a). Two changes were, however, brought about in this model. First, the Ricker stock–recruitment relation used for saithe was replaced by a segmented regression (hockey stick) relation (ICES, 2013d) and was calibrated on a shortened time-series (1986–2013) to exclude the historically high recruitment values observed in the 1970s during the gadoid outburst (Cushing, 1984). Second, the described bottom-up effects on saithe mean weight-at-age and consumption rates were included.

Forecast

Forecasts were carried out over a period of 51 years (2014–2065) to simulate the effects of bottom-up processes in multispecies stock assessment, particularly for a top-predator such as saithe, and also to evaluate the effects of hake emergence on Norway pout and saithe stocks.

Fishery context

Three alternative F-based fishery contexts were considered to conduct the simulations.

- **Status-quo** fishery context (FSQ): fishing mortality (F) of all species assessed within the model were based on F estimated at the last year of the hindcast (Fₛq).
- **Sustainable fishery context (FST)**: all species were fished at sustainable levels preferentially based on currently used recovery/management plan targets, Fₚₜₐₜ, or when not available, based on either single-species Fₚₚₐₜ or the precautionary approach F level, Fₚₘ (ICES, 2014b).
- **Alternative sustainable fishery context (FSTx)**: all species were fished at sustainable levels (as defined above) except for Norway pout which was based on last year hindcast (Fₛq).

All fishing mortality values are shown in Table 3.

Species interactions scenarios

Each of the three fishery contexts described in Section 2.3.1 were combined with four species interactions scenarios, focusing on the hake-Norway pout-saithe trio.

A baseline scenario involving saithe constant weight-at-ages and constant hake abundance over the whole period of forecast (BAS) was first investigated as basis of comparison with the three alternative scenarios integrating the newly implemented bottom-up processes between saithe and Norway pout. In the baseline scenario (BAS), hake abundance was estimated as the average of the last 3 years of the hindcast (2011, 2012, and 2013). Saithe stock outputs resulting from BAS scenario were equivalent to outputs resulting from single-species assessment because of the absence of species interactions impacting saithe stock in the model: neither predation mortality (as saithe is an exclusive predator, Table 1) nor bottom-up processes were included in the model.

The three alternative scenarios, exploring hake predation pressure on Norway pout and its indirect effects on the saithe stock, were investigated through the implementation of bottom-up processes in the model as described in Equations (1) to (3). Including bottom-up processes results in saithe stock outputs, such as biomass and consumption rates, being dependent on the level of hake abundance used in forecast (see below and Figure 1).

- **CST**, hake abundance was constant over the whole period of forecast and was estimated as for BAS scenario.
- **MOD**, hake abundance increase was moderate: 5% per year during 11 years starting in 2014 (based on the 2011–2013 averaged abundance) and reaching a plateau from 2025 onwards.
HIG, hake abundance increase was high: 10% per year during 11 years starting in 2014 (based on the 2011–2013 averaged abundance) and reaching a plateau from 2025 onwards.

A summary of the four species interactions scenarios is presented in Table 3.

Saithe yield optimization
Finally, we tested the sensitivity of saithe \(F_{\text{MSY}} \) (currently assessed within single-species model) to multispecies interations, including bottom-up control. To that purpose, we simulated North Sea saithe yield for each of the four scenarios (BAS, CST, MOD, and HIG), considering the status-quo fishery context (FSQ). Only Norway pout and saithe fishing mortalities varied. Norway pout \(F \) took values of either \(F_{\text{FSQ}} \) or \(F_{\text{pa}} \) (Table 3). Saithe fishing mortality \(F \) ranged from 0 to 1, with an increment of 0.1. Saithe yield was optimized for the short-term by considering the average saithe yield over the first five years of forecast (2014–2018), then for the long-term by considering the yield in the final forecast year (2065). These optimizations led to the estimation of \(F_{\text{MSY}} \) (maximum short-term yield) and \(F_{\text{MSY}} \) respectively.

Results
Baseline scenario and fishery context
Considering the BAS scenario, we compared the conservation effects of the different fishery contexts. This comparison suggested to consider in subsequent analyses the alternative sustainable fishery context, so to limit the effects of fishing on saithe (Pollachius virens) and Norway pout (Trisopterus esmarkii) biomass.

In the status-quo fishery context (FSQ), the BAS forecast, presented in Supplementary material, showed that adult Norway pout (ages 1–3) were mainly predated by saithe, which contributed to about half of total predation mortality (M2); while hake (Merluccius merluccius), cod (Gadus morhua), and whiting (Merlangius merlangus) contributed to the other half (Supplementary Figure S1). In contrast, young Norway pout (age 0) were mainly predated by other predatory fish (about half of total M2). Norway pout and saithe biomass trends (Supplementary Figure S2) were opposite with a decrease of Norway pout total stock biomass (TSB) concurrent with the increase of saithe SSB and the associated M2 increase (Supplementary Figure S1).

The results obtained when combining the BAS scenario and the FSQ fishery context were used as a basis for further comparisons of the three fishery contexts. Saithe SSB (Figure 2a) increased following the reduction of saithe \(F \) in the sustainable fishery context (FST) and in the alternative sustainable fishery context (FSTx). However, Norway pout biomass (Figure 2b) was severely impacted by the strong increase of fishing mortality in FST compared with FSQ (×10, see Table 3). The alternative sustainable fishery context (FSTx), where Norway pout \(F \) is at status-quo level, was more sustainable with an increase of Norway pout biomass compared with the two other fishery contexts (FSQ and FST). For these reasons, the alternative sustainable fishery context was selected to simulate the effects of the various interactions sections scenarios detailed below.

Interactions scenarios
To understand the differences resulting from the inclusion of bottom-up processes between saithe and Norway pout, at a constant hake abundance, we first compared the status of Norway pout and saithe stocks as derived from the baseline (BAS) and the constant (CST) scenarios. Then, the effects of increased hake abundance on both Norway pout and saithe stocks were investigated by comparing the outputs of scenarios CST, MOD, and HIG. As explained in Section 3.1, all hake abundance scenarios were simulated within alternative sustainable fishery context (FSTx).

Inclusion of bottom-up processes between saithe and Norway pout
The inclusion of bottom-up processes between saithe and Norway pout had negative effects on both saithe and Norway pout biomass, even when hake abundance remained constant (CST). Norway pout and saithe biomass were reduced by \(\sim 10\% \) (Figure 3a) and 17% (Figure 3b), respectively, compared with the baseline scenario where no bottom-up processes were included (BAS).

Age 1 Norway pout predation mortalities (M2) in the baseline scenario (Figure 4) were similarly distributed to the ones derived...
from status-quo fishery context (Supplementary Figure S1): half of M2 due to saithe predation, while hake, cod, and whiting contributed to the remaining half. There was, however, a slight increase of total M2 exerted on Norway pout when bottom-up processes were included (Figure 4), which is an indirect consequence of the reduction in saithe biomass (Figure 3b). Indeed, the lower predation exerted by saithe on young whiting and haddock (*Melanogrammus aeglefinus*) resulted in an increase of their biomass, and hence in the increase of the predation exerted by these two species on Norway pout (not shown). Therefore, there was a slight decrease in the predation pressure induced by saithe.
Hake abundance increase

In scenarios where hake abundance increased and bottom-up processes were included, there were negative effects on both saithe and Norway pout forecast biomass (Figure 3). These effects were generally proportional to the magnitude of hake abundance changes (moderate or high).

When hake abundance increased moderately (MOD), the resulting Norway pout biomass was ~30% lower compared with the scenario where hake abundance was kept constant (CST). In the high hake abundance scenario (HIG), Norway pout biomass decreased swiftly to finally collapse in 2030 (Figure 3a). Concerning indirect effects, a moderate increase of hake abundance (MOD) had only a slight negative impact on saithe biomass compared with the CST scenario (~1%, Figure 3b). However, in the HIG scenario, saithe biomass decreased relatively swiftly to finally reach a stable level, ~5% lower compared with the CST scenario.

Changes in hake abundance induced changes of Norway pout M2 allocation (Figure 4). In the MOD scenario, hake became almost as important as saithe and as cod, whiting and haddock combined. In the HIG scenario, hake became the major predator of Norway pout, followed by saithe while the predation exerted by other species became insignificant (<5%). In addition, the high level of hake abundance in HIG had a severe impact on Norway pout predation mortality with estimated Norway pout M2 reaching extreme values (M2 > 7.5) after 15 years. These extreme M2 values explain the decrease and subsequent collapse of Norway pout biomass in 2030.

Saithe yield

Saithe F_{MSY} estimated from single-species stock assessments (0.3) was not altered when derived from multispecies stock assessments,
even with bottom-up processes being built in the model. However, the inclusion of bottom-up processes narrowed the plateau around the maximum long-term yield vs. fishing mortality relationship, and highlighted the importance of Norway pout fishing mortality level.

The relationship between short-term saithe yield and saithe fishing mortality (F) was similar across the different species interactions scenarios investigated (Figure 5a). Saithe MSTY was reached at around $F_{MSTY} = 0.5$ for all scenarios. Only absolute yield estimates differed depending on whether or not bottom-up processes were included, while Norway pout fishing mortality and hake abundance had limited effects. The inclusion of the bottom-up processes between saithe and Norway pout led to lower saithe yield estimates, compared with the BAS for the same saithe F.

The inclusion of bottom-up processes between saithe and Norway pout affected long-term saithe yield, while hake abundance level had barely any effect (Figure 5b). When no bottom-up processes were included, a large plateau was found around the maximum long-term saithe yield vs. F relationship, from $F = 0.2$ to $F = 0.6$, a range where F_{sq}, F_{MSY} and F_{MSTY} were all included. Exploiting saithe within that F range, which includes the values of F_{sq}, F_{MSY} and F_{MSTY} would then lead to a long-term yield close to MSY. However, when bottom-up processes were included, the plateau including F_{MSY} narrowed (from $F = 0.2$ to $F = 0.4$). Consequently, when saithe fishing mortality was set to F_{MSTY} and bottom-up processes were not taken into account, long-term saithe yields were barely changed compared with F_{sq} while they became very low when bottom-up processes were included. Overall, long-term saithe yields were maximized in all scenarios when F was set to current single-species target: $F_{MSY_{ammod} \approx MSY_{scom} \approx 0.3}$. Finally, the inclusion of bottom-up processes highlighted differences depending on the levels of Norway pout fishing mortality. Indeed, the general decrease of absolute saithe yield resulting from the inclusion of bottom-up processes was even more dramatic when Norway pout fishing mortality was set to $F_{pa} = 0.6$ instead of $F_{sq} = 0.06$.

Discussion

Species interactions in top-predator assessment

In the absence of bottom-up control linking saithe growth and Norway pout abundance, saithe spawning-stock biomass (SSB) increased in the first years of the forecast period, as a result of initial saithe recruitments being set above recent average in the baseline forecast. These relatively high values used in the forecast stem from the three peaks observed in the saithe recruitment hindcast period (1986, 1995, and 2001), from which they are calculated.

The negative effect of Norway pout biomass reduction on saithe SSB, when the correlation between saithe weight-at-age and Norway pout biomass was taken into account, bears out the results of Lynam et al. (2015), who found a direct correlation between the SSB of these two species using generalized additive models. There are many examples of such bottom-up relationships between prey and predators along the marine foodweb, e.g. Atlantic mackerel (*Scomber scombrus*) dependency on copepods (Ringuette et al., 2002), North Sea demersal fish dependency on sandeel (*Ammodites sp.*) (Engelhard et al., 2013, 2014), and bottlenose dolphins sensitivity to resource depletion in the Bay of Biscay (Lassalle et al., 2012).

The importance of taking into account prey availability for predator assessment was confirmed by the differences in saithe yield prediction depending on, whether or not, bottom-up processes were built in the assessment. Indeed, when saithe growth was related to Norway pout availability, saithe long-term yield predictions were reduced by ~25% when saithe was exploited at status-quo (F_{pa}), compared with the scenario with no bottom-up processes.

The lower estimations of saithe long-term yield, when taking into account bottom-up processes, are consistent with recent assessment results (ICES, 2013d). Therefore, taking into account Norway pout availability in saithe assessment may lead to more realistic yield predictions that could inform management (Rice, 2011). For instance, Buchheister et al. (2015) showed that an increase in prey availability may have a positive impact on the Northeast US Atlantic coast.
flounder stock and suggested that taking into account these bottom-up processes may support the management of that depleted stock. Several studies suggested similar ideas concerning management of forage fish predators worldwide (Pikitch et al., 2014; Essington et al., 2015) including the North Sea (Engelhard et al., 2014).

In addition, an increase of saithe F to F_{MSY} (maximum short-term yield) would only increase slightly short-term yields, but at the expense of a dramatic decrease of long-term yields. This pattern was only revealed when bottom-up processes were built in the model, which confirms the importance of taking prey availability into account when studying long-term yields of fish predators like saithe (Rice, 2011; Plaganyi, 2013).

Finally, the inclusion of bottom-up processes in multispecies models, through prey availability, is necessary to study indirect competitive interactions effects, which may disturb the functioning of marine ecosystems, particularly when combined with fishing (Jennings and Kaiser, 1998; Hollowed et al., 2000).

Increased competitive interactions revealed

Despite the dramatic increase of hake abundance in the last 12 years (Baudron and Fernandes, 2014; Cormon et al., 2014; ICES, 2014a), its abundance was still around four times lower than saithe abundance in the North Sea at the beginning of the forecast period. This explains the higher Norway pout predation mortality $M2$ induced by saithe when hake abundance was constant. However, an increase of hake abundance led to an increase of the predation mortality $M2$ exerted by this predator. In the high hake abundance scenario, hake became the major predator of Norway pout leading directly to its collapse and indirectly to a decrease of saithe biomass (when bottom-up processes were built in the assessment).

The collapse of the Norway pout stock could result from the Holling functional feeding response assumed in the model. Indeed, the Holling type II function did not allow Norway pout predators to switch prey at low Norway pout abundance which compromised Norway pout stock recovery. Another functional response, e.g. Holling type III feeding response, could have been considered (Kempf et al., 2008), although that would likely only have delayed, and not prevented, the collapse of the Norway pout stock (Floeter et al., 2005). In the Scotian Shelf, Carruthers et al. (2005) showed that saithe persistently preyed upon euphausiids even at low euphausiids abundance, instead of switching to other preys, which resulted in a loss of saithe body condition. These results provide some support to the Holling type II assumption. In that case, the absence of prey shift could be explained by the high energetic value of euphausiids (Mauchline and Fisher, 1969).

Being a highly piscivorous predator, hake may impact other forage fish preys contributing to its diet such as herring ($Clupeus harengus$) (ICES, 2014a). Herring, which is a prey with high energetic value (Pedersen and Hislop, 2001), is also consumed by saithe. The variation of saithe growth as a function of prey availability was here reduced to a dependency on Norway pout abundance, based on Cormon et al. (2016). The potential bottom-up processes between saithe and other preys, such as herring, need to be further investigated to be integrated, when evidenced, in future multispecies assessments. In addition, saithe is not the only predator sharing prey with hake in the North Sea. For instance, Norway pout and herring are also consumed by cod ($Gadus morhua$) and whiting ($Merlangius merlangus$) (Engelhard et al., 2014; ICES, 2014a). Therefore, hake might affect these other demersal species, particularly if their spatial overlap is important. These questions need to be investigated to broaden the understanding of the potential impact of hake on the North Sea ecosystem.

Finally, the uncertainty around the logistic growth parameters, i.e. l_0 and a_0, may also bias our results (Payne et al., 2015). For instance, current estimates of a_0 are probably too high to realistically reflect actual changes in life-stage and/or maturation. Lower a_0 values would have resulted in a slower growth, thereby impacting saithe weight-at-age and biomass more substantially. In addition, the absence of bottom-up processes between hake and Norway pout and the fact that hake biomass is not assessed but forced into the model suggest that our results should be interpreted with caution. The lack of information available about hake stock identity and dynamics in the North Sea is an important issue, which needs to be addressed to explicitly assess hake within the model. For instance, the question of the existence of one or two hake stocks needs to be investigated. Baudron and Fernandes (2014) assumed that the recent increase of hake abundance in the North Sea is exclusively due to density-dependent effects in West Scotland, consistently with the current definition of the Northern hake stock (ICES, 2013a). However, hake is a batch spawner (Murua, 2010) and, when present around Shetland Islands during spawning, its larvae might drift, along with saithe larvae, towards Norwegian coast and Skagerrak (Munk et al., 1999). These processes would lead to different dynamics than those currently assumed and would need to be further investigated to better inform the management of hake in the North Sea.

Multispecies advice

When bottom-up processes of Norway pout on saithe were not included, the overestimation of saithe biomass (~17%) had no marked effect on the estimation of F_{MSY} Saithe $status$-quo fishing mortality ($F_{sa}=0.31$) was very close to single-species and multispecies MSY and recovery plan fishing mortalities ($F_{MSY}=F_{plan}=0.3$), which confirms that the exploitation of saithe in the North Sea is probably not subject to overfishing and also that F_{MSY} estimates are robust to changes in growth, even if these changes lead to different absolute yields (Collie and Gislason, 2001).

The suitability of Norway pout single-species management measures in a multispecies context is more questionable. Indeed, single-species precautionary approach fishing mortality ($F_p=0.6$) was 10 times higher than $status$-quo fishing mortality ($F_p=0.06$). When applied in a multispecies context, F_p would lead to stock collapse (even with no increase of natural mortality). Even if F_p should be an upper limit reference point in an escapement strategy and not a permanent target, the sensitivity of Norway pout stock to an increase of mortality (F and/or $M2$) should be taken into account in the management decisions concerning this key forage fish species. In addition, Norway pout recruitment, which is to a large extent determined by environmental factors during egg and larval phase, is an important driver of its stock dynamics (ICES, 2013c). The forecast are consequently largely dependent upon assumptions made concerning Norway pout recruitment. These uncertainties suggest that our results are not directly comparable to those currently used by ICES to inform management, due to different background assumptions, e.g. shape of the stock–recruitment relationships and natural mortality settings.

Potential environmental disturbances were not taken into account in this study. In a context of global warming (GIEC, 2014), an increase of temperature in the North Sea might have different consequences on the ecosystem, e.g. changes in predator–prey spatial overlap (Perry et al., 2005; Jones et al., 2013), or change in size- or age-at-maturation...
Emergence of a new predator in the North Sea

(Thorsen et al., 2010; Baudron et al., 2011), which may influence our results. Such environmental changes could be more explicitly built in our model. As an example, a more accurate estimation of hake abundance in the future years, e.g. by downscaling climate scenarios, could allow inferring hake distribution in the area as a function of temperature and reduce our scenarios uncertainties (Payne et al., 2015). In addition, a reduction of prey availability might have consequences for predator spawning success and recruitment (Jakobsen et al., 2009). Köster et al. (2009) showed that environmentally sensitive stock-recruitment relationship of Eastern Baltic cod might blur the estimation of biological reference point. As the latter processes were not included in the model, our study might have underestimated the negative impacts of reduced Norway pout availability on saithe biomass. Thus, the resulting effects of saithe and hake competitive interactions may have been underestimated, which may have adversely affected the estimation of multispecies saithe F_{MSY}.

Conclusion

This study revealed the importance of taking into account bottom-up processes, in addition to more usual top-down processes, to assess the status of predators in a multispecies context. To our best knowledge, it is the first time that both processes are combined in a multispecies stock assessment model parameterized for the North Sea. We focused here on North Sea saithe, for which predator dependency on prey as well as interspecific competition were accounted for and we showed some potential negative effects of hake emergence in the area on both Norway pout and saithe biomass.

North Sea saithe was a good case to study competitive interactions with hake due to the absence of spatial overlap between adult and juvenile individuals ICES (2013b) which allowed to disentangle top-down and bottom-up effects. However, interspecific competitive processes need to be investigated for other North Sea species. For instance, cod might become another “victim” of hake emergence in the area, should it also compete for preys with hake. In the Northwest Atlantic and in the Barents Sea, cod was found to depend on capelin (Mallotus villosus) abundance (Krohn et al., 1997; Gjøsaeter et al., 2009). In the North Sea, Norwegian pout and/ or herring may affect cod stock as these preys contribute importantly to its diet (Engelhard et al., 2014).

In this study, the competition between hake and saithe was investigated through their preying on Norway pout. Actually, competition may also occur for other preys (particularly if the Norway pout stock collapses), such as herring, blue whiting (Micromesistius poutassou), or euphausiids. Herring and euphausiids may be key forage species in the North Sea due to their high energetic content (Mauchline and Fisher, 1969; Pedersen and Hislop, 2001). Combined with fishing and potential environmental disturbances (Beaugrand, 2004), an increased predation mortality exerted by hake on these key species might inflate some of the adverse effects of hake emergence on the North Sea ecosystem. For instance, herring density dependency was assumed to have implications for the management of harbour porpoises and mackerel in the eastern North Sea, Skaggerak, and Kattegat (Sveegaard et al., 2012). In the Baltic Sea, herring was found sensitive to competition with sprat (Sprattus sprattus), when preying on zooplankton (Casini et al., 2006), while in the North Sea it was assumed to compete with sprat and anchovy (Engraulis encrasicolis) (Raab et al., 2012). Concerning euphausiids, the dependency of predators, such as saithe, was shown in the Scotian Sea (Carruthers et al., 2005; Plaganyi, 2013). Ultimately, this work could be extended to other species if sufficient data were available. Indeed, understanding distribution and dynamics of hake, as well as of key forage species such as herring and euphausiids, would help the precision of multispecies stock assessment and thereby of the science basis supporting the management of the heavily exploited North Sea marine ecosystem.

Finally, the negative impact of hake on saithe biomass through a reduction of Norway pout availability bears out the competition hypothesis (Link and Auster, 2013), suggested between the two species by Cormon et al. (2014) and might explain partially the most recent reduction observed in saithe biomass and weights-at-age.

Supplementary data

Supplementary material is available at the ICESJMS online version of the manuscript.

Acknowledgements

The authors acknowledge gratefully financial support from France Filière Pêche without which this study would not have been carried out. The authors would also like to thank the International Council for the Exploration of the Sea (ICES) and PICES for the travel support which was granted to X.C. to present this study at the “Third International Symposium on Effects of Climate Change on the World’s Oceans” in Santos, Brazil, 21—27 March 2015. Finally, the authors acknowledge G. Engelhard and two anonymous referees whose thoughtful suggestions helped to improve the initial manuscript.

References

Handling editor: Jason Link