Bioinorganic Chemistry of Alzheimer’s Disease

Kepp, Kasper Planeta

Published in:
Chemical Reviews

Link to article, DOI:
10.1021/cr300009x

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bioinorganic Chemistry of Alzheimer’s Disease

Kasper P. Kepp*

DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark

CONTENTS

1. Introduction: Alzheimer’s Disease from a Chemist’s Point of View 5193
1.1. Definitions and Symptoms 5193
1.2. Risk Factors 5194
2. AD Pathogenesis: Three Current Competing Hypotheses 5195
3. Amyloid Cascade Hypothesis 5195
3.1. Production of Aβ 5195
3.2. Aβ Production—Clearance Imbalances in AD 5196
3.3. Structural Forms and Toxicity of Amyloids 5196
4. Metal Ion Hypothesis 5196
4.1. The Justification of the Metal Ion Hypothesis 5196
4.2. Coordination Structures of Aβ–Metal Complexes 5197
4.3. Coordination Structures of Aβ Sequence Variations 5198
4.4. The Affinities of Metal Ions for Aβ 5199
4.5. The Role of Zinc in AD 5199
4.6. The Role of Copper in AD 5200
4.7. The Role of Calcium in AD 5201
4.8. The Role of Iron in AD 5202
4.9. The Quest for Metal-Chelating AD drugs 5203
5. Oxidative Stress and Alzheimer’s Disease 5204
5.1. Reactive Oxygen and Nitrogen Species 5204
5.2. The Role of Oxidative Stress in AD 5205
5.3. Links between Oxidative Stress and Other Pathogenic Events 5205
6. Metallothioneins and Alzheimer’s Disease 5206
6.1. Structure, Expression, and Roles of Metallothioneins 5206
6.2. Specific Functions of Metallothioneins 5206
6.3. Investigated Roles of Metallothioneins in AD 5207
7. Metabolism, Aging, Diabetes, and Alzheimer’s Disease 5208
7.1. Metabolism, Aging, and AD 5208
7.2. Zinc: A Link between Diabetes and AD? 5208
8. Methionine Synthase, Vitamin B12, and Homocysteine in Alzheimer’s Disease 5209
9. ALS and AD: Same Thing, but Different 5209
10. Exogenous Metal Exposure and Alzheimer’s Disease 5210
10.1. Aluminum 5210
10.2. Cadmium 5211
10.3. Lead 5211
10.4. Mercury 5212
11. Natural Metal Chelators against Alzheimer’s Disease 5212
12. Combining the Hypotheses: A Bioinorganic View of Alzheimer’s Disease 5215
12.1. Dysfunction of Proteins Involved in Metal Homeostasis: MT as an Example 5215
12.2. Converging toward Apoptosis 5216
12.3. The Zinc Cascade: An Example of Metal-Based Etiology 5217
12.4. Further Comments on the Pathogenesis 5221
13. Concluding Remarks: Ten Focal Points of Future Research 5222
Author Information 5224
Corresponding Author 5224
Notes 5224
Biography 5224
Acknowledgments 5224
List of Abbreviations and Acronyms 5224
References 5224

1. INTRODUCTION: ALZHEIMER’S DISEASE FROM A CHEMIST’S POINT OF VIEW

1.1. Definitions and Symptoms

Alzheimer’s disease (AD)1–3 is the most common form of dementia (estimated ∼50–60% of all cases), associated with loss of memory (in particular episodic memory), cognitive decline, and behavioral and physical disability, ultimately leading to death.4–6 It is the sixth most common cause of death in the US according to the Alzheimer’s Association, and more than 5 million Americans suffered from the disease in 2011, with prevalence growing steadily.7 A large body of recent research, to be reviewed herein, has put the AD field into contact with bioinorganic chemistry, and this review will attempt to present the growing role of bioinorganic chemistry in AD research, with a particular emphasis on zinc homeostasis.

The two main histopathological criteria for AD are observations of extracellular deposits of fibrillar peptides called senile plaques and of widespread intraneuronal fibrillar tangles.

Received: January 12, 2012
Published: July 13, 2012
The senile plaques are formed from ∼40-residue fragments, known as β-amyloids (Aβ), of the transmembrane amyloid precursor protein (APP) found in the membranes of cells and organelles such as mitochondria,4,5 thus, recent reports show that Aβ also accumulates intracellularly.8 The neurofibrillary tangles consist of twisted strands of hyperphosphorylated tau protein, a protein that is important for the structural integrity of microtubules, structural tubulin polymers of the cytoskeleton of the neurons,4 and are thus commonly observed upon neurodegeneration. Amyloid plaques are also not unique to AD, because 20–40% of unaffected elderly individuals possess amyloid plaques sufficient for post-mortem AD diagnosis,9 showing that the disease requires a clarifying and unifying pathogenic understanding.

Other observations consistently relating to AD brains are (1) loss of neurons and synapses in the cerebral cortex, involved in memory and cognition, and in particular in the hippocampus (part of the limbic system), playing a key role in memory,10 (2) oxidized biomolecules reminiscent of oxidative stress,11,12 (3) impaired energy metabolism and reduced glucose uptake,13 (4) altered calcium,5 iron,14,15 zinc,16 and copper17 homeostasis,18,19 (5) diabetes-like pathologies20,21 and (6) elevated homocysteine levels (hyperhomocysteinemia),22,24 and (8) exogenous metal exposure,31 including lead,32 mercury,13 and aluminum.44–47

Genetic risk factors are now known to cause AD in rare cases, most notably due to mutations in APP or presenilin,48 which is a constituent of the γ-secretase enzyme complex that degrades APP into Aβ giving rise to familial AD,5 and due to isoforms of the cholesterol transporter apolipoprotein (ApoE), ApoE4, which increase risk of sporadic AD by 15 times when they are homozygotic.5 Other genes, for example, coding for clusterin and phosphatidylinositol-binding clathrin assembly protein,49,50 have recently been implicated by genome-wide association studies51 and explain about half of the genetic background of sporadic AD.52 The mechanism of their involvement is not completely understood although they seem to be implicated in cholesterol metabolism, immune defense, or synaptic function.52

Because the pathogenic mechanism of AD is currently not understood, current treatments are mainly symptom-relieving and are typically effective for up to a year at best.18,53 Among such treatments, focus has mainly been on relieving cognitive symptoms, for example, N-methyl-D-aspartate (NMDA) receptor antagonists (memantine) or acetylcholinesterase inhibitors (donepezil).5,54 Given the poor therapeutic effects of current treatments, prevention has instead been suggested to...
provide better protection against AD. However, recent developments at the interface between bioinorganic chemistry and neuroscience have opened the door for appealing new targets relating to zinc homeostasis, to be discussed in this review.

Cumulated evidence shows that the risk of AD can be reduced both by avoiding the previously mentioned exogenous risk factors, including enhancing neuronal capacity, for example, by education, intake of vitamin B₁₂, folate, antioxidants such as vitamin E (evidence for vitamin C is not conclusive), unsaturated fatty acids, cereal, and fish, or controlled caloric restriction, and regular mental and physical activity. Some factors may correlate with but not cause disease progression: For example, education is a key component of an active cognitive life style that may reduce risk of AD, but education may correlate with other factors such as dietary intake. Distinguishing correlation and causation is thus central also to AD research.

2. AD PATHOGENESIS: THREE CURRENT COMPETING HYPOTHESES

Since the days of the cholinergic hypothesis of AD acetylcholinesterase inhibitors such as donepezil have dominated the market for AD treatment, although this paradigm only delays cognitive decline by typically one year. The limited efficiency of these symptom-treating receptor antagonists has led to quests for more causative pathogenic targets. During the past decade, three main hypotheses on the pathogenesis of AD have emerged that focus on different features of the disease and are to some extent seen as competing: the amyloid cascade hypothesis, the metal ion hypothesis, and the oxidative stress hypothesis. A crude overview of some central ideas of these three hypotheses is given in Figure 1.

The amyloid cascade hypothesis states that impaired balance between Aβ production and clearance is the main cause of AD and that amyloids are the main neurotoxic substances in AD. Consequently, this hypothesis favors treatments that inhibit Aβ production or enhance Aβ clearance in the AD brain. The metal ion hypothesis states that the underlying cause of AD is impaired metal homeostasis, in particular of Zn, Cu, and Fe, with Aβ imbalance being a consequence of this. This hypothesis favors treatments such as chelators that address the metal ion imbalances supposedly causing amyloid accumulation.

The oxidative stress hypothesis asserts that age-enhanced or genetically and environmentally enhanced oxidative stress results in accumulated gene defects and declining mitochondrial function that subsequently leads to neurological disorders, either gradually or when reaching a critical threshold that initiates apoptosis in neurons. Apoptosis occurs in a wide range of neurological disorders and by a range of pathways that can be triggered, for example, by lesions, misfolded proteins, oxidative stress, excitotoxicity, or Ca²⁺ dyshomeostasis.

3. AMYLOID CASCADE HYPOTHESIS

3.1. Production of Aβ

The amyloid cascade hypothesis focuses on the hallmark symptom of the disease, the senile plaques, asserts that amyloid imbalances are the main, pathogenic cause of AD, and was primarily supported by genetic risk factors of rare familial AD affecting the production or clearance of Aβ. Mechanisms of Aβ formation and clearance have been discussed in recent reviews, and many chemical and structural aspects of amyloids have been discussed in the review by Rauk. Aβ is derived from cleavage of the membrane protein APP found both in the outer cell membrane, accessible from the extracellular environment, and intracellularly, in membranes of organelles such as mitochondria. The Aβ sequence within APP is shown in Figure 2. There are two main pathways of APP cleavage, the amyloidogenic and the nonamyloidogenic; both of them occur in the normal, healthy organism, and Aβ exists in all living persons and serves roles in the healthy brain.

The nonamyloidogenic cleavage of APP at the α-secretase site, which lies within the region of formation of Aβ and therefore precludes its later formation, is catalyzed by a group of proteases called α-secretases and leads to formation of innocent sAPPα peptides outside the cell. The α-secretases belong to the ADAM family (a disintegrin and metalloprotease family), for example, ADAM9, ADAM10, and ADAM17, and are membrane zinc proteases. As an example, a structure of ADAM17 (TACE) with a bound inhibitor is shown in Figure 3. In contrast, an aspartyl protease cleaves APP at the β-site and is referred to as β-secretase (beta-site.

Figure 2. The Aβ sequence within APP and the main secretase cleavage positions. Both Aβ numbering (Aβ#) and APP numbering (APP#) is indicated. Amino acids are colored according to negative charge (red), positive charge (blue), histidines (orange), and hydrophobic (green).

Figure 3. The zinc protease ADAM17 (TACE) with α-secretase activity (3L0T.pdb). Active-site Zn(II) (blue) coordinates three histidines and two oxygen atoms from an inhibitor. See ref 85. Picture made with Pymol.
APP cleaving enzyme 1, BACE1.86,87 Subsequent cleavage by the enzyme complex \(\gamma\)-secretase leads to formation of the two variants A\(\beta\)40 (ca. 90\%) and A\(\beta\)42 (ca. 10\%), with 40 and 42 residues, respectively.8,10

3.2. A\(\beta\) Production—Clearance Imbalances in AD

Any disruption that affects the balance between the two pathways can alter the balance between innocent cleavage products and A\(\beta\). For example, low pH (\(\beta\)-secretase has a low pH\(_{\text{opt}}\))8,88–90, oxidative stress or hypoxia (which induces \(\beta\)-secretase88–90), hypercholesterolemia (\(\beta\)-secretase and \(\gamma\)-secretase are inhibited by reduced cholesterol levels),91 and lack of Zn(II) in the \(\alpha\)-secretase active sites may be hypothesized to affect A\(\beta\) production. Accumulation of homocysteine known to occur in AD75 enhances expression of \(\gamma\)-secretase in the rat brain,76 also shifting the balance toward more A\(\beta\).

Also, any disruption of the clearance of A\(\beta\) will lead to amyloid accumulation, which is also of central importance.93 To maintain a normal healthy concentration of A\(\beta\) in the brain, A\(\beta\) is rapidly degraded by a number of proteases, including nephrin, insulin-degrading enzyme, angiotensin-converting enzyme, and matrix metalloproteinase-2 and -9.94,95 Thus, in the healthy brain, the production by secretases and the clearance of A\(\beta\) by other proteases is in balance (typically at rates of \(\sim 8\%\) per hour), so that amyloids do not accumulate.96 Nephrin is considered the main A\(\beta\) protease97,98 that degrades both monomers and oligomers of A\(\beta\).99 To be discussed in this review, it is notable that both nonamyloidogenic and A\(\beta\)-cleaving proteases depend on bound zinc in active sites, whereas free Zn\^{2+} ions contribute to the amyloidogenic pathway and also stabilize A\(\beta\) against degradation.

3.3. Structural Forms and Toxicity of Amyloids

The two A\(\beta\) peptides can be found in various forms once produced: The simple peptides react to produce (i) soluble oligomers, (ii) protofibrils, and (iii) extracellular aggregates or fibrils, which are insoluble and observed as plaques in AD.8 Both amyloids A\(\beta\)40 and A\(\beta\)42 have a total charge of \(-3\) due to six acidic residues, one arginine and two lysines. They contain a hydrophobic motif that can bind to proteins and membranes and facilitate oligomerization, while the hydrophilic part is in solution.80 The ratio between A\(\beta\)40 and A\(\beta\)42 is important in the formation of the soluble oligomers,100 which are considered the toxic forms,101–103 whereas the extracellular aggregates are not directly toxic.78 A dimeric species (weight of approximately 8 kDa) has been identified as particularly toxic.104 In vivo, there may be dozens of A\(\beta\) species, and consideration of possible molecular weights of these has recently been given.69 A\(\beta\)42 is most likely more toxic than A\(\beta\)40,105 possibly because of the two additional hydrophobic amino acids.106,107 Recently, a number of crystal structures of interactions between amyloids and various binders have been discussed.108

Several pathogenic mechanisms of soluble A\(\beta\) oligomers have been given:78,109–111 (i) they may damage neurons directly causing neuron death,112,113 possibly upon phagocytosis114 and possibly after direct A\(\beta\)-generated oxidative insults;115 (ii) they may destroy electrochemical signaling116 for example, by forming small membrane-soluble channels that impair ion gradients, notably Ca2+,117,118 or by disrupting copper-mediated prion-protein interaction with the NMDA receptors,119 impairing neuronal signaling and causing neuronal death;120,121 (iii) A\(\beta\) may accumulate in mitochondria122,123 and disturb the respiratory chain, which then indirectly causes oxidative stress (possibly via superoxide from inefficient respiration124), and neuronal death.125

New drugs are currently being developed that attempt to prevent the formation of toxic amyloid oligomers,126 for example, inhibitors of \(\gamma\)-secretase127–129 or \(\beta\)-secretase,130,131 control of osmosytes that have been shown to affect amyloid formation,132–134 or other types of drugs that function as \(\alpha\)-secretase enhancers either by inhibiting the proteases that degrade \(\alpha\)-secretases or by otherwise enhancing their activity or lifetime.135 Readers are referred to the above references for details on the pharmaceutical targeting of the A\(\beta\) production—clearance imbalance.

4. METAL ION HYPOTHESIS

4.1. The Justification of the Metal Ion Hypothesis

The lack of clinical success of antiamyloid drugs has led some researchers to call for expansion or modification of the amyloid cascade hypothesis.65,136,137 Various anomalies, such as the observations that neuron loss in AD is not correlated to amyloid load,138 that 20–40\% of cognitively normal people have enough amyloid plaques to cause AD diagnosis,9 that clinical diagnosis is necessary because A\(\beta\) biomarkers are insufficient for diagnosis,9 and that AD begins and A\(\beta\) accumulates in the hippocampus and cerebral cortex, although A\(\beta\) itself is generated throughout the brain,73 indicate that the pathogenesis of the amyloid cascade is poorly understood.73 Furthermore, a toxic mode of A\(\beta\), while several are known and suggested, has not been found to be causative of AD. Even if apo-A\(\beta\) oligomers in principle remain plausible key toxic substances in AD pathogenesis, the underlying causes for impaired A\(\beta\) balance, which is now known to be substantially controlled by metal ions both at the APP and A\(\beta\) processing levels,17,139 must clearly be addressed.10,25,73

The metal ion hypothesis11,73 was inspired by early suggestions140 and later observations10,95,141–143 that AD correlated with dyshomeostasis of metal ions, notably first Fe, and later Zn and Cu.10,144,145 Iron levels have been reported to be higher in AD neurips vs healthy neurips146–148 (the region between neurons where synaptic connections form), and iron is abnormally concentrated (millimolar concentrations) in amyloid plaques.148 Magnetic resonance imaging can be used149,150 to show that upon cerebral amyloid angiopathy, a lesion commonly associated with AD, the nonheme iron pool (i.e., free Fe3+/2+) is increased. Furthermore, Cu levels are generally reported to be depressed in AD brain tissue.69,151–153 Currently, several genetic risk factors have also been connected to metal ion homeostasis, notably presenilin linked to calcium homeostasis and recently also to copper and zinc transport,154 and mutants of the recently identified Piccalm gene,49–52 coding for phosphatidylinositol-binding clathrin assembly protein, are known to cause iron homeostatic deficiencies in mice.155 Also, it is now clear that the central protein in the amyloid cascade, APP, is in fact regulated by and reacting with metal ions that affect amyloid balance, as will be discussed in detail below.

While discussing the metal ions, a distinction between two pools of metal ions will be made, namely “free” (i.e., loosely bound), often solvent-exposed, and mainly chelatable M2+/M3+ vs strongly bound M(II)/M(III) in proteins. As will be clear later, this distinction is suggested to be crucial for understanding the pathogenesis of AD. To render the distinction semiquantitative, an approximate threshold for the dissociation constants, \(K_d \approx 10^{-7} \text{M}\), will be used. The bound pool of M(II)
thus refers to metal ions bound to peptides and proteins with a $K_d < 10^{-7}$ M, common for buried, specific metal-binding sites in peptides and proteins, whereas the free pool implies $K_d > 10^{-7}$ M, which is common for metal ions binding solvent-exposed amino acid residues on surfaces of proteins.156

While much focus has been on the homeostasis of Cu17,157,158 and Fe159–161 in AD,162,163 recent attention has been directed toward Zn in AD10,25,164 which is the center of this review. Zinc content has been reported to be abnormally high in blood165 and hippocampus166 of AD patients. However, in the cerebrospinal fluid, zinc levels seem to be lowered in AD patients,167 and globally in the brain, zinc levels have been reported to be unchanged152 or reduced168,169 in AD. Thus, zinc levels in AD are debatable,170 and there is substantial heterogeneity in the reported zinc levels,152 possibly due to sample heterogeneity, variable attention to free, chelatable Zn2+ vs protein-bound Zn(II) pools, and redistributions within the brain as a function of disease progression and age. Thus, in the neocortex, the outer layer of the cerebral cortex sheet that covers the brain and is involved in learning and memory, there is disagreement between reports, some concluding that all metal ion levels including zinc are elevated171 and some reporting no significant changes in overall zinc levels.152 However, there is consensus that zinc is abnormally distributed in AD patients, with more zinc retained inside tissue and neurons, in particular in the synaptic vesicles,10,170 and more zinc retained in amyloid plaques, consistent with elevated expression of neuronal Zn transporters (ZnT) ZnT4 and ZnT6 in early AD.10,170 In a recent meta analysis, both iron and zinc were found to be more concentrated in certain parts of the brain such as the putamen,152 which is strongly reduced in size in AD.175

A critical breakthrough for the metal ion hypothesis came from multiple independent observations that Zn(II) and Cu(II) are essential for formation and structural integrity of amyloid aggregates, oligomers, and fibrils,176–184 as reviewed recently,185 while normal physiological metal ion concentrations are not high enough to induce aggregation.186 Furthermore, morphological evidence shows that ZnTs are necessary for plaque formation.187–189 The Zn(II)-amyloids themselves are usually thought to be nontoxic, whereas Cu(II)-amyloids are neurotoxic,186 although it has been reported that addition of free (i.e., in salt form) Zn2+ to Aβ stabilizes intermediates that lead to toxic oligomers on millisecond time scales, that is, Zn2+ may take part in the formation of the toxic oligomers.191 Structural interactions of both copper and zinc with amyloids have been described in great detail.176,178–183,192–194 It is now accepted that amyloidosis is not spontaneous but requires metal ions for initiation.181,195 These findings have been accompanied by similar discoveries of the roles of metal ions in protein misfolding, for example, relating to Parkinson’s disease.196–198

4.2. Coordination Structures of Aβ–Metal Complexes

The structures of Zn(II)−Aβ192,199,200 and Cu(II)−Aβ201 have been investigated in great detail by NMR192,202,203 X-ray absorption spectroscopy,204,205 and Fourier transform infrared spectroscopy.192,206 Both Cu(II) and Zn(II) are borderline hard–soft Lewis acids, with affinity toward N, S, and O ligands. In the free Cu2+ and Zn2+ forms, both ions will have a typical coordination number of 6, either fully hydrated as hexaqua ions or loosely bound on the surface of proteins, several with typical $K_d > 10^{-6}$ M. In the bound Cu(II) and Zn(II) forms on protein active sites or specific regulatory sites, K_d's can be much smaller (vide infra) and coordination numbers may often be smaller than 6, due to the strain imposed by the peptide backbone, the entropy release due to the chelate effect on binding a peptide chain, and the basicity of involved amino acid ligands.

Most significantly, electron paramagnetic resonance (EPR) studies have been useful in elucidating the structures of paramagnetic d0 Cu(II)−Aβ185,207–209 in particular when using site-specific isotopic labeling to deduce coordination modes as previously done with prion protein.210 Given the dynamic structural interconversions of the Jahn–Teller distorted d0 metal ion Cu(II) in water,211 dynamic coordination geometries in Cu(II)-amyloids causing several types of reported coordination modes185,212 are understandable, and Cu(II) geometries will thus be tetragonally distorted octahedral (coordination number 6) or trigonal bipyramidal (coordination number 5).

Cu(II) normally binds Aβ in a 1:1 stoichiometry,213 possibly with the existence of a second, low-affinity binding site,214 and the second site may be destroyed by steric crowding in Aβ42 but be intact in shorter peptides.215 The dominating binding site, located at residues 1–16,216 changes with pH. At physiological pH, ~6–7, component I dominates,183,217 whereas at higher pH, component II dominates.185,218 Furthermore, the physiologically important component I of Cu(II)−Aβ consists of at least two species in equilibrium, components Ia and Ib,208 and possibly a minor third component.219 The current view from labeled EPR studies is that these two components consist of four- or possibly five-coordinated Cu(II) with two imidazole nitrogens (His-6 and His-13/14 in component Ib),207,208,220,221 one N-terminal amine nitrogen from Asp-1,218,222 and the carbonyl oxygen of Ala-2,185 possibly with a fifth, weakly bound apical/axial carbonate from the side chain of Asp-1,192,209 in contrast to previously assigned full coordination of carbonate oxygen.201,209 The consensus structure is shown in Figure 4.

Figure 4. The currently most plausible first-coordination sphere structure of Cu(II)−Aβ at physiological pH. Component Ia implies coordination of His-13, and component Ib implies coordination of His-14. See text for details.
number of six is expected, whereas in peptides and proteins, coordination numbers may be smaller as solvent exposure is reduced, that is, four or five. Whereas transition metal ions sacrifice ligand field stabilization energy upon lowering the coordination number in peptides, Zn(II) does not suffer this penalty because it is d10. In Aβ, Zn(II) is found to bind to nitrogens of His-6, His-13, and His-14 without variation.199,200,224.225 The remaining first coordination sphere depends on conditions. A tetrahedral geometry is possible with one additional monodentate ligand; a trigonal bipyramidal geometry is obtained when a bidentate carboxylate, such as Glu-11 (see Figure 5),200 or two more monodentate ligands bind; and an octahedral geometry occurs if three additional ligands including solvent water bind.128 Several Aβ ligands have been implied in binding Zn(II) in addition to the three histidine residues, the Asp-1 N-terminal amine,200,224,225 the Glu-11 carboxylate side chain,199,200,228 and the deprotonated amide of the Arg-5 backbone. Also, Tyr-10 could possibly be involved in some Zn(II) binding modes.200 This would be particular interesting in Cu(I/II) mediated redox toxicity, where tyrosine could play a role as a radical as in several copper enzymes229 but is generally absent in the monomer Cu(II) structures under studied conditions, as explained above, and probably also in Zn(II)−Aβ under normal conditions.230

4.3. Coordination Structures of Aβ Sequence Variations

Of substantial interest are structure−function correlations obtained from sequence modifications of Aβ. A main difference between rat models of AD and human AD is the lack of His-13 and Arg-5 in the rat Aβ metal-binding sequence. His-13 binds to both Cu(II) in component Ia and to Zn(II) in Zn(II)−Aβ. The absence of this residue in rat amyloids reduces the metal ion affinity and leads to absence of amyloid deposits.230 His-13 is, together with His-14, a target of reactive oxygen species (ROS) production in Cu(II)-amyloids,231 and is essential for Zn2+−induced amyloid aggregation.232

Sequence modifications of human Aβ are also important for elucidating the binding modes of the metal−Aβ complexes. While the majority of AD cases are sporadic and imply a systemic, multifactor etiology, some cases are familial.233 Among these are mutations in APP and presenilin that can affect the amyloid balance by changing the ratio between β− and α-secretase turnover, for example, by reducing α-secretase binding to the α-cleavage site, or changing the Aβ42/Aβ40 ratio,234 but there are also mutations present in the actual Aβ sequence range that cause familial AD and affect the chemical properties of the produced amyloids, notably enhanced fibrillation from mutation at positions 22 and 23 such as the Dutch (E22Q), Italian (E22K), Arctic (E22G), and Iowa (D23N)235 mutations that all tend to increase amyloid charge.

One mutation found to work to both effects is the APP A673V mutation that may cause AD when the mutation is homozygotic, that is, present in both APP alleles.236 This APP mutation occurs in the amyloid region, at position 2 (A2V in Aβ). EPR and hyperfine sublevel correlation (HYSCORE) spectroscopy can contribute to understanding the structural features of modified Cu(II)−Aβ that enhance stabilization or toxicity.237 While the first coordination sphere was found to be unaffected, there was a significant (~0.5) change in pKs of Aβ due to the A2V mutation.238 This is important because the metal binding changes with the pH (vide infra) and thus with the charge state of titratable ligands, which may provide a clue to the enhanced toxicity of the mutation.

Two other mutations of APP that occur in the Aβ region are the dominant "English" H6R and "Tottori" D7N mutations, associated with aggravated oligomer fibril formation toxicity.234 These mutations, which like most others mentioned above increase amyloid charge, which could affect hydrophobicity, solubility, and metal-binding properties, display altered structure and Cu(II) binding and a disturbed ratio between components I and II, as evident from a range of spectroscopic methods.238 Such bioinorganic chemical insight may help to explain the toxicity of Aβ mutants, and ultimately explain the pathogenesis of genetic risk factors.

Whereas apo-amyloids are negatively charged at physiological pH,239 metal−Aβ complexes will change the charge distribution, depending on the coordination mode and exact pH, plausibly increasing their hydrophobicity, permeability, and aggregation properties as seen for Zn(II),240 which are critical to Aβ−membrane interactions.239 It is in this respect notable that all the charge-increasing mutations are dominant, whereas the A2V mutant is recessive and displays different morphological and structural plaques with distinctly different distributions in the brain.241 The neutralizing (increased hydrophobicity) tendency of many pathogenic mutations in the Aβ sequence of APP could be a key to understanding the pathogenesis of the produced amyloids in AD, if secretease modulation at the actual APP is not the main cause (this could be due to charge neutralization reducing, for example, α-secretase kcat/Km, by changing the αβ-cleavage site, or changing the Aβ1−Aβ40 ratio).234

The Aβ sequence of APP could be a key to understanding the pathogenesis of the produced amyloids in AD, if secretease modulation at the actual APP is not the main cause (this could be due to charge neutralization reducing, for example, α-secretase kcat/Km, by changing the αβ-cleavage site, or changing the Aβ1−Aβ40 ratio).234

Together with the altered coordination modes of familial AD-causing Aβ-mutations, the different coordination modes of Zn(II) and Cu(II) in human Aβ could explain the different rates of their amyloid formation,243 as could the different kinetics observed for Cu(II)-induced Aβ formation in rats and humans.244 Also, K-edge X-ray absorption spectroscopy suggests that the coordination mode of Cu(II) differs in Aβ monomers and the assumed toxic oligomers,245 an important focus to completely understand the structure−function correlations leading to metal-induced oligomerization and possibly toxicity. Furthermore, recent spectroscopic studies246 on mixed Zn(II)/Cu(II)−Aβ complexes conclude that Zn(II)
can disturb the Cu(II) coordination mode away from histidine-binding and thus possibly protect against a toxic Cu(II)-binding mode. Given the stronger Cu(II) binding, such a displacement is surprising, although not impossible when only some ligands are involved in the substitution. In fact, this mechanism may resemble the proposed beneficial substitution of Cu(II) for Zn(II) in Cu(II)–Aβ by Zn–metallothionein,247 to be discussed later. More molecular insight into the interplay between Zn(II) and Cu(II) in amyloid binding and oligomerization is clearly warranted.

4.4. The Affinities of Metal Ions for Aβ

A central focus of bioinorganic AD research is to systematically understand the affinities of metal ions for various targets associated with the disease, most often described by the metal dissociation constant, \(K_d \). \(K_d \)’s are essential for the concept of free and bound metal ion pools, which may be critical to AD pathogenesis (vide supra), and to define potent chelation and metalloprotein inhibition therapies. The determination of accurate \(K_d \)’s by competitive ligation is quite challenging and results differ greatly depending on pH and ionic strength, unintended formation of ternary or buffer complexes, or inefficient competition.196

Thus, the reported stabilities of 1:1 metal–Aβ complexes vary substantially,292,248,249 with reported conditional \(K_d \)’s in the range from 10^{-11} to 10^{-7} M for Cu(II)–Aβ (most likely consensus 10^{-10} to 10^{-9} M \text{M}^{-1}249) and 10^{-9} to 10^{-6} M for Zn(II)–Aβ, with \(K_d \) values of ~10^{-7} M being seen in most studies,192,212 although very weak \(K_d \)’s of ~10^{-5} to 10^{-9} M have also been inferred.228 Cu(II) typically binds 2 orders of magnitude better than Zn(II) in these histidine-binding systems. The Irving–Williams series of increasing stability constants puts Cu(II) before Zn(II) due to its strong Jahn–Teller effect,250 as also seen for oxygen ligands such as EDTA with typical \(K_d \)’s of 10^{-19} and 10^{-17} M for Cu(II) and Zn(II), respectively.228 For many nitrogen chelators, 10^{-6}–10^{-9} orders of magnitude difference between Cu(II) and Zn(II) is common for overall association constants, whereas for peptides and proteins discussed in this review, 2 orders of magnitude difference between Cu(II) and Zn(II) is more common.

For comparison, typical concentrations of copper and zinc in AD senile plaques are ~0.4 and ~1 mM, respectively,148 similar in fibrils and soluble oligomers.192 Recently, a kinetic three-step mechanism of Cu(II)-induced oligomerization was suggested based on fluorescence and NMR spectroscopy, identifying a nonoligomeric, that is, potentially innocent, monoober–diamyloid complex that may be targeted for preferential stabilization as a treatment strategy.195

In addition to copper and zinc, also other free metal ions such as iron or aluminum252 may interact with, stabilize, or induce aggregation or oligomer formation of Aβ.253 On a parallel note, heme-iron homeostasis has been found to be impaired in AD,254 and heme binds to Aβ and inhibits both aggregation and oxidative toxicity of Aβ in vivo.255,256 Given the importance of heme homeostasis for the mitochondrial neuronal energy production and antioxidant activity, this is a significant observation that may further link metabolic deficiencies in AD to the metal ion hypothesis.255,257 The same metal binding region 1–16 of Aβ as involved in Cu(II) and Zn(II) binding also binds to heme. Most likely, heme binds mainly to His-13 or possibly His-14 via axial coordination to heme.258 In principle, up to two histidines can coordinate at a time to generate a coordination number of 6 as in octahedral coordination geometries of cytochromes, for example, but EPR data indicate a g value of ~6 resembling high-spin as in pentacoordinate deoxohem.258 Interestingly, heme may out-compete Zn(II) or Cu(II) in amyloids, thus preventing oligomer formation.254 As implied by other differences between rat and human Aβ structures differing in metal-mediated aggregation and toxicity, heme also binds differently to human and rodent amyloids and could indicate a heme–Aβ-mediated mode of oxidative toxicity in AD.259

4.5. The Role of Zinc in AD

Zinc plays a central role in the central nervous system (CNS) in processes such as apoptosis, oxidative stress, and immune defense,260 neurogenesis, motor coordination, memory, and synaptic plasticity.261–263 Zinc dyshomeostasis is a pathological feature of AD,264–267 depression,264,266,269 Parkinson’s disease,267,270 autism spectrum disorders (ASD),271,272 amyotrophic lateral sclerosis (ALS),267,273,274 epilepsy,237,276 and schizophrenia.264

Zn(II) is bound in more than 300 proteins,277 in transcription zinc-fingers (typical \(K_d \)’s ~10^{-12}–10^{-14} M \text{M}^{-1}277) although down to 10^{-15} M has been observed193, stored in metallothioneins (MT), and present as a free, chelatable Zn2+ pool in the vesicles of terminals of zinc-enriched neurons (ZEN), for example, zinc- and glutamate-releasing (gluzinergic) neurons.280 The gradient of the free Zn2+ pool is tightly controlled with only 10^{-12} M free intracellular Zn2+ and up to millimolar vesicular Zn2+144 by MTs for storage and buffering and by transportation across membranes via zinc transporter proteins of two families, ZnT and ZIP.281 Once in the vesicles of neurons, the vesicular Zn2+ is released during neurotransmission together with glutamate and modulates glutamate-activated neurotransmission via inhibition of γ-aminobutyric acid (GABA) and NMDA receptors10,262,264,282,285 by binding specific Zn2+-binding sites in the receptors.284 The gluzinergic neurons are mainly located in the cerebral cortex, the central stage of AD, and in particular in the limbic system.264,285

The role of zinc in AD pathogenesis, first suggested by Burnet,286 is substantiated by observations that the genetic risk factor in familial AD, the ε4 apolipoprotein E gene, is correlated with higher serum levels of Zn, Cu, and insulin, and that only zinc is an independent risk factor, not ε4 apolipoprotein E itself.286 Zinc-dependent amyloidosis can also explain some gender differences in plaque formation in APP transgenic mice,287 although many other factors affect gender-specific risk factors of AD, for example, life style, genetic, and cholesterol correlations. However, evidence of zinc dyshomeostasis in AD comes from the vast number of reports describing changes in ZnT levels, zinc redistribution, and direct zinc-amyloid interactions, as described in sections 4.1 and 4.2.

Zinc affects Aβ balance in several ways, both via transcription factor zinc-fingers, in regulatory Zn2+ sites notably in APP, and as bound Zn(II) in active sites of zinc proteases.288 First, regulatory Zn2+ can directly bind and inhibit APP at the α-secretase site,288 leaving APP to cleavage by the other two secretases to enhance production of Aβ.67 Other researchers have observed reduced total Aβ production but enhanced intracellular Aβ production upon zinc binding to APP.289 The zinc-binding site in APP has a conditional \(K_d \) of ~10^{-6} M288 similar to or slightly weaker than that of Zn(II)–Aβ. The central AD protein APP, long obscure in its biological role, has recently been found to possess ferroxidase activity, oxidizing Fe2+ to Fe3+ before loading Fe3+ into transferrin, and this...
function is inhibited by Zn^{2+}. This mechanism could provide a coupling between iron dyshomeostasis and Aβ imbalance and would make zinc dyshomeostasis a plausible cause of both. In addition to the copper binding domain in the E1 extracellular domain of APP, to be discussed below, several metal sites in the extracellular E2 domain of APP have recently been structurally characterized by X-ray diffraction, providing evidence for Cu(II) and Zn(II) as controlling regulatory metal ions in the conformation and possibly function of this domain. Two intramolecular metal binding sites and several solvent-exposed sites were observed, with the high-affinity M1 site consisting of four histidines (APP sequence numbers His-313, His-382, His-432, and His-436) binding to Cu(II) in a Jahn-Teller distorted square planar geometry. In case of Zn(II), His-313 is substituted for a water ligand (see Figure 6). In the Cu(II) form, two α helices are bridged by the metal ion, whereas in the Zn(II) form, since His-313 is located on a separate α helix, there is no direct bridge. The K_\text{d}'s for the site were found to be \(\sim 10^{-8}\) and \(\sim 4 \times 10^{-6}\) M for Cu(II) and Zn(II), respectively, in good agreement with previously determined values.

Zn(II) is also required in the active site of the ADAM family of α-secretases to catalyze the nonamyloidogenic cleavage, as shown in Figure 3. Furthermore, free Zn^{2+} also inhibits matrix metalloprotease-2, neprilysin, and insulin-degrading enzyme (see Figure 7), which degrade Aβ. The extracellular metalloproteinases are expressed in the astrocytes, to be discussed further below.

Regarding neurotransmission and cognition, free Zn^{2+} is known to inhibit GABA receptors, thus modulating their Cl^-mediated hyperpolarization, facilitating controlled neurotransmission and preventing excitotoxicity. It is the Zn transporter ZnT3 that loads Zn^{2+} into the synaptic vesicles where it is again released during neuromodulation. This is the likely reason excessive free Zn^{2+} causes seizures and may be a trigger of epilepsy. Mice without ZnT3 still accumulate free neurotoxic Zn^{2+} from intracellular stores not associated with the synaptic vesicles, where the ZnT3 is located, indicating a key role of intracellular zinc buffering proteins, that is, metallothioneins, in neurodegenerative zinc dyshomeostasis. Excess free Zn^{2+} will ultimately lead to neuronal necrosis or apoptosis. Excess free Zn^{2+} also induces phosphorylation of tau-protein and remains located in neurites with neurofibrillar tangles.

4.6. The Role of Copper in AD

Copper homeostasis is of vital significance to the brain and is also impaired in AD as in other neurological disorders. Copper homeostasis is extremely critical, because concentrations of free Cu^{2+} beyond \(10^{-18}\) M may cause oxidative damage. The most common transported form of copper is instead Cu(I). Copper in both oxidation states is located in active sites of a number of vital redox-active proteins such as ceruloplasmin, cytochrome c oxidase, prion protein, tyrosinase, and Cu,Zn-superoxide dismutase (cytoplasmic SOD-1 and extracellular SOD-3), and its absence from these proteins is dramatic, as seen from neuronal degeneration in Menkes disease caused by lack of copper transport across the blood–brain barrier (BBB).

While total Cu levels are mostly observed to be depressed in AD, some reports show increased levels and some reduced levels in AD brains (hippocampus/amygdala), probably reflecting the loss of bound pools, subsequent redistribution to extracellular space, specifically to Aβ in the cerebrospinal fluid and eventually to the blood serum. Thus, the emerging consensus of copper seems consistent with that of zinc, namely, relocation from intracellular to extracellular stores and from bound to free pools present in...
serum or in Aβ deposits, as seen in mouse models of AD, although total Cu levels are also generally depressed. This picture of temporal and spatial changes in the two pools is important for the design of proper biomarkers and for discussing metal ion levels in neurological disease, including AD.

The uptake, storage, transport, and transfer of Cu(I/II) to proteins depend on a range of copper transporters and chaperones. After being mostly absorbed in the liver, it is incorporated into copper proteins (notably ceruloplasmin discussed in section 4.8) by chaperones. To reach the brain, copper is transported first across the BBB via copper pumps (copper ATPases ATP7A and ATP7B) with the possible help of Atox1, which may work as a Cu(I) chaperone for ATP7A and has been reported to facilitate antioxidant function in neurons and cell growth. Subsequently, copper is taken up by the copper transport protein Ctrl and distributed to its various destinations in the neurons, notably in the plasma membrane and in vesicles. Ctrl and the copper ATPases are regulated by the copper concentration, and copper binding in regulatory sites promotes endocytosis and degradation of Ctrl to prevent further copper uptake and intraneuronal copper accumulation.

Copper binds to prion protein and ceruloplasmin (90% of all blood Cu) and a significant part is kept in the brain in MTs, particularly inside the astrocytes, mainly in the Cu(I) form. Some of this Cu(I) from MT has been shown to be transferred to SOD in vitro, although not in vivo, and Cu-containing MT-3 is likely to act as a Cu-transferring chaperone for several Cu proteins. Various other chaperones transfer copper to critical proteins such as antioxidant SOD (copper-chaperone for superoxide dismutase, CCS) and respiratory cytochrome c oxidase (Cox17). Mutations or post-translational modifications in these proteins could in principle impair copper homeostasis in the brain causing sporadic risk of neurological disease, CCS for ALS and Cox17 for mitochondrial impairment seen in most neurological disorders.

The loss of protein-bound Cu(II)/Cu(I) probably reflects reduced function of copper proteins, but whether this loss is a cause or effect of neuron degeneration (e.g., following apoptotic events) must be investigated. For example, recent work suggests a new toxic mode of Aβ via interference with copper/prion-protein modulation of NMDA receptors that would interrupt Ca2+-dependent neurotransmission. Disrupted copper active sites are a smoking gun in neurodegeneration, because they lead to neurological disorders such as ALS (Cu,Zn-SOD-1 by gain of toxic function), Parkinson’s disease (∂-synuclein), or Menkes and Wilson disease (copper ATPases ATP7A and ATP7B, respectively) and may further explain impaired mitochondrial energy production (i.e., low glucose uptake in brain disorders), for example, via Cu- and Fe-containing cytochrome c oxidase. Cytochrome c oxidase is also known to be inhibited by free Zn2+ providing an example where metal dyshomeostasis may converge to impair mitochondrial energy production.

In addition to loss of bound Cu(I)/Cu(II), several pathogenic mechanisms of free Cu+/Cu2+ are known: Cu2+ may bind to APP, possibly at a site involving His-147, His-151, and Tyr168, and initiate oxidative stress via reduction to Cu+ and subsequent formation of hydroxyl radicals. The Cu(II) binding site in APP has a Kd of ~10−7 M, which is reasonable given that the Zn(II) binding site has an estimated Kd of ~10−8 M. Intracellular reductions in Cu availability, as observed in AD lead to enhanced production of Aβ, providing one more cause of amyloid imbalance, and regulation of APP via this site is a possible mode for this.

In addition to post-translational modification of APP, Cu(II)-Aβ also produces ROS by itself, for example, peroxide formation and lipid peroxidation initiated by Cu(II)-induced dityrosine formation from Tyr-10. It is important in this context that Cu−Aβ is more toxic than apo-Aβ and Cu(II) may confer toxicity to the Aβ in a concentration-dependent manner.

Aβ oligomers may enhance permeability of neuron and organelle membrane where APP is located and cause membrane dysfunction disrupting homeostasis. γ-Secretase has been found in the mitochondrial membranes and intracellular Aβ produced in this way could penetrate the mitochondrial barrier from the cytoplasm in synaptic terminals where APP and amyloids are enriched. Amyloids can also accumulate inside the mitochondria as seen in APP-overexpressing mice. Inside the mitochondria, amyloids disturb normal mitochondrial functions in a variety of ways leading to Ca2+ dyshomeostasis and apoptosis.

Whether the membrane toxicity of amyloid oligomers is the critical toxicity in AD and, if so, whether it involves or even requires metal−Aβ complexion in the toxic form is unknown, and such information could potentially help to reconcile the amyloid-cascade and metal-ion hypotheses. However, the two hypotheses are also consistent absent a toxic metal−Aβ mode given that metal ions remain necessary for induction of toxic oligomer formation and APP regulation. Still, given the role played of hydrophobicity in membrane interactions of amyloids, a membrane-toxic mode of metal-oligomers is plausible given the likely enhancement of hydrophobicity caused by partial charge neutralization of the negatively charged Aβ upon metal binding, which could render amyloid oligomers less amphiphilic membrane-binding and more membrane-penetrating. Supporting the role of hydrophobicity as a toxic property (by oligomerization propensity or membrane permeability), many familial AD mutations are charge-neutralizing as discussed in section 4.3, and the Aβ42 contains two more hydrophobic residues at the C-terminal (Figure 2). In contrast, the apo-amyloids could not act as antioxidants during normal metal homeostasis.

4.7. The Role of Calcium in AD

In this review, divalent calcium is written exclusively as Ca2+ instead of Ca(II) to mark it as a mainly free, often hydrated and labile, redox-inactive metal ion with dissociation constants ranging between 10−9 and 10−4 M, but typically in the micromolar range as seen for calmodulin.

In the healthy cell, the cytosolic concentration of Ca2+ is maintained close to 100 nM, 4 orders of magnitude lower than extracellular concentrations (~2 mM), due to Ca2+ storage proteins such as calbindin and by active transport via Ca2+-ATPases. Disturbance of this homeostasis will affect mitochondria that utilize Ca2+ in energy production, specifically enzymes such as pyruvate dehydrogenase, isocitrate dehydrogenase, and ATP synthase, which are all regulated by Ca2+. If Ca2+ concentration is abnormally high inside mitochondria, it becomes a main cause of neurotoxicity. Glutamatergic neurons with impaired mitochondria produce too little ATP and may not be able to retain the membrane potential needed to allocate Mg2+ to NMDA receptors, leaving them chronically...
open to Ca2+ and causing excitotoxicity, mitochondrial membrane permeability, and apoptosis.70,357 The involvement of calcium dyshomeostasis in AD has been known for more than 2 decades358 and has been reviewed recently by several authors.359–363 Age-correlated gene expression related to calcium homeostasis has been shown to be magnified in AD.364 The role of calcium dyshomeostasis in AD has been emphasized via mutants in presenilin, a key risk factor in AD and part of the \(\gamma \)-secretase complex.365,366 and increased intraneuronal [Ca2+] is correlated with APP mutations, ApoE4 expression, tau hyperphosphorylation, and A\(\beta \)-plaque formation.117,367 Recent genetic risk of AD was further associated with the calcium homeostasis modulator 1, confirming this relationship.368,369 The possible roles of presenilin in calcium transport and homeostasis have recently been reviewed.367,370 Notably, presenilin appears to function as a calcium leak channel independently of the activity of the enzyme complex \(\gamma \)-secretase of which presenilin is also a part.370

Impaired calcium homeostasis provides the simplest possible explanation (in the Occam’s Razor sense) of reduced synaptic plasticity and memory deficits in AD,371 where other hypotheses must identify new modes of impaired memory formation and maintenance. Furthermore, apoptosis, one of the programmed cell death processes that terminate many neurological diseases including AD, depends directly on calcium homeostasis. Caspases that mediate apoptosis are Ca2+ dependent and are found to be activated in aging people and more so in AD.366,372 Calcium dyshomeostasis is further aggravated by A\(\beta \), which may increase Ca2+ permeability.373 This may be a primary toxicity of A\(\beta \) and would imply that calcium dyshomeostasis is a consequence of previous A\(\beta \) imbalances.117,120,374

Many of the pathogenic aspects of calcium correlate with and perpetuate those of zinc due to the interplay between these two metal ions in glutamate-controlled neurotransmission354 and in membrane transport.375 for example, Zn2+ transport to mitochondria mainly occurs via the Ca2+ uniporter.374 Also, as mentioned above,119 A\(\beta \) may disrupt Cu–prion-protein mediated NMDA receptors involved in Ca2+ signaling, linking the calcium dyshomeostasis and neurotoxicity observed in AD directly to zinc, copper, and A\(\beta \).

4.8. The Role of Iron in AD

Iron homeostasis is critical to the CNS, as evidenced from iron dyshomeostasis observed in neurodegeneration.376–383 Iron is as mentioned also dysregulated in AD14,15,159,160,384 with abnormally distributed iron pools in AD,385 notably an increased pool of free, nonheme iron Fe3+/Fe2+ and functional heme deficiency.151,386 In fact, heme degradation has been suggested as a biomarker for early detection of AD387 and dysregulated free iron pools have been suggested as a main cause of several neurological disorders.377 Section 4.2 described the specific interactions between heme and amyloids that could be a consequence of this dysregulation. Also, transferrin levels have been found to be depressed in AD.388

Iron homeostasis is normally governed by a range of proteins such as ferritin and transferrin,389 which store ~25% of the body’s iron, mainly as ferric Fe3+, and have been implicated in neurodegeneration,390 and by the heme-pool, that is, mainly ferrous iron bound to heme proteins such as hemoglobin and myoglobin, which store more than half of the total iron,391 the heme carrier protein 1,392 and the heme-degrading enzyme heme oxygenase (HO), which is also implicated in AD.393,394 The peptide hormone hepcidin plays a key role in iron regulation359 and regulates, for example, divalent metal transporter 1 (DMT-1), which plays a significant role in transporting not just iron but also copper,385 and has been implied in Parkinson’s disease396 and as a transporter of the metal ions that regulate the processing of APP and thus amyloid production.397 Neurons express transferrin and DMT-1 but generally little ferritin, suggesting that the iron pool of free Fe3+/Fe2+ is tightly controlled, and that iron is immediately recruited by neurons when required.383 This recruitment requires reduction of Fe3+ to Fe2+ before binding to DMT-1.383

Iron is responsible for O\textsubscript{2}-storage in hemoglobin and myoglobin and is necessary for mitochondrial O\textsubscript{2}-dependent energy production via a large number of enzymes, for example, NADH dehydrogenase (complex 1), cytochrome bc\textsubscript{1} (complex 3), and cytochrome c oxidase (complex 4) in the mitochondrial electron transport chain. Thus, impaired Fe/heme metabolism may play a role in metabolic deficiencies observed during AD pathogenesis.359 Iron is also in the active sites of several enzymes involved in synthesis of neurotransmitters, for example, tryptophan hydroxylase catalyzing the first step of serotonin and melatonin synthesis.398

Iron accumulates in the aging brain and enhances the overall oxidative stress level.399 Heme dyshomeostasis is evident in AD from the interaction of heme oxygenase with neurofibrillary tangles,400 reactive astrocytes, and senile plaques in AD brain tissue401 and from reduced activity of heme oxygenase in the Swedish AD-causing APP mutants related to mutant APP disrupting heme oxygenase activity.402 In AD, iron-caused ROS production is evident.403,404 Toxic concentrations of iron are found in extracellular A\(\beta \) of AD patients,147,381 testifying to its role in plaque formation as a possible consequence of elevated free iron concentrations.178 In AD hippocampus and cerebral cortex, this dysregulation is partly compensated by elevated levels of iron storage proteins.405 In terms of toxic mechanism, free Fe3+ and Al3+ have been found to induce tau protein aggregation, whereas divalent metal ions did not.406 Overexpression of heme oxygenase causes tau phosphorylation and aggregation in mouse brains.407 Iron-/heme homeostasis is also critical to antioxidant activity via enzymes such as catalases and peroxidases, and functional heme deficiency, symptomatic by heme binding to amyloids and the up-regulation of heme synthesis in AD,388 could arise from the observed heme interaction with A\(\beta \), causing direct oxidative stress.254,257,253,259

Whether iron dyshomeostasis occurs before other dyshomeostasis as suggested by some authors386,408 remains to be established, but the homeostasis of various metal ions are in fact intimately related. An important example of this is ceruloplasmin,409 suggested to play an important role in AD,410,411 It is a six-domain multicopper oxidase with the structure shown in Figure 8 (2JSW.pdb),412 with three mononuclear T1 copper sites (dark-blue) and a trinuclear combined T2/T3 copper site (cyan). An additional, solvent-exposed transition metal site, possibly where a substrate Fe2+ binds, is shown in orange, and a Ca2+ site is shown in gray.

Ceruloplasmin carries most of the copper in the serum413 and induces several substrates by electron abstraction and transfer to O\textsubscript{2} bound by copper at the T2/T3 site, which is four-electron reduced to produce water as in other multicopper oxidases.414–416 Among its substrates is Fe2+, that is, ceruloplasmin functions as a ferroxidase.417,418 oxidizing Fe2+...
Figure 8. The structure of the multicopper oxidase ceruloplasmin at 2.8 Å resolution (2J5W.pdb), with its six active site coppers shown in dark blue (mononuclear T1 sites) and cyan (trinuclear O2-reducing T2/T3 site). The additional, solvent-exposed transition metal site is shown in orange, and the Ca2+ site is shown in gray (Picture made with Pymol).

Figure 9. Clioquinol, left, and an example of its coordination to metal ions, right.

4.9. The Quest for Metal-Chelating AD drugs

Because of the discussed recent breakthroughs in AD research, bioinorganic chemistry is entering the AD field in full force, and metal chelators are being rapidly developed for possible treatment of AD. Some of the therapeutic aspects associated with chelation therapy in AD have recently been reviewed. Particularly notable in this development was clioquinol (iodochlorhydroxyquin; see Figure 9), an anti-infectious drug that is also a Zn- and Cu-chelator that reduces Aβ load in AD patients, and its derivatives. Clioquinol has been suspected of causing subacute myelo-optic neuropathy (SMON) in Japan after massive use during the 1960s, although the direct causality has been debated. Because SMON affects the spinal cord, eyes, and peripheral nerves and leads to blindness and paralysis, it is plausible that overdoses of clioquinol, if responsible, impair metal homeostasis in the CNS, leading to the observed symptoms. Thus, the SMON cases are important reminders of the danger associated with application of chelators to rebalance metal homeostasis, because this treatment is constrained by a narrow therapeutic window determined by the Kd range that specifically binds the target without stripping metal ions from vital enzymes.

Sometimes, chelators such as clioquinol are referred to as metal-protein-attenuating compounds (MPAC) assuming that they cause metal release from peptides and resumption of Aβ clearance. If so, competitive binding requires the chelator to have higher metal ion affinity than Aβ; for Cu(II) and Zn(II), Kd is typically \(10^{-10} - 10^{-9}\) M and \(10^{-7} - 10^{-6}\) M, respectively, depending on concentrations and pH. As discussed recently, an effective MPAC should then have a Kd of perhaps \(10^{-10}\) M to release Cu(II) from Aβ, or \(10^{-8}\) M to strip Zn(II), but should not strip Cu(II) or Zn(II) from systemic sites (<\(10^{-10}\) M, e.g., \(10^{-12}\) M for serum albumin). The Kd's of 1:2 metal–clioquinol complexes at neutral pH are \(10^{-10}\) M for Cu(II) and \(10^{-9}\) M for Zn(II). The 1:1 and 1:2 complexes of Cu(II) and Zn(II) with clioquinol display distorted tetragonal and trigonal bipyramidal coordination geometries, respectively. Although these were achieved at very high clioquinol concentrations, they suggest that clioquinol can work directly as an MPAC.

Copper-binding proteins with multiple binding sites involved in other neurological diseases display Kd's from the \(10^{-12}\) M range (\(γ\)-synuclein) to the \(10^{-10} - 10^{-9}\) M range (Parkinson's disease-related \(α\)-synuclein). The octapeptide copper binding site in prion protein, which involves histidine coordination, may also have a Kd of \(10^{-10}\) M, similar to the histidine coordination mode for Cu(II)–Aβ, possibly somewhat larger, with several other amide-involving, concentration-dependent low-affinity sites established as in Cu(II)–Aβ.
However, given the weaker binding of Zn(II), it has also been noted that apparent K_d's up to 10^{-6} M may strip Zn(II) from amyloids.228

In APP, there are both Zn(II) and Cu(II) sites of possible regulatory function with K_d's of $\sim 10^{-6}$ M388 and 10^{-8} M339 again 2 orders of magnitude larger for Cu(II), and close to the solvent-exposed (free) limit and typical for nonactive site, loosely bound, regulatory metal binding sites. Mostly overlooked, these could in fact also be targets for chelators, and some benefits observed with chelators could be due to regulation of APP, not MPAC function, in particular given the weaker binding to APP than to Aβ. Thus, the possibility of selective targeting of either amyloids ($K_d \approx 10^{-10}$ M for Cu(II)) or regulatory APP metal sites ($K_d \approx 10^{-8}$ M for Cu(II)) exists, with values for zinc ~ 100 times smaller. Most chelators could also work by lowering the free pools of Zn2+ and Cu2+ with $K_d > 10^{-7}$ M, as MT may do after being secreted by astrocytes and transported through neuronal membrane receptors such as megalin.469 Therefore, while often discussed in terms of MPAC function, there are in fact at least three modes of function of chelators in AD, depending on their K_d and cellular localization.

Other prominent examples of chelators include the lipophilic metal chelator DP-109, which reduces amyloid pathology in APP-transgenic mice.465 Various other Cu–Zn chelators are known to effectively inhibit amyloid formation in AD transgenic mice.534 The chelator PBT2 has displayed particular potency and is currently in phase II studies and used as a lead in the exploration for new commercial AD drugs.466 It is important to stress that the molecular causation of these compounds is not clearly established, as they may either resolvate Cu(II)/Zn(II)–Aβ complexes by direct interaction or by noninteracting, competitive binding, or lower free Zn2+/Cu2+, thus reducing the free metal ion pools, which also affect the amyloid production–clearance balance, as described above.

5. OXIDATIVE STRESS AND ALZHEIMER’S DISEASE

5.1. Reactive Oxygen and Nitrogen Species

A third hypothesis of AD pathogenesis relates to impaired oxidative stress response in the CNS leading to neurodegeneration.70–72,467 Oxidative stress is a natural consequence of oxidative phosphorylation within Earth’s 21% oxygen atmosphere, and most organisms have evolved to deal with the potential hazards of the ROS that follow in the wake of O\textsubscript{2}− metabolism.468 The most important forms of ROS are outlined in Figure 10, emphasizing their electronic structure and with their spin multiplicity (number of unpaired electrons +1) given as a superscript before the molecular formula.

Notable ROS are superoxide (O2−), which is the one-electron-reduced radical anion form of normal triplet dioxygen, dihydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), and hydroxyl radical (•OH).469,470 These are formed under all oxidative conditions, notably via variations of the simplest form of the Fenton reaction:

\[
\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HOO}^- + \text{H}^+ \\
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \cdot\text{OH}
\]

(2)

The actual mechanisms can differ substantially478 but commonly aggregate oxidative stress by converting H\textsubscript{2}O\textsubscript{2} to much more potent hydroxyl. The Fenton chemistry unites metal ion dyshomeostasis and oxidative stress in AD, metal ions play key roles in both ROS production and clearance. Metal ions readily bind ROS and RNS as ligands, and both copper and iron produce hydroxyl radical in solvent-exposed cellular environments, notably via variations of the simplest form of the Fenton reaction:476,477

\[
\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HO}^- + \text{H}^+ \\
\text{Cu}^+ + \text{H}_2\text{O}_2 \rightarrow \text{Cu}^{2+} + \cdot\text{OH} + \text{OH}^-
\]

(3)

Another notable class of reactive oxidants are the reactive nitrogen species (RNS),470,472 with the most relevant forms outlined in the last row of Figure 10. These are primarily derived from nitric oxide radical (•NO), which is produced by nitric oxide synthase and serves signaling and immune defense roles in the healthy organism,473 when •NO reacts with O2− to produce peroxynitrite:

\[\text{•NO} + \text{O}_2^-\text{(superoxide)} \rightarrow \text{ONO}_2^-
\]

(1)

Shifting this reaction to the right, for example, by reduced proficiency of SOD leading to elevated O2−, causes ONOO− to be overproduced. ONOO− usually reacts with the plentiful HCO\textsubscript{3}− to generate carbonate radicals476 but will also react readily with hemeproteins and sulfur and selenium groups of relevance to metal homeostasis and oxidative stress control.472 ONOO− oxidizes cysteines to cystine bridges or oxygenated side chains,472 and “nitrosative stress” manifests itself, for example, as nitrosylations of protein side chains to impair protein function and stability and deamination of DNA474 affecting both transcription and mitochondrial metabolism.475

Even before considering the vast evidence for metal ion dyshomeostasis and oxidative stress in AD, metal ions play key roles in ROS production and clearance. Metal ions readily bind ROS and RNS as ligands, and both copper and iron produce hydroxyl radical in solvent-exposed cellular environments, notably via variations of the simplest form of the Fenton reaction:476,477
Thus, in the absence of direct toxicity of soluble Cu(II)–\(\alpha\) oliomers,\(^{190,342}\) disturbed metal homeostasis resulting in increased concentrations of free intracellular metal ions will itself generate ROS that could lead to oxidative stress. Thus, the two hypotheses are intimately related via a vast number of Cu-, Zn-, and Fe-containing proteins involved in oxidative stress modulation.\(^{480}\)

5.2. The Role of Oxidative Stress in AD

Because of the very large energy need of the brain required to manage the energy-requireing processes of synaptic transmission and ion transport,\(^{481,482}\) mitochondrial function is particularly sensitive in the brain, and the mitochondrial membranes are central to the regulation of cell death and survival.\(^{70,483}\) It is also well-established that mitochondrial function declines with age and is correlated with oxidative stress and accumulated gene defects that are particularly abundant in brain, heart, and muscles.\(^{70}\)

Given that AD is a neurological degenerative disorder that has age as the main risk factor and is characterized by oxidative stress and somewhat relieved by antioxidants,\(^{484,485}\) it is not surprising that mitochondrial dysfunction and impaired metabolism are early symptoms in AD.\(^{13,71,72,486,487}\) AD is accompanied by direct structural damage to the mitochondria\(^ {488}\) and reduced glucose utilization.\(^ {489,490}\) Thus, although it is not clear whether mitochondrial dysfunction precedes or follows other pathogenic events, it is central to AD.

Oxidative stress has been suggested to be a primary cause of AD,\(^{491,492}\) perhaps together with other defining triggers, as claimed in the “two-hit-hypothesis”.\(^{493}\) Local severe hypoxia, for example, arising from ischemia, leads to oxidative stress because of suboptimal mitochondrial metabolism or damage and plays a significant role in AD.\(^{494,495}\) Hypoxia leads the mitochondria to produce more ROS, thereby triggering oxidative stress response mediated by the transcription factor HIF,\(^ {496}\) which is not degraded by the iron enzyme prolyl-hydroxylase when either iron or O2 levels are low.\(^ {497}\) Thus, HIF provides another link between iron dyshomeostasis (section 4.6) and oxidative stress.

Oxidative stress can however also be caused by the amyloid cascade. As discussed above, \(\alpha\) \(\beta\) accumulates and impairs mitochondria,\(^ {122,123,124}\) possibly via apoptosis induced by \(\alpha\) \(\beta\) complexes binding to proteins such as alcohol dehydrogenase.\(^ {498}\) Whether \(\alpha\) \(\beta\) passes the mitochondrial membrane or is spliced off APP inside the mitochondria is currently unknown.\(^ {70}\) Any toxic effects on mitochondria may itself produce ROS, and the amyloids, at least in the toxic Cu(II) oligomer form, are themselves ROS generators. So even if oxidative stress somehow precedes \(\alpha\) \(\beta\) toxicity, both effects are mutually enhancing, creating a detrimental positive feedback\(^ {499}\) that is normally checked by \(\alpha\) \(\beta\) clearing.

5.3. Links between Oxidative Stress and Other Pathogenic Events

Hypoxia up-regulates \(\beta\)-secretase thereby disturbing the amyloid production-clearance balance and facilitating AD pathogenesis.\(^ {88,89}\) Oxidative stress has also been found to contribute to amyloid production by changing the balance in expression of the three secretase types.\(^ {300}\) The mechanism of this regulation could involve MT and HIF, because both MT\(-1\)\(^ {301}\) and MT\(-3\)\(^ {302}\) are induced by HIF and the normal, MT-promoting metal-responsive transcription factor-1 (MTF-1).\(^ {503}\) Hypoxia also reduces the uptake and transport of glutamate in astrocytes, which could further facilitate excitotoxicity.\(^ {504}\)

Much more direct evidence for oxidative stress being an underlying cause of the amyloid cascade comes from recent findings of a positive feedback loop between \(\gamma\)- and \(\beta\)-secretase activity triggered by oxidative stress.\(^ {88}\) \(\beta\)-secretase expression is increased by oxidative stress\(^ {505,506}\) which could explain why hypoxia up-regulates \(\beta\)-secretase, since hypoxia leads to local oxidative stress from metabolic inefficiency, and mitochondrial inhibition has been shown to also up-regulate \(\beta\)-secretase in rats.\(^ {507}\) But \(\gamma\)-secretase activity also increases with oxidative stress and is a cause of the increased \(\beta\)-secretase activity,\(^ {88}\) recently found to be mediated by the produced \(\alpha\) \(425,508\)

Because oxidative stress naturally correlates with age, accumulated gene errors, and exposure to exogenous risk factors, it explains many risk factors not explained by the amyloid cascade. Also, a positive feedback loop might initiate a sudden, vicious pathogenic cycle upon reaching certain ROS thresholds,\(^ {491}\) potentially explaining the rapid disease progression of AD. Still because metal ions play key roles in the antioxidant system, these findings require a unification.

A central defense against oxidative stress is the SOD-1 and SOD-3 isoforms, which depend on Cu(1)/Cu(II) and Zn(II) in their active sites. While SOD-3 is extracellularly expressed, SOD-1 is located in the intermembrane space of the mitochondria and degrades superoxide that escapes from the mitochondria.\(^ {510}\) Mutations in this enzyme are known to cause ALS\(^ {509,510}\) directly demonstrating the importance of oxidative stress in neurodegenerative disorders. Cu,Zn-SOD catalyzes the two half-reactions

\[
\text{Cu}^{2+} + \text{O}_2^- \rightarrow \text{Cu}^+ + \text{O}_2
\]

\[
\text{Cu}^+ + 2\text{H}^+ + \text{O}_2^- \rightarrow \text{Cu}^{2+} + \text{H}_2\text{O}_2
\]

Modification of the SOD-1 active site, either by \(~\sim~\)130 mutations identified so far (a cause of familial ALS\(^ {511}\)) or by post-translational modifications, may lead to disrupted metal sites and partial unfolding and a gain in toxic function that is considered a main cause of familial ALS.\(^ {273,312,313}\) The coordination geometry of the active site of extracellular SOD-3 is shown in Figure 11. Cu(II)/Cu(I) and Zn(II) are separated by a deprotonated histidine, which may be important in modulating the catalytic cycle of eq 4. Any decrease in metal content, for example, from reduced binding affinity of Zn(II) or Cu(I)/Cu(II), from reduced overall stability of the protein, from stress-induced modifications of the protein that reduce metal affinity, or simply from reduced Zn(II)/Cu(I)/Cu(II) transfer due to functional metal ion deficiency, could impair the function of this enzyme with devastating consequences for the oxidative-stress defenses. Notably, unfolding is correlated with metal loss, so stability/unfolding and metal content mechanisms may occur in concert.\(^ {515,516}\) These ideas are currently pursued in relation to ALS but are relevant also to the neurons involved in AD.\(^ {517,519}\)

Another element that deserves mentioning in the oxidative stress response is selenium, which is abundant in fish and is an ingredient of glutathione peroxidase, an important antioxidant enzyme that converts H2O2 to water via GSH, eq S:

\[
2\text{GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GS—SG} + 2\text{H}_2\text{O}
\]

(5)

Selenium may also detoxify heavy metals such as Hg by direct binding and excretion from human tissue,\(^ {520}\) but as recently reviewed, there are no clear indications of a beneficial role of selenium in AD.\(^ {521}\)
H$_2$O$_2$ can also be reduced by various peroxidases in addition to MT, SOD, and GSH, and several of these depend directly on the available heme iron pool, because both some peroxidases and some catalases are heme enzymes.522,523 Disruption of the balance between the free and bound iron pools may thus contribute to oxidative stress imbalance both by increased production of ROS and by reduced degradation of ROS. ROS in themselves, in particular superoxide O$_2^{-}$, also affect neuronal signaling by activation of NMDA-R, and enhanced expression of SOD reduces glutamate sensitivity, directly linking metal-dependent ROS scavenging to glutamate signaling.70,524

In conclusion, oxidative stress pathogenesis correlates with metal ion dyshomeostasis where the bound metal-ion pool protects against ROS/RNS via antioxidant enzymes, whereas the free metal-ion pool produces them via Fenton chemistry.

6. METALLOTHIONEINS AND ALZHEIMER’S DISEASE

6.1. Structure, Expression, and Roles of Metallothioneins

If a protein is implicated in dyshomeostasis, it can be due to changed production or clearance or protein modification, either post-translationally or due to mutations. To understand causative factors of zinc dyshomeostasis in neurological disorders, three classes of proteins are particularly relevant,10 metallothioneins (MT),525 ZIP transporters,521 and Zn transporters (ZnT),164,526 the latter transporting Zn$^{2+}$ across membranes to the cytoplasm. In ZnT3-knockout mice, free Zn$^{2+}$ accumulates from intracellular stores not associated with the synaptic vesicles, pointing toward MTs as central to the buffering of bound and free zinc pools.297

MTs,527,528 are small (60–68 residues) cysteine-rich proteins that bind Cd(II), Cu(I), and Zn(II).$^{529–531}$ The known isoforms of mammalian MTs have seven divalent metal ions each bound to four cysteine sulfur ligands, whereas monovalent metal ions such as Cu(I) may bind in higher numbers than 7, with lower coordination numbers of 2 or 3.530,531 Cd(II) and Zn(II) are symmetric d10 ions giving formally T$_d$ coordination geometry, but the protein renders all metal sites inequivalent, imposing different metal affinities to each metal site.532

In mammals, four main MT classes are distinguished, with MT-1 and MT-2 present in most tissue, whereas MT-3 and MT-4 appear mainly (but not exclusively) in specialized tissue such as the brain and skin.533 Brain MT-1/MT-2 is mainly expressed in glia cells and mainly in the astrocytes534 that maintain homeostasis in the CNS, the integrity of the BBB, and the metabolism of neurons.464 express extracellular metallopeptidases that degrade amyloids,94 and accumulate toxic exogenous metals such as Pb (possibly in MTs).535 MT-3 is particularly abundant in ZEN and astrocytes535 in the cerebellar cortex, and in particular in the hippocampus degenerated early in AD,6,8 in amygdala, and in the olfactory bulb.10,536 In human MT-1 and MT-2 (see structure537 in Figure 12), Zn(II) is the dominating metal bound, whereas both Cu(I) and Zn(II) are found in MT-3.538 There are more than 10 isoforms of MT-1, two of MT-2 (MT-2a and MT-2b), and one of MT-3/MT-4.539

MT-1 and MT-2 are highly sequence-similar, whereas MT-3 is the only MT isoform with a negative total charge, due to its acidic insert. MT-3 is thus substantially negatively charged, while other MT isoforms are nearly neutral. In mammalian cells, most MTs appear to be N-acetylated at the N-terminus, reducing the charge further.540

6.2. Specific Functions of Metallothioneins

MTs are responsible for transport, storage, and regulation of zinc and copper.541,542 detoxification of heavy metal,543,544 (most Cd(II) is bound to MT in vivo)545 antistress functions,546 including in particular oxidative stress,539,547 anti-inflammation548 and cell regeneration,539,550 and anti-apoptosis.539 MT transcription is substantially (>5-fold) up-regulated by free Zn$^{2+}$, stress-induced interleukins539,551
glucocorticoid, epinephrine and norepinephrine, heavy metals such as Cd(II), or ROS. MT induction occurs by Zn²⁺ binding to the zinc-finger transcription factor MTF-1. All MT genes contain several metal-responsive elements (MRE) in their promoter regions.

The loss of Zn(II) from MT most likely occurs upon heavy metal substitution or thiolate oxygenation and subsequent cysteine bridge formation by ROS. In the harbor porpoise, large fractions of the total Cd, Cu, and Zn, but not Hg, were bound to MTs, indicating that Cd toxicity, but not Hg toxicity, is countered by MTs. The role of MT in controlling zinc homeostasis is seen in the fact that it prevents both zinc deficiency and toxicity.

Thionein (T), the apoprotein form of MT, removes Zn²⁺ from a wide range of inhibitory sites, thus activating a number of enzymes selectively without impairing enzymes that use Zn(II) in active sites or zinc-fingers. On the other hand, Zn-MT is known to transfer Zn(II) to a variety of enzymes, for example, carbonic anhydrase and to zinc-fingers of, for example, estrogen receptors, indicating that MT is a central regulator of Zn availability in zinc-dependent proteins. This transfer can be redox-dependent, for example, via coupling to the glutathione GSH/GSSG redox couple.

The redox potential of MT of approximately −366 mV means that upon oxidation of cysteines, MT can release zinc to transcription factors involved in oxidative stress defense, and thus function as a central redox sensor of the brain. This process can be enhanced by glutathione disulfide (GSSG).

6.3. Investigated Roles of Metallothioneins in AD

Due to the protective role of MT against apoptosis, its role in zinc- and copper-homeostasis and the central nervous system, and the abnormal MT expression in AD brains, MT is now appreciated as playing a significant, yet poorly understood role in AD. MT also plays major roles in other zinc-related disorders such as diabetes, ALS, autism, epilepsy, and multiple sclerosis and in a variety of aging processes, where MT is among very few proteins that correlate positively with life longevity in mice. Absence of MT reduces cognitive function in mice and renders them less resistant to induced seizures.

MT-3 levels are generally reported to be changed in patients with AD, but the changes are similar to those for zinc with regional redistributions and diverging reports, whereas MT-1 and MT-2 are generally up-regulated. MT-1 and MT-2 up-regulation in AD and other neurological disorders may be a host defense response reflecting the pathology and inflammatory signals, which induce MT via glucocorticoids or elevated free intracellular Zn²⁺ binding to MTF-1. However, Zn-MT-1/MT-2 levels in the liver are reduced despite this up-regulation, suggesting a pool of (possibly modified) apothionein or MT bound to other metals than Zn(II).

MT-3 can limit cell death and enhance neurite (axon/dendrite) growth by identified signaling pathways and protects neurons from cerebral ischemia in mice. The protein is, like MT-1/MT-2, released from housekeeping astrocytes during brain injury and blocks axon regeneration while it eliminates ROS. Matrix metalloproteases that degrade extracellular amyloids and require Zn(II) are also expressed by astrocytes. Once the oxidative stress is eliminated, MT-3 is down-regulated so that neuronal regeneration can proceed. Thus, MT-3 has a periodic response to neuronal insult that involves both cell clearance and regeneration, whereas other isoforms are uniformly protective.

Reactive astrocytes with high expressions of MT are found in AD patients (astrogliosis), and the correlation is significant enough to suggest MT levels as a marker of AD. MT-1/MT-2 is released to extracellular space by astrocytes to promote neuronal regeneration via signal transducer and activator of transcription 3 (STAT3), a central transcription factor that activates a number of genes involved in cell growth, differentiation, and apoptosis. Together with MT-1/MT-2, other protective extracellular proteins such as SOD-3 and prion protein are also released from astrocytes during neuron damage. Extracellular MT-1/MT-2 is internalized by nearby neurons via megalin receptors on the neuronal cell surface.

Given their buffering roles and protecting role in scavenging Cu(II)−Aβ, MTs may constitute a “gold standard” for the rational design of new MPACs. Both MT-3 and MT-2 protect neurons from the toxicity of Aβ peptides, and MT-3 can reduce neurodegeneration in mouse hippocampus. Most protectively, it was recently shown that Zn−MT-3 extracts Cu(II) from the Cu−Aβ complexes in exchange for Zn(II). The Cu−MT interaction renders the amyloids nontoxic, indicating that the toxic amyloid oligomers or precursors to the toxic oligomers contain Cu(II) or Zn(II). Recently, a similar ability to prevent Aβ oligomer formation was confirmed for MT-2, although studies of MT-2 and MT-3 binding to the protein transthyretin and Aβ suggest that MT-2 may not affect amyloids in the same way as MT-3. MT-2 injected into mice subject to AD-like pathology (Tg2576-type) improves cognition but also increases plaque load.

As discussed in section 4.2, the Kd's for Cu(II) and Zn(II) binding to Aβ lie typically around 10⁻¹⁰−10⁻⁹ M and ~10⁻⁷ M, respectively. The regulatory Cu²⁺ and Zn²⁺ sites of APP display Kd's of ~10⁻⁸ M and ~10⁻⁷ M, which is 1 order of magnitude weaker binding, and the Zn²⁺ site regulates α-secretase activity. As mentioned, Cu(II) typically binds more strongly than Zn(II) to most chelators due to the Irving−Williams series. For comparison, active-site Zn(II) in zinc enzymes such as carbonic anhydrase and Cu,Zn-SOD is more strongly bound, with typical Kd's of ~10⁻¹¹ M. An effective chelator against metal−amyloid toxicity should not outcompete these sites, suggesting a MPAC in a very narrow range between bound and free pools with a Kd of ~10⁻¹⁴ M for Cu(II) and perhaps 10⁻⁸ M for Zn(II). Apo-MT-1/2 displays Kd's for Zn(II) on the order of ~10⁻¹³ M and is still the main Zn(II) buffer within eukaryotic cells, because Zn(II) transfer occurs stepwise from partially metalated forms, notably Zn−MT and Zn₆−MT with Kd's of ~10⁻¹⁰ M, very close to the optimal range suggested above. Zn−MT−1/2 has been found to have one weakly bound Zn(II) with Kd ≈ 10⁻⁸ M and donates this Zn(II) to other chelators. For MT-3, an additional eighth Zn(II) binding site has been identified that is not present in MT-2.

For both MT-2 and MT-3, stronger binding of Cu(II) as expected from the Irving−Williams series has been confirmed by density functional calculations. It would be desirable to...
7. METABOLISM, AGING, DIABETES, AND ALZHEIMER’S DISEASE

7.1. Metabolism, Aging, and AD

The risk factors of hypercholesterolemia, obesity, and diabetes, and the benefits of exercise and mental activity associated with AD may reflect that imbalances in mitochondrial metabolism are early pathogenic events. As advocated by the free-radical theory of aging, slower metabolic rate, for example, induced by moderate hypoxia, enhances life span by producing less radical oxidative damage from mitochondrial activity, whereas hyperoxic conditions shorten life span of cultured cells. Evidence for the association between mitochondrial ROS and aging was obtained from longevity observed in mice overexpressing mitochondrial catalase. It is important to distinguish local severe hypoxia, for example, from ischemia, and moderate hypoxia, for example, that associated with living at high altitude. The latter will contribute to the effect of controlled, slower metabolism, whereas the former generates mitochondrial damage and ROS.

During aging, a number of significant changes occur that are related to changing gene regulation and protein expression. Some of these normal aging processes converge with symptoms of AD: (1) genes that enable synaptic function, for example, NMDA-R, GABA-R, and voltage-gated Na channels, are down-regulated; (2) Ca2+ levels are elevated in older people and calcium homeostasis is down-regulated in proportion to down-regulated synaptic transmission; (3) inflammation and stress responses, for example, MT-1/MT-2, integrin, and heat shock proteins, are up-regulated; (4) mitochondrial function is impaired and down-regulated. Hormonal changes are diverse: leptin and insulin receptors are up-regulated, whereas melatonin, controlling the circadian rhythm, is impaired and down-regulated, consistent with less synaptic activity.

Consequently, in many ways, the AD brain is a brain that has aged faster than the average brain and one could in some aspects view AD as an “accelerated-aging” disorder. This is supported by the broad clinical spectrum of the disease, as well as the occurrence of amyloid plaques in people without AD. AD patients also display reduced glucose uptake, which is one of the common biomarkers of AD. AD is currently often diagnosed via memory impairment confirmed by presence of senile plaques during post-mortem autopsy, with biomarkers playing a rather small role. Differences between AD brains and accelerated aging brains should be obtainable from comparing AD brains to older brains instead of same-age controls and would be relevant to define how AD distinguishes itself from the accelerated aging brain, and not just the same-age control brain. For example, the expression of metalloproteins such as MT-3 are elevated in older but are abnormally distributed in AD, which is clearly not simply an accelerated aging effect but possibly a result of redistributed zinc levels and astrocyte dysfunction.

In the aging body, the mitochondrial down-regulation correlates with less physical and mental activity (synaptic function is also down-regulated) and is associated with oxidative DNA damage consistent with the free radical theory of aging. One of the most sensitive mitochondrial proteins subject to oxidative damage is mitochondrial aconitase, an iron–sulfur containing enzyme in the Krebs cycle that converts citrate to isocitrate, which is impaired by superoxide. Thus, one of the first critical imbalances in oxidative stress-induced aging may be associated with aconitase. This is interesting since MT transfers Zn(II) to mitochondrial aconitase in mouse hearts and may thus regulate the Krebs’ cycle, as also indicated by the effect of zinc on the isocitrate/citrate equilibrium of aconitase. Free Zn2+, which would arise from dysfunctional MT, has instead been found to inhibit cytochrome c oxidase and mitochondrial aconitase synthesis, thus reducing metabolism and energy production. Another important marker of aging is the shortening of telomeres, the DNA sequences that protect the ends of chromosomes from damage. The reverse transcriptase telomerase adds new protecting DNA sequences to telomeres of eukaryotic stem cells and some cancer cells, but not to other cells, which are then subject to a “count-down” of telomere shortening upon replication that may eventually result in chromosome fusion. The activity of telomerase, as a reverse transcriptase, is up-regulated by Zn2+, thus preserving the ability to replicate and in some sense “slowing the count-down”, whereas artificial Zn-finger motifs can repress telomerase. A casual link between zinc homeostasis and telomere shortening, including an inverse relationship between MT expression and telomere shortening in people older than 80 years has recently been indicated. Thus, zinc homeostasis may be centrally positioned within the biological clockwork of aging, with the free Zn2+ pool at least to some extent directing the speed of the clock.

7.2. Zinc: A Link between Diabetes and AD?

While being completely different diseases in terms of pathology and progression, there are several underlying similarities between AD and type II diabetes. AD brains are insulin-resistant and such insulin resistance leads to cognitive decline; both diseases are accompanied by oxidative stress and have age as a risk factor. Diabetes is itself a risk factor for AD, as is obesity and hypercholesterolemia, and diabetes aggravates AD symptoms. The similarities between protein aggregations in the two diseases were recently reviewed. A common feature of the diseases is zinc dyshomeostasis, widely documented in both type-I and type-II diabetes. Increased urinary excretion of zinc is observed in diabetes patients suggesting elevated free Zn2+ as in AD. On the other hand, type-I and type-II diabetes are usually associated with higher vs lower blood zinc levels, respectively. Zinc can partly remedy type-II diabetes by showing insulinomimetic activity, but while its role in insulin signaling and integrity, storage, and transport is...
Zinc dysregulation is thought to be associated with various neurological and cardiovascular diseases. However, the underlying mechanisms are not fully understood.

Figure 13. Structure of one half of the human insulin hexamer stabilized by tetrahedrally coordinated Zn$^{2+}$ in the center (2OMG.pdb). See ref 661 for details.

8. METHIONINE SYNTHASE, VITAMIN B$_{12}$, AND HOMOCYSTEIN IN ALZHEIMER’S DISEASE

As described above, hyperhomocysteinemia (~15–50 μmol/L) is correlated with risk of AD, although there are diverging reports as recently reviewed. Homocysteine levels are also elevated in cerebral ischemia, cardiovascular disease (together with Cu), and various other disorders. In humans, homocysteine is converted to methionine by the enzyme methionine synthase (MES), which plays a central role together with S-adenosyl methionine (SAM) in methyltransferase pathways and in nucleotide synthesis in the CNS.

MES dysfunctions have been correlated with hyperhomocysteinemia and vitamin B$_{12}$ deficiency. Consequently, hyperhomocysteinemia has been suggested to be a risk factor for AD. However, the physiological effects of hyperhomocysteinemia and vitamin B$_{12}$ deficiency have not been clearly established. Homocysteine has been reported to cause both diabetes and neurodegeneration.

The links between diabetes and AD are currently mainly hypothetical and should not be overemphasized, but the common pathological features could in principle be explained mechanistically by zinc dysregulation, and this hypothesis warrants further investigation.
homeostasis, mitochondrial malfunction, formation of protein aggregates (amyloids in AD; neurofilaments in ALS), only a few years survival time after diagnosis, late onset (i.e., age risk), substantial increase in occurrences since the 1960s or 1970s indicating some environmental risk factors that cannot be fully explained by changes in diagnostic paradigms,700 and symptoms of apoptosis signaling in the disease end stage.73,701 Both disorders have a minority of familial cases (in ALS due to SOD-1 mutations causing ∼20% of familial cases701), while the vast majority of cases are sporadic. Motor neurons are, like neurons in the brain, consumers of large amounts of energy, rendering their mitochondria more sensitive to oxidative stress.

Several research groups have established that a fundamental cause of the fraction of familial ALS relating to SOD-1 mutations is a gain of toxic function of SOD-1,702−704 and such toxic function, for example, aggregation or partial unfolding, is linked to reduced Zn(II) affinity,705,706 suggesting lack of Zn(II) in the protein. Some argue for706,707 or against708 correlation between disease progression and protein stability. As described recently,273 lack of Zn(II) in SOD-1 could reverse the reaction so as to produce superoxide radicals from O₂⁻ giving nitrosylated proteins and lipids,709 but other toxic functions are possible, for example, partial unfolding and aggregation coupled to new redox chemistry, such as, exposure of copper leading to Fenton-type oxidations, eq 3. Also, β-secretase overexpression can reduce SOD-1 activity,710 possibly by protein–protein interactions mediated by Cu,69 providing a possible molecular mechanistic link between AD and ALS pathogenesis.

In contrast, sporadic ALS seems to be caused by gradually enhanced stress leading either to steady progression of the disease or to sudden pathogenic cascades due to key events relating primarily to oxidative stress.491 Given the similarity in sporadic and familial ALS pathogenesis,711 it seems logical to assume that SOD-1 dysfunction is also a plausible cause of sporadic ALS and familial ALS not directly related to SOD-1 mutations. Dysfunctional SOD-1 would then be caused by post-translational modifications, for example, lack of Zn(II) for other reasons than mutations decreasing Zn(II) binding affinity. Given MT’s role in buffering Zn(II), it is a plausible hypothesis that dysfunctional MT is a cause of dysfunctional SOD-1 in sporadic ALS, a hypothesis that has indeed been supported.701,712 This would put AD and ALS into close neurological consequences of the diseases would differ. Alzheimer-type tau pathology has also been associated with SOD-1 deficiency, and SOD-1 was found to be reduced in AD patients compared with other mitochondrial and extracellular SODs.713

Mouse models of accelerated aging (SAMP10) display zinc deficiency due to low expression of ZnT3.714 Very recently it was found that MT-3 significantly prolongs life span of ALS model mice and reduces motor neuron loss.715 MT levels are elevated in kidney and liver of ALS patients,716 and MT expression is increased in the spinal cord of ALS patients.717 A variety of heavy-metal exposures have been found to lead to ALS718 or ALS-like symptoms.719 However, while zinc deficiency was linked to ALS in a 22-person study, heavy metals in toenails did not correlate with ALS.720 Larger studies and consideration of other heavy metal markers (e.g., MT markers where most Cd is located in vivo545) instead of toenails would be warranted.

As in AD, in the final disease stage of ALS, when motor neuron mitochondrial damage reaches a certain critical level and oxidative stress is no longer sustainable, apoptosis may be triggered by release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, initiating the caspase cascade,721 which is also regulated by free Zn²⁺.722

Of further interest is the possibility of a similar mode of toxicity in the mutant SOD-1 of familial ALS and of Cu(II)/Cu(I)−Aβ, notably given the similarities between the plausibly partly unfolded and hence solvent-exposed SOD-1/Cu(II)/Cu(I) site and the corresponding site in amyloids,723 sharing doubly coordinated histidine and potentially forming ROS-generating exposed Cu(II)/Cu(II) Fenton chemistry. As discussed, in addition to its ferroxidase function, APP contains both copper and zinc binding sites with potential redox function that might be linked to amyloid processing (e.g., a ferroxidase/SOD metabolic control function of mitochondria). The hypothesis that the key toxic mode of Aβ is a solvent-exposed Cu(II)-motif chemically and structurally similar to the acquired toxic function of SOD-1 mutants would be interesting to investigate.

10. EXOGENOUS METAL EXPOSURE AND ALZHEIMER’S DISEASE

Since the early 20th century and in particular since 1950, the industrial production and emissions of exogenous metals have dramatically increased.724 This enhances the risk of exposure to the CNS, both during development and in adults. The neurotoxic effects of non-natural metals, which are well-established,725−728 depend on the scale and duration of the exposure and how it coincides with the delicately tuned developmental processes of the CNS.729 Notably, many neurological disorders, including AD and ALS, have been subject to accelerating prevalence in postwar history that could be partly due to increased awareness and partly due to exogenous factors such as urban pollution.

10.1. Aluminum

The first exogenous metal to be identified as a risk factor in AD was aluminum (Al).730 Aluminum is a light metal (atomic number 13) with iron-mimetic biochemical behavior.44,731 While many toxic mechanisms of Al are known, none of these have been causally linked to AD.45 In the 1990s, several research groups found no elevated Al levels in AD tissue,732−734 and there were disagreeing in vivo and in vitro studies735,736 resembling somewhat those for Zn, Cu, and Fe, with highly tissue-dependent and heterogeneous reports. Furthermore, Al is often easily excreted737 and did not seem to penetrate to the brain in toxic concentrations that could justify an “aluminum hypothesis” of AD.738 Also, some reports of elevated Al were shown to be erroneous.732 However, after substantial controversy,739,740 Al is now mostly considered a risk factor in AD, as reviewed recently by several authors,44−46,741 although its total weight among other risk factors is highly debatable.147,742

Approximately 20 studies have related Al in diet and drinking water to AD risk44,730,743−749 (more references can be found elsewhere741). Still, most Al exposure occurs via inhalation in Al-involving industries.725 Early or midlife exposure to Al has been found to be a significant cause of later AD development among foundry workers.760 In dialysis patients, Al accumulates...
Review

in the brain and gives rise to a form of neurodegeneration called
dialysis encephalopathy,751 with symptoms that resemble
AD.725,752 In AD brains, while Al levels were not found to be
toxic, as with other metal ions, there are large heterogeneities in
the local depositing of the metal, typically leading to local toxic
concentrations.153

The detailed toxicological aspects of aluminum are reviewed
elsewhere,725 but for the present context, it is most relevant to
note that since Al(III) is a hard Lewis acid that mimics Fe(III),
its primary toxicological targets are different from the heavy
metals discussed below. Al(III) mainly interacts with the
mitochondria and impairs energy production, for example, by
interference with iron–sulfur proteins of the respiratory
system.753 Recent studies provide possible mechanisms for
Al’s involvement in amyloid formation in vitro178,232,754 and in vivo,34,755 and in AD-like tau processing.756,757 Aluminum
exposure was recently shown to produce iron-mediated ROS
in Drosophila of relevance to AD,758 and the ability of iron
chelators to remedy this ROS758 suggests that Al(III) has
substituted bound Fe(II/III), probably leading to free Fe2+/Fe3+
and Fenton toxicity, which would enhance the ROS
burden and render the CNS more vulnerable to AD risk factors.
A scheme for aluminum’s interference with iron regulatory
proteins leading to increased risk of AD have been discussed
in several reviews.144,383

As other metal ions, Al(III) also binds directly to Aβ,240 is
colocalized in senile plaques,759 and may in fact produce
structural aggregates that are more toxic than those with
other metal ions, while also interrupting tau protein processing.760
The aggregation mechanisms of Al(III)−Aβ were also found to
be distinct from those of Cu(II) and Zn(II).240 In fact, it has
independently been suggested that trivalent metal ions such as
Al(III) are key to the formation of plaques,179 whereas Cu(II)
and Zn(II) are deposited in them adventitiously,761 although
these proposals clearly need more investigation.

In terms of treatment, chelates that remove Al from
hyperphosphorylated tau762 have been found to slow AD
progression by ∼50%,66 with benefits up to 5 years,764
although other reports showed negligible benefits of chelation
therapy.765 In summary, while pathogenic mechanisms related
to iron(III)-mimetic toxicity in AD are plausible, they remain
unproven,35,741 and the many studies correlating Al to AD need
to be investigated further to evaluate whether the relationship is
causal.

10.2. Cadmium

There is no causal evidence of a role of Cd in AD, but elevated
Cd levels have been observed in the liver of AD patients,594
whereas brain levels seem unaffected,668 and Cd levels have
been reported to be elevated in the cerebrospinal fluid of AD
patients.766 Also, because Cd(II) is an important exogenous
Zn(II)-mimetic metal, it deserves mentioning in this review.

Cadmium is a highly toxic heavy metal with a physiological
half-life of 15–20 years, a key factor for its toxicity.787 The
European Union’s suggested maximum allowed concentrations
of Cd(II) are 0.66 μg per gram of creatinine in the urine.668 Cd
intake from food (seafood, rice, and vegetables) on average
leads to ∼1 μg of Cd intake per average person per day,
whereas the tolerable weekly intake is approximately 2.5 μg per
kg of body mass,767 but smoking or other environmental
exposures from pollution, etc., may lead to toxic doses.787
The most common Cd exposure is from tobacco smoke769 and
observed higher levels of heavy metals in smokers,770 notably 5
times higher cadmium levels in blood compared with
nonsmokers771 could provide one possible reason for the
correlation between AD and Cd/smoking.772 Incidentally, smokers
also experience hyperhomocysteinemia, a risk factor of AD.773

Cd(II) is toxic via a number of mechanisms, notably via
oxidative stress774 and zinc-mimetic chemistry.775 Cadmium
is below zinc in the periodic table and easily replaces it in many
chemical reactions.724,777 Cd(II) is larger, more polarizable, and
more thiophilic (displays larger affinity for sulfur ligands) than Zn(II)
and can thus displace Zn(II) in proteins where cysteine or methionine
are present. Most Cd(II) is bound to cysteines in MT as part of
normal detoxification.778,779 Thus, Cd(II) is, together with
Hg(II) also iso-electronic with Zn(II), a key contender in
disruption of zinc homeostasis. As for Zn(II), bioavailable
Cd(II) is always found in the divergent oxidation state, with
a complete d-electron shell and a symmetric, usually tetrahedral
coordination chemistry.

Related to AD, Cd(II) may interrupt tau processing,780 and
Cd(II) bound to MT781,782 will disturb metal binding sites
and could possibly increase the free Zn2+ pool while impairing
Zn(II) transfer to zinc proteins,783 which could cause MT
dysfunction contributing to zinc dyshomeostasis,785 although
this is currently unexplored. Alternatively, due to its
zinc-mimetic properties, Cd(II) may bind directly to regulatory zinc
sites affecting APP processing, causing amyloid imbalance by
direct zinc substitution of regulatory Zn2+ instead of affecting
the size of free Zn2+ pool as above. There is evidence that
Cd(II) binds close to the α-secretase site in APP, thus favoring
amyloid production.784 This site is likely to be the regulatory
Zn2+ site in APP, which is also located in this region.288

Importantly, dyshomeostasis of iron may contribute to
increased uptake of heavy metals such as Cd(II),785 and as
mentioned previously, homeostasis of Cu, Zn, and Fe is
intimately related, notably via APP, MT, and ceruloplasmin.
Thus, risk factors can act in concert to produce toxic effects
that cannot be evaluated as isolated entities. This insight is
essential for understanding metal-induced neurotoxicity.

10.3. Lead

Lead (mainly in the Pb(II) oxidation state) is also
neurotoxic.725,786 It impairs neurotransmission787 and has been found
to impair social and cognitive skills in children788–790 and long-
term memory.791 The main target of Pb toxicity is the brain,792
in particular zinc and calcium sites in proteins,726 and cognitive
deficits occur after exposure at commonly encountered low
doses, <75 μg/L blood.793

Links between such early exposure and late onset of AD has
been observed in primates,794,795 and it is plausible that
exposure during fragile CNS development could enhance risk
of AD later in life,42,796,797 although several studies have not
found a correlation between Pb exposure and development of
AD.42 In young rats, the morphological and synaptic impair-
ments by Pb(II) that could be causative have been described.798
The literature of Pb exposure relating to AD was recently
reviewed.42

Possible molecular pathogenic mechanisms of Pb relating to
AD may include binding to glutathione and thereby induction
of oxidative stress.479 As for cadmium, lead is highly thiophilic
and thus interferes with zinc homeostasis by disrupting Zn(II)-
binding sites with soft ligands such as cysteine.799 In vitro Pb
exposure up to 50 μM was found to correlate with
overexpression of APP and reduced activity of nephrilysin, one of the zinc proteases involved in Aβ degradation. In primates, APP overexpression from Pb exposure was recently found to be due to DNA methylation toxicity. In other in vivo studies, Pb seemed to inhibit Aβ transport by the low-density lipoprotein-receptor-related protein 1 (LRP1; aka apolipoprotein E receptor (APOER)), which is the membrane receptor that transports apoE4-cholesterol to the neurons. Recently, Pb(II) was also found to catalyze tau protein aggregation via binding to His-330 and His-362.

Interestingly, MT has been found also to bind to receptors such as LRP1, probably to transfer Zn(II) and facilitate signal transduction for neuronal growth. Adverse effects of Pb exposure are aggravated by the presence of the APOEε4 allele, suggesting a correlation between Pb exposure and this protein. Thus, although many mechanisms could explain a causal effect of early Pb exposure and later AD development, more studies are needed to provide such causation, which is currently not established.

10.4. Mercury

Mercury (Hg) is a highly neurotoxic element, and accumulated evidence now identifies it as a risk factor for AD. Major sources of Hg are fish consumption, the Hg-containing alloy amalgam in dental fillings, some vaccines, and urban air pollution. For example, amalgam may leak 1–12.5 μg of Hg per day, with long time accumulation due to substantial retention. It has been estimated that ~300,000 newborns may have been exposed to Hg concentrations that could cause neurological damage.

It is known that during mouse pregnancy, Hg(0) vapor penetrates the placental barrier and damages fetal organs including the brain; MT protects against this penetration. Hg is very BBB-penetrable (80%) and localizes in the spinal cord, of relevance to ALS, and in the cortical brain, of relevance to AD. A particularly toxic form, methyl mercury \([\text{CH}_3\text{Hg}]^+\), causes lethal neuronal damage. \([\text{CH}_3\text{Hg}]^+\) from seafood accumulates in astrocyes that express MT-1/MT-2, central homeostatic cells in AD pathogenesis, to be discussed later.

The chemical mechanisms of neurotoxicity are several: Hg(II) binds to soft Lewis base amino acids cysteine and methionine in various proteins, notably tubulin, the structural protein component of microtubules in the cytoskeleton that are produced by tau protein, thereby inhibiting binding of guanosine triphosphate (GTP) and ADP ribosylation of tubulin, both required for normal microtubule formation and hence cytoskeleton integrity, thus leading to cell degeneration. Such a cascade would also cause tau hyperphosphorylation and neurofibrillar tangles as a consequence of heavy metal exposure to the CNS, which is indeed observed upon Hg exposure, in concurrence with increased Aβ secretion, Hg-induced Aβ aggregation, tubulin dysfunction, and apoptosis.

In rats, Hg has been shown to interact biologically (although probably not directly) with melanolin. Melatonin levels are depleted upon Hg exposure, while melanolin production increases. The chemical interaction could occur via binding to enzymes involved in melanolin pathways or substitution of zinc in proteins leading to zinc binding to melanolin. On the other hand, Hg binds directly to selenium, preventing selenium availability to glutathione peroxidase, thus indirectly causing further oxidative stress. Hg may inhibit Aβ transport by LRP-1 as Pb does, which could explain the effect of Hg on amyloid secretion.

Hg levels in AD brains have been estimated at 0.02–0.18 μg/g tissue or [Hg] \(\approx 0.1–0.9 \mu M\). Some studies have not found any correlation between Hg from amalgam and AD, although these concentrations of Hg are much higher than Hg concentrations (0.1 nM) found to cause axon degeneration and neurofibrillar tangles in other studies. However the lack of correlation between amalgam and Hg concentrations in that study is inconsistent with the consensus of Hg migration from amalgam from a wide range of studies, suggesting erroneous monitoring of Hg. In fact, even Hg from amalgam in mothers correlate with Hg in fetal and infant tissue, consistent with observed Hg transfer across rat placenta. Depending on the lipophilicity of various toxic forms of heavy metals, monitoring hair, nails, blood, and other tissue will necessarily give different results. In addition, contents in different tissues reflect different timings and periods of exposure, namely, the pharmacokinetics. Thus, blood concentrations, reflecting long-time exposure, of Hg, Cd, and Al were significantly elevated in AD patients, whereas Cu was elevated in the cerebrospinal fluid. In contrast, patients with AD have been found to have less Hg in nails and hair compared with controls.

Many studies have found exogenous metal exposure to enhance risk of other neurological disorders, notably in this context Parkinson’s disease and ALS, which as discussed shares many features with AD. Increased heavy metal load has also been found in ALS patients. While correlation is no longer disputed, causation is substantially more difficult to prove or disprove. However, natural metal homeostasis (Cu, Zn, Fe) provides an emerging framework for discussing exogenous metal exposure as one of many risk factors that can perturb this homeostasis and lead to neurological disorders such as AD.

11. NATURAL METAL CHELATORS AGAINST ALZHEIMER’S DISEASE

Given the central role of bioinorganic chemistry in AD pathogenesis, it is not surprising that many known beneficial dietary prevention strategies against AD in fact involve BBB-penetrable antioxidant and metal-chelating substances. Many such compounds are found as natural products or well-known drugs for other purposes and can be obtained as part of a diet. In addition to being antioxidant and metal-chelating with the optimal Kd and selectivity between targeted metal ions, these compounds should also be hydrophobic and capable of crossing the BBB and must be of reasonable small molecular weight and fulfill various other, typical criteria of drug-likeness. Here, six such candidates will be discussed: lipopoic acid, N-acetyl-L-cysteine (NAC), epigallocatechin gallate (EGCG), curcumin, melatonin, and galantamine.

Lipoic acid is a coenzyme for pyruvate dehydrogenase in the mitochondria and thus plays a role in neuronal energy production. Already in the 1990s, it was reported to improve cognition of rodents, and it has been in focus as a disease-modifying treatment of AD and as part of dietary supplement to reduce risk of AD. Lipoic acid contains a carboxybutyl functional group and two vicinal sulfur atoms, that is, both hard and soft Lewis-base donors, which should be useful in targeting both more thiophilic (Cu, Zn, Cd) and oxophilic (Fe, Al) metal ions. In its reduced form, dihydrolipoic acid, as usually found in cells, it can chelate metal ions. It has

dx.doi.org/10.1021/ct300009x Chem. Rev. 2012, 112, 5193–5239
been found to reduce oxidative stress mediated pathogenesis in AD cells.467,873 Notably, together with acetyl-L-carnitine, another natural antioxidant chelator, lipoic acid may enhance α-secretase activity and thus partly restore amyloid balance874 and improve cognitive function of ApoE4 mutant mice.875

NAC, N-acetylated cysteine, is a simple, nontoxic compound used against cystic fibrosis and coughing, capable of breaking disulfide bonds and dissolving mucus.876,877 NAC can also act as a chelator878 via some of its potential donor lone pairs on cysteine or forms disulfides with life times up to 6 h.879 NAC has been shown to be beneficial in schizophrenia, possibly by inhibiting GABA-R,880 and in various other neurological disorders.879 NAC has been shown in trials to be beneficial to patients with probable AD881 and has also been suggested as a part of dietary prevention of AD.863 NAC can reduce oxidative damage882 and displays antiamyloid effects883 in mouse models of AD.

EGCG is a main phenol constituent (catechin) of green tea and contains several sites for bidentate coordination of metal ions,467 both via vicinal hydroxy groups and via hydroxy groups on separate rings (see Figure 14). EGCG is both BBB-penetrable and an effective M(II) chelator,884 and catechins are found to bind Fe(II),885 Zn(II),886 and Cu(II) with associated antioxidant reactivity.887 Also Fe(III)–gallocatechin complexes with variable stoichiometries have been described,888,889 as well as Al(III) complexes with $K_{d} \approx 10^{-8}$–10^{-5} M.890 For 1:1 complexes of Zn(II) and Cu(II) catechins, formation constants of 10^{5}–10^{7} M$^{-1}$ (corresponding to K_{d}s of 10^{-6}–10^{-5} M) were observed,891 enough to sequester the free chelatable M(II) pools but too weak for outcompeting amyloids (K_{d} $\approx 10^{-10}$–10^{-7} M).

As a potential treatment against AD, EGCG has been found to inhibit Aβ production in Swedish double mutant transgenic mice (mice encoded with the mutant known to cause the severe example of AD in a Swedish family), accordingly by promoting the nonamyloigenic α-secretase pathway902 while at the same time modulating tau pathology and cognitive decline.993 Other researchers have confirmed these results and identified possible pathways of inhibition,994 while some suggest that APP expression is reduced via iron chelation.467

Curcumin is found in the Indian spices turmeric and curry and is known to be an antioxidant metal chelator,895 that binds to a large range of biological targets, as recently reviewed.896 Epidemological studies have found that the incidence of AD among people in their 70s was about 4–5 times smaller in India than in the US and that curry consumption correlated with this tendency.897,898 While researching the beneficial effects of curry, curcumin was found to protect against Aβ-induced cognitive deficits899,900 by direct binding to amyloid in vitro and in vivo.903 The K_{d}s for Cu(II)–curcumin have been reported to be $\approx 10^{-6}$ M if two curcumin molecules bind each Cu(II) and $\approx 10^{-7}$ M in 1:1 complexes.902 Thus, as for EGCG, competitive 1:1 MPAC function is unlikely also for curcumin. However, despite the large Cu(II) K_{d} curcumin may bind directly to the amyloid, thereby modifying its conformation and preventing oligomerization,901 although the molecular details of such inhibition need to be further explored.

Absence direct competitive binding or modifying interaction with amyloids, the benefits may also arise from targeting the expanded free pools of Cu$^{2+}$ (subject to Fenton toxicity) and Zn$^{2+}$ (possibly to reduce regulatory zinc levels) or very weakly bound metal ions, for example, in APP (for K_{d} for zine ~10^{-6} M869). By targeting these free pools, curcumin may function upstream from amyloid production. Curcumin has been reported to suppress presenilin expression and inhibit Aβ/42 formation,907 apparently with IC$_{50}$ values smaller than ~5 μg/mL.894 Crystal structures of curcumin binding to segments of tau protein have also been recently reported.108 Other researchers have found that curcumin enhances macrophage consumption and clearance of amyloids,903–907 and curcumin will reduce any heavy-metal toxicity in the neurons.908 These beneficial effects of curcumin may partly explain why inhabitants of rural Northern India have some of the world’s lowest age-corrected AD incidences.866

New curcumin-derivatives are among the many metal chelators currently being optimized for AD treatment,443,909 and at least 10 patents have been filed in the last couple of years regarding curcumin or its derivatives in AD treatment (See Table 1).

Melatonin is a BBB-penetrable hormone involved in maintaining the circadian rhythm and hippocampus memory formation909 (see Figure 14). While the day concentration is 10 times higher than at night in young individuals, the difference can almost disappear in older people due to reduced melatonin production.911 Melatonin’s antioxidant,912,913 anti-inflammatory,914,915 and antiapoptotic effects on neurological disorders are well-documented,916–919 while therapeutic potential is also large due to low toxicity.920
<table>
<thead>
<tr>
<th>active substance(s)</th>
<th>hypothesis</th>
<th>Chelators</th>
<th>strategy</th>
<th>patent number</th>
<th>filing date</th>
</tr>
</thead>
<tbody>
<tr>
<td>clioquinol</td>
<td>clioquinol is effective against AD</td>
<td>antiamyloidosis by clioquinol, B$_{12}$</td>
<td>US 6,001,852</td>
<td>2/1998</td>
<td></td>
</tr>
<tr>
<td>various metal chelators</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against AD</td>
<td>US 6,332,218 B1</td>
<td>3/1998</td>
<td></td>
</tr>
<tr>
<td>bathocuproine/indomethacin</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against AD</td>
<td>US 7,045,531 B1</td>
<td>3/1998</td>
<td></td>
</tr>
<tr>
<td>lipophilic diesters of metal chelators</td>
<td>antioxidant metal chelators against neurological disorders, including AD</td>
<td>chelators against AD</td>
<td>US 6,458,837 B1</td>
<td>9/1998</td>
<td></td>
</tr>
<tr>
<td>1,10-phenanthroline complexes</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against AD</td>
<td>US 7,704,987 B1; WO 01/07442</td>
<td>7/2000</td>
<td></td>
</tr>
<tr>
<td>deferoxamine (DFO)</td>
<td>metal chelators against neurological disorders</td>
<td>DFO against neurodegeneration caused by ischemia</td>
<td>US 7,618,615 B2</td>
<td>8/2005</td>
<td></td>
</tr>
<tr>
<td>phenolic compounds</td>
<td>antioxidant metal chelators against neurological disorders</td>
<td>antioxidant metal chelators against neurological disorders, including AD</td>
<td>US 2003/0236202</td>
<td>4/2003</td>
<td></td>
</tr>
<tr>
<td>N-alkyl N-phenylhydroxylamine chelators</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against AD, PD, stroke</td>
<td>US 2003/0225087</td>
<td>6/2003</td>
<td></td>
</tr>
<tr>
<td>8-hydroxy quinoline derivatives</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against neurological disorders, including AD</td>
<td>US 2006/0089380</td>
<td>7/2003</td>
<td></td>
</tr>
<tr>
<td>clioquinol derivatives</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against AD</td>
<td>US 2006/0167000</td>
<td>10/2003</td>
<td></td>
</tr>
<tr>
<td>metal chelators</td>
<td>Zn chelation can modulate APP</td>
<td>modulate interaction between metals and APP</td>
<td>US 2004/0265847</td>
<td>11/2003</td>
<td></td>
</tr>
<tr>
<td>amyloid-binding metal chelators</td>
<td>metal chelators can resolve amyloids</td>
<td>dual function, amyloid binding–metal chelating</td>
<td>US 2004/0204344</td>
<td>6/2004</td>
<td></td>
</tr>
<tr>
<td>N-containing poly cyclic chelators</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against neurological disorders, including AD</td>
<td>US 2007/0180702</td>
<td>3/2004</td>
<td></td>
</tr>
<tr>
<td>clioquinol</td>
<td>clioquinol is effective against AD</td>
<td>antiamyloidosis, possibly formulated with B$_{12}$</td>
<td>US 2006/0074104</td>
<td>4/2005</td>
<td></td>
</tr>
<tr>
<td>polyquinoline derivatives</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against neurological disorders, including AD</td>
<td>US 2009/0227626</td>
<td>8/2006</td>
<td></td>
</tr>
<tr>
<td>deferoxamine (DFO)</td>
<td>metal chelators against neurological disorders</td>
<td>nasal administration of DFO against neurological disorders</td>
<td>US 7,776,312 B2</td>
<td>10/2006</td>
<td></td>
</tr>
<tr>
<td>8-hydroxyquinoline derivatives</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>antiamyloidosis for neurological disorders including AD</td>
<td>US 2008/0161353</td>
<td>9/2007</td>
<td></td>
</tr>
<tr>
<td>various metal chelators</td>
<td>metal chelation can resolivate amyloids, enhance clearance</td>
<td>chelators against neurological disorders, including AD</td>
<td>US 2009/0233893</td>
<td>5/2007</td>
<td></td>
</tr>
<tr>
<td>multifunctional ring-containing chelators</td>
<td>antioxidant metal chelators against neurological disorders</td>
<td>orally administered against neurological disorders, including AD</td>
<td>US 2009/0105269</td>
<td>9/2008</td>
<td></td>
</tr>
<tr>
<td>chelating agents</td>
<td>antioxidant metal chelators against neurological disorders</td>
<td>chelators against neurological disorders, including AD</td>
<td>US 2010/0234338</td>
<td>3/2009</td>
<td></td>
</tr>
<tr>
<td>deferoxamine (DFO)</td>
<td>metal chelators against neurological disorders</td>
<td>nasal administration of DFO against neurological disorders</td>
<td>US 2010/0267834</td>
<td>7/2010</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>MT dysfunction leads to neurological disorders</td>
<td>direct MT to neuron to restore free/bound zinc and copper balances</td>
<td>WO 03/105910 A1</td>
<td>6/2003</td>
<td></td>
</tr>
<tr>
<td>MT-derived peptides</td>
<td>MT dysfunction leads to neurological disorders</td>
<td>MT peptide fragments as MPACs or for rebalancing the free/bound zinc pools</td>
<td>US 2010/0166759</td>
<td>2/2007</td>
<td></td>
</tr>
<tr>
<td>modified, selenium-containing MTs</td>
<td>MT dysfunction leads to neurological disorders</td>
<td>modified MTs formulated to higher efficiency than MTs</td>
<td>US 2009/0318333</td>
<td>3/2007</td>
<td></td>
</tr>
<tr>
<td>antioxidant X-Cys-X-Cys-X peptides</td>
<td>antioxidant metal chelators against neurological disorders</td>
<td>chelators against neurological disorders, including AD</td>
<td>US 2011/1090195</td>
<td>4/2011</td>
<td></td>
</tr>
<tr>
<td>turmeric (curcuminoids), EGCG, lipoic acid, B12, vitamin C/E, etc.</td>
<td>AD combination treatment against oxidative stress, Aβ, inflammation, and glycation</td>
<td>coctail of natural ingredients targeting several or all mentioned pathways</td>
<td>US 2009/0143433</td>
<td>12/2008</td>
<td></td>
</tr>
<tr>
<td>curcumin extract/curcuminoids</td>
<td>turmeric extracts reduce amyloid more than curcumin</td>
<td>formulation of turmeric extract against AD</td>
<td>US 2010/0098788</td>
<td>10/2009</td>
<td></td>
</tr>
<tr>
<td>curcumin—cyclodextrin</td>
<td>curcumin—cyclodextrin is more effective than curcumin</td>
<td>curcumin—cyclodextrin administration to AD patient</td>
<td>US 2010/0179103</td>
<td>6/2009</td>
<td></td>
</tr>
<tr>
<td>curcumin prodrug derivatives</td>
<td>intranasal administration enhances curcumin effect</td>
<td>curcumin is administered intranasally to AD brains</td>
<td>US 2008/0076821</td>
<td>4/2007</td>
<td></td>
</tr>
<tr>
<td>heterocyclic compounds</td>
<td>heterocyclic compounds may inhibit Aβ deposition</td>
<td>AD treatment by oral dose of drug can delay AD</td>
<td>US 2008/0103158</td>
<td>10/2007</td>
<td></td>
</tr>
<tr>
<td>curcuminoid</td>
<td>bioavailable curcuminoids may be efficient against AD</td>
<td>curcuminoid, antioxidant, and carrier formulation</td>
<td>US 2009/0324703</td>
<td>3/2007</td>
<td></td>
</tr>
</tbody>
</table>
In AD patients, the melatonin levels are further reduced compared with same-age healthy individuals. Early sleep disorders have been associated with AD, possibly indicating a common underlying etiology, and light therapy may work against AD-associated sleep disorder. Melatonin may counter cognitive impairment, and on the molecular level, it reduces amyloid toxicity and tau hyperphosphorylation and may thus be efficient against AD although the molecular mechanisms are unknown.

Melatonin contains an amide functional group connected to two rotatable C–C bonds, providing potential flexibility to chelate Cu(II) and Zn(II), and chelation has been observed experimentally. Melatonin may work as a metal chelator when inhibiting formation of soluble Cu(II)—and Zn(II)—amyloid oligomers. Melatonin’s antioxidant activity against Aβ-induced ROS may protect cultured neurons and protect mitochondria of Alzheimer models of mice. Recent work suggests that melatonin may induce heme oxygenase known to be down-regulated in AD and thus help restore iron/heme homeostasis, see section 4.8. Melatonin also functions as an antioxidant in ALS, probably scavenging superoxide (O$_2^−$) in absence of functional SOD, in the same way it scavenges superoxide generated by amyloids. Melatonin also protects neurons from Hg toxicity, but whether it is by scavenging of ROS or by metal chelation is unknown. Of special interest in future developments are melatonin derivatives with improved antioxidant capabilities such as tacrine—melatonin hybrids.

Galanthus, for example found in the Caucasian snowdrop (Galanthus caucasicus), has been used against neurological symptoms in the Soviet Union at least since the 1950s. The compound is a potent acetylcholinesterase inhibitor, approved by the FDA for AD treatment, showing beneficial effects on learning and memory with a safety profile resembling that of synthetic acetylcholinesterase inhibitors currently on the market. Importantly, galantamine has been resembling that of synthetic acetylcholinesterase inhibitors. Thus, this compound would be an example of a dual-function treatment targeting both acetylcholinesterase and Aβ clearance and is sold under the trade name Razadyne.

A plausible mechanism of action of natural antioxidant BBB-penetrable metal chelators in enhancing α-secretase activity may be chelation of free inhibitory divalent metal ions, reducing the pool of Cu$^{2+}$/Zn$^{2+}$ bound in the APP α-splicing region, since the K_d’s ($\sim 10^{-7}$ M) are too small for MPAC function ($K_d < 10^{-8}$ M). A second possibility is that they prevent a ROS-producing toxic mode of free metal ions or amyloids, thus reducing oxidative stress, which could also improve amyloid balance, as explained in section 5.

12. COMBINING THE HYPOTHESES: A BIOINORGANIC VIEW OF ALZHEIMER’S DISEASE

12.1. Dysfunction of Proteins Involved in Metal Homeostasis: MT as an Example

AD is a complex disorder with genetic, environmental, and lifestyle-related risk factors, with distinct pathological features, and with age as a substantial trigger. Because of this, any pathogenic theory of AD needs to not only explain the many risk factors and beneficial factors but also explain how the aging brain becomes a target of AD as a function of these risk factors. Furthermore, although Aβ oligomers are neurotoxic and their hydrophobicity correlates with oligomerization and membrane interaction abilities as well as toxicity, it is not clearly whether such toxicity is the cause of neurodegeneration in AD, for example, via signaling of apoptosis by Aβ binding to mitochondrial alcohol dehydrogenase, and if so, whether it implicates metal ions only in the formation or as actual constituents of these toxic forms or whether amyloid toxicity is secondary to underlying gradual dysthomyelosis that would suggest Fenton toxicity or regulatory protein dysfunction (e.g., loss of metalloprotein function by functional metal ion deficiency due to reduced bound natural metal pools) as primary toxic modes.

The role of metal ions in defining AD etiology is rapidly emerging and the metal ion hypothesis can, as described, explain most pathological features and risk factors linked to AD, although much remains to be established. In particular, as has been the focus of this review, zinc homeostasis, the balance between the free Zn$^{2+}$ and bound Zn(II) pools, affects all the pathways known to be closely associated with AD, including the two hallmark molecular features, amyloidogenesis and tau pathology. Dyshomeostasis of metal ions occurs mainly within those areas of the brain (hippocampus, cerebral cortex) where Aβ accumulates and AD first sets in. The amyloid cascade hypothesis, in contrast, does not currently in itself explain the localized Aβ accumulation, because Aβ is produced throughout the brain. However, in terms of zinc homeostasis, it is natural that AD progresses from the ZEN and astrocytes in the cerebral cortex. As discussed in this review, disturbed zinc homeostasis occurs via dysfunctional ZnTs, MTs, or ZIP transporters. Genetic errors or polymorphisms can contribute to changes in zinc binding affinity of these proteins or change their production—clearance balances and may gradually change the Zn(II)/Zn$^{2+}$ balance in ZEN and astrocytes that maintain CNS homeostasis and thus express most of the MT-3. Furthermore, post-translational modifications from, for example, oxidative stress or exogenous exposure may impair the...
function, stability, and clearance of these metalloproteins directly. For example, ROS exposure leads to increased free Zn$^{2+}$ pools in normal astrocytes but not in MT-3-null astrocytes.

The hypothesis that dysfunctional or insufficient MT is a partial cause of AD, leading to increased free [Zn$^{2+}$], partly retained in vesicles, lack of neuremodulation, and free Zn$^{2+}$-induced amyloid aggregation, was first put forward by Bush. It has been accompanied by other theories of MT dysfunction as a central cause of zinc imbalances in ALS. Zinc dyshomeostasis is a plausible underlying pathogenic cause of age- and AD-related biochemical changes which is simple and has broad explanatory power and can explain the failure of antiamyloid drugs that target only one of many zinc proteases involved in α-amyloid function.

Age-correlated impairment of zinc homeostasis most likely contributes to senescence. Zinc dyshomeostasis and MT suppression are correlated with telomere shortening and free Zn$^{2+}$ is an underlying regulator or active site ingredient of most of the proteins discussed in this review, including the zinc proteases that control the amyloid production—clearance balance. Expression of inflammatory interleukins (IL) and MT-1/MT-2 increases with age and AD.

Astrocytes maintain brain homeostasis by expressing MTs, SOD-1 and SOD-3, and amyloid-degrading metalloproteases, and have been implicated as dysfunctional in neurological disorders. MT-3 plays little role in oxidative-stress/inflammation but an important role in zinc and copper homeostasis and cell regeneration, whereas MT-1/MT-2 are antioxidants in particular in the astrocytes (this is probably why MT-1/MT-2 deficient mice are less resistant to ALS induced by G93A mutations in Cu,Zn-SOD). MT-3 dysfunction will necessarily disturb zinc and copper homeostasis, impairing astrocyte and ZEN function.

Nasally administrated Hg, Mn or other metals may accumulate in the brain and induce and bind to MT, and thiophilic metals such as Hg (II) easily substitute Zn (II) in MT. This enhances the free Zn$^{2+}$ pool and reduces the bound Zn (II) pool, while the remaining Zn–S bonds are perturbed, most likely to the effect of altering the K$^+$s that are essential for MT’s buffering function. Various stress inducers such as ROS and exogenous metals perturb zinc homeostasis via MT. The abnormal MT expression in AD may in part be related to such insults to the CNS, although stress-induced interleukins, glucocorticoids, and oxidative stress possibly from other pathogenic events also induce MTs separately. If MTs become dysfunctional, it is plausible that astrocyte homeostatic capabilities are substantially reduced.

One seemingly paradoxical observation is Cu- and Zn-profile-based monitoring of MT-1/MT-2 showing reduced protein levels in AD, where other researchers have observed elevated levels with nonmetal-probing methods, and the study also revealed that MTs in AD brains are more oxidized than in healthy brains. This is however consistent with MTs being monitored that have lost their metal ions, that is, oxidized thionein apoproteins that may be dysfunctional, consistent with the view presented here that metal ion dyshomeostasis is essentially a shift from bound M(II) to free M$^{2+}$ pools. Also, expression of MT-3 is periodical upon neuronal insults and may decrease in proportion to degeneration of ZEN or astrocytes, whereas the resulting free Zn$^{2+}$ and inflammation will induce MT-1 and MT-2 in remaining neurons. Free Zn$^{2+}$ in extracellular space may potentially lead to amyloid formation and arrest of Zn$^{2+}$ in synaptic vesicles may impair neuremodulation by Zn$^{2+}$. Furthermore, caspases, important mediators of apoptosis, the end stage of neurodegeneration, are induced if Zn(II) is not available in intracellular metalloproteins.

MT dysfunction may cause tau hyperphosphorylation, a pathological feature of AD shared by other neurodegenerative diseases that all pathogenic models should explain: If MT cannot transfer Zn(II) to zinc-fingers, MSOT (mammalian suppressor-of-tau pathology) could be dysregulated, which could disturb tau phosphorylation balance. Alternatively, the elevated free Zn$^{2+}$ may directly enhance hyperphosphorylation of tau and release it from microtubules. Recently it was shown that free Zn$^{2+}$ causes tau phosphorylation via activation of kinase pathways (MAPK/ERK).

A rationale for observed α-secretase enhancing function of antioxidant chelators such as curcumin, EGCG, and lipoic acid is their free-metal chelating function that may clear free metal ions, thus reducing the burden of excessive free inhibitory Zn$^{2+}$ in regulatory sites such as in the APP α-secretase cleavage region. This is also more consistent with their relatively weak metal-binding properties ($K_d \approx 10^{-6}$ M), which are not sufficient to competitively strip Cu(II) and Zn(II) from Aβ-metal complexes ($K_d < 10^{-8}$ M) as MTs can. This would suggest a new focus on targeting regulatory metal ions in APP instead of amyloids directly as is normally sought with MPACs.

12.2. Converging toward Apoptosis

Apoptosis is a necessary process of CNS development, and its disturbance can cause mental disorders. The intrinsic mitochondrial pathway of apoptosis, if triggered by metal dyshomeostasis, seems to combine many of the pathological features observed in neurological disorders. Apoptosis is most likely triggered when the mitochondria are insulted by further direct stress leading to shutdown of the respiratory chain and expulsion of cytochrome c, an iron/heme-containing protein complex that is an integral part of respiratory chain, as an early suicide event. This then leads to caspase-mediated apoptosis and mitochondrial membrane permeability governed by apoE transport proteins and Ca$^{2+}$ concentration. Before that threshold, conditions may worsen gradually, as in MCI. The gradual buildup of stress followed by triggering events has been emphasized in relation to oxidative stress as an early cause of AD.

ApoE, which transports cholesterol to mitochondria, is highly concentrated in astrocytes, and impaired transport to mitochondria due to toxic exposure or mutations in ApoE might set an earlier stage for stress-induced apoptosis, thus increasing risk of triggering AD. Mitochondrial dysfunction in astrocytes due to apolipoprotein mutations may therefore be a rationale for understanding these genetic risk factors. The fundamental role of Zn(II)/MT in preventing apoptosis is evident from the research into zinc-dependent (class I, IIa, IIb, and IV) histone deacetylases that prevent apoptosis. The corresponding histone deacetylase inhibitors that are currently being developed as apoptosis-inducing cancer treatments are efficient zinc chelators and, consistent with the findings presented in this review, show promising use as treatments of neurodegenerative diseases.

Cytochrome c release and other symptoms of neuronal apoptosis in experimental stroke models can be inhibited not only by melatonin but also the carbonic anhydrase.
inhibitor methazolamide.982 This compound contains significant metal chelator functions, in particular with sulfonamide groups, which have been shown to coordinate Zn(II).983,984

The most widely used treatment of AD is currently still acetylcholinesterase inhibitors such as donepezil and tacrine.860 However, underlying causes of the acetylcholine neurotransmitter shortage, which leads to cognitive decline,62 must be described in a unified view of AD. The most obvious explanation for acetylcholine deficiency in AD according to the MT/Zn dysfunction hypothesis is that free Zn$^{2+}$ inhibits choline acetyltransferase985 or pyruvate dehydrogenase, which produces acetylcoenzyme A.986

12.3. The Zinc Cascade: An Example of Metal-Based Etiology

From the synthesis of observations discussed above, a cyclic pathogenic etiology can be constructed, as shown in Figure 15. It is based on the current emerging consensus of a self-perpetuating cascade, spiraling toward AD as the endgame of a gradual process often spanning decades, and similar views on AD have been suggested for calcium homeostasis,117 zinc and calcium dyshomeostasis,354 and oxidative stress.88 The significance of each input is not yet well-established and may be the subject of future investigation. It is a theory based on a collection of all observations discussed in this review and as such a minimal model that will need to be corrected. The chronology is also not absolute, as evident from the multiple feedbacks discussed in this review. The cascade stresses the absence of simple, linear etiologies and emphasizes, as do other researchers,354,377,987 that a systemic model is required in order to account for genetic, lifestyle, and environmental factors as they progress over time and lead to AD, possibly after crossing critical thresholds in, for example, ROS levels,491 Aβ concentrations, or free metal concentrations such as Zn$^{2+}$, Ca$^{2+}$, or Fe$^{2+}$.354,377 A spiral etiology has been suggested from studies in calcium dyshomeostasis117 and a positive feedback loop between oxidative stress and the amyloid cascade also supports the cyclic model.88,508 The model does not provide any weight of importance to any of the steps; these weights will hopefully be determined in the future. The AD stage can be envisioned in the center of the model, with mild cognitive impairment and preclinical phases approximately correlating with pathologies of the outer circle in Figure 15.

(1) There is a genetic background to AD: Mutations related to Aβ balance, metabolism, immune defense, or stress-response, including metal homeostasis, may impair the robustness of the homeostatic system, notably in astrocytes, reducing resistance to post-translational modifications from later stress-inducing events.48-52 Calcium homeostasis was the first established genetic risk factor relating directly to metals via presenilin,368,369 although recently, presenilin was also linked to copper and zinc transport.154 Genetic risk relating to APP processing may affect metal dyshomeostasis via APP’s ferroxidase function and Zn$^{2+}$- and Cu$^{2+}$-regulatory sites.290 Various genetic risk factors become active at various stages of life, some possibly during early CNS development988 (presenilin may have a role in fetal neurogenesis)988 and some from later brain trauma7 or chemical exposure41-43,47 and may lead to initiation of the spiral cascade in Figure 15.4,32

(2) Life-style-related risk factors such as antioxidant deficiency,35,56 obesity,39,40 hypercholesterolemia,57,58 passivity,34,72 and smoking4,72 may aggravate these risk factors by challenging metabolic networks, the already weakened stress response, and overall neuronal capacity. They all relate to metal ion dyshomeostasis, notably via zinc, as discussed in section 7. Long-term stress associated with an unhealthy life style may gradually
reduce mitochondrial efficiency and stress response, as implied by the increased expression of stress-related proteins during senescence,629 thus increasing risk of AD.13,71,72,486,487

(3) Long-term or event-based insults from, for example, head trauma, smoking, or chemical exposure are known risk factors of AD.7,27,38,41 and may further weaken the stress response via local neuronal damage, oxidative stress, and mitochondrial inefficiency.63,70,357 Insults may cause post-translational modification (oxidation, exogenous metal binding) of metal-homeostatic and stress-related proteins such as SOD, ceruloplasmin, or MT and modify amino acids binding to metal ions,568,569 for example, nitrosative stress reducing bound Zn(II) used for transfer to proteins.999

(4) As an example, exogenous metals (Al, Hg, Pb, Cd) may be absorbed in the CNS,960–962 accumulated in the spinal cord and motor neurons (ALS)818 or in the olfactory bulb, hippocampus, and remaining cortical brain (AD)43,959 associated with AD pathogenesis.10,73,384,952 Tau phosphorylation and disruption of microtubules as well as Aβ imbalances may be aggravated by exposure (see section 10).824,826,827,831 Soft Lewis acids may inhibit zinc-dependent enzymes such as MEs,924 required for methylation pathways, and SAM, leading to hyperhomocysteinemia, apoptosis, and tau pathology,43,678 and could possibly bind the known regulatory Zn2+ sites in APP290. Al is instead a hard iron(III)-mimetic Lewis acid44,731 and a risk factor in AD44,34,46,730,739,741 suggested to stabilize iron-regulatory proteins and cause elevated free iron levels and Fenton-based oxidative stress and contribute to an “iron cascade” also accelerating neuronal death.3

(5) Mutations or stress-induced post-translational modifications of stress-related metalloproteins such as ceruloplasmin, MT, or SOD may impair protein function396,990 or even produce toxic gain of function, as in ALS.702–704 For example, Zn-MT-1/MT-2 levels in AD livers are reduced despite brain up-regulation,594 suggesting that MTs exported to the liver are reduced in number or modified to bind less zinc. Many of these mutations and modifications are currently unknown and will change the risk and the onset of AD.

(6) Zinc dyshomeostasis is associated with AD10,11,144,148 and most likely results from mutations and modifications of proteins involved in zinc homeostasis. Brain homeostasis is governed by astrocytes, zinc homeostasis is governed by MTs, particularly expressed by astrocytes, and astrocytes are central cells in AD pathogenesis.429 Dysfunctional MTs would increase the free Zn2+ pool and reduce the bound, transferrable Zn(II) pool,532 thus increasing free Zn2+ between synapses in neuropils.963,990 while global zinc levels are reduced or unchanged in the brain,152,168 due to redistribution toward extracellular deposits. As a compensation, MT-1/MT-2 is up-regulated by free Zn2+ and by other stress factors.827,539,541,554 as observed in AD.581,592,593,583 MT-3 regulation is initially periodic upon neuronal insult,591 as described in section 6, and may be chronically down-regulated in the advanced stage of AD if astrocytes, a possible target of early pathogenesis,429 become dysfunctional.

(7) As an example, modifications of MT may disturb the vital balance between bound Zn(II) available for transfer to active sites and free regulatory and vesicular Zn2+.10 The distinction between bound and free pools of metal ions seems essential to understand AD pathogenesis.

(A) The α-secretases (Figure 3) are membrane zinc proteases.8,84 Lack of Zn(II) in the α-secretase active site could be caused by impaired transfer from MT or by mutations or post-translational modifications that reduce Zn-binding affinity. Lack of Zn(II) will impair the nonamyloidogenic α-secretase pathway, leading to Aβ accumulation.

(B) The equilibrium between metallic holo-SOD-1 and holo-SOD-3 and their demetalated apofoms is shifted toward the latter if Zn(II) is unavailable,957,958 leading to gain of toxic function in some cases.73,705 This may cause ALS-like pathogenesis, and oxidative stress in AD11,12 could partly be due to this and partly due to the toxicity of various forms of Aβ/Cu(II)431,336,338 that begin to accumulate as zinc moves from MT-bound pools to free pools, since free Zn2+ is a central inducer of amyloid oligomerization.

(C) Absence of MT-governed Zn(II) transfer to active sites of neprilysin, insulin-degrading enzyme, and matrix metalloprotease, essential to degrade Aβ extracellularly,164 decisively disrupts the Aβ production–clearance balance.

(D) Absence of Zn(II) transfer from MT to Zn(II)-dependent MES causes disruption of methylation pathways, hyperhomocysteinemia, and impairment of methylation of protein phosphatase 2A, which then increases tau phosphorylation.43,991–994

(E) Zn-MT2 has been shown to substitute Cu(II) with Zn(II) and prevent toxicity and aggregation of Cu(II)−Aβ 10 times more efficiently than MT-3.507 The absence of this function, normally likely to be mediated by the astrocyte synthesis of MT-2 (which is up-regulated in AD despite the overall neuron degeneration) could thus possibly aggravate the formation of soluble Cu(II)−Aβ oligomers involved in producing the toxic forms of the amyloids.

(8) Free Zn2+ and Cu2+ (now no longer bound to MT) can provide a diagnostic tool for disease progression, for example, the Cu/Mt ratio,622 and these free ions may lead to Aβ buildup.

(A) Free Zn2+ and Cu2+ may initiate oligomerization of Aβ, stabilize oligomers, and prevent their degradation,176–182,174,189,190 thus leading to Aβ oligomer build up. One plausible structure–function correlation uniting many Aβ-region APP mutations that cause familial AD (Dutch (E22Q), Italian (E22K), Aric (E22G), Iowa (D23N), English (H6R), and Tottori (D7N)) with the metal ion hypothesis is the common tendency of mutations and metal ions to neutralize and potentially increase the hydrophobicity of the negatively charged amyloids that may otherwise be resistant to oligomerization.

(B) APP contains both regulatory Cu(II) and Zn(II) sites, with Kd of ~10−8 M539 and ~10−6 M488 respectively. Free Zn2+ may bind to the α-cleavage

$$\text{Zn}^{2+}$$
Table 2. Genetic Risk Factors of AD and Their Possible Disease-Modifying Mechanisms and Relations to Metal Homeostasis

<table>
<thead>
<tr>
<th>risk factor</th>
<th>functions</th>
<th>possible early pathogenesis</th>
<th>possible advanced pathogenesis</th>
<th>possible terminal pathogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>chromosome 19 ApoE4 allele</td>
<td>weakened uptake of cholesterol to neuronal mitochondria and clearance of Aβ</td>
<td>early mitochondrial dysfunction, impaired Aβ clearance via membrane transport</td>
<td>oxidative stress in energy-inefficient mitochondria</td>
<td>apoptosis, AD</td>
</tr>
<tr>
<td>chromosome 1 + 14 presenilin-2 and -1</td>
<td>part of the γ-secretase complex that produces Aβ</td>
<td>possibly disturbs Aβ production-clearance balance</td>
<td>amyloid buildup</td>
<td>oxidative stress, mitochondrial dysfunction, excitotoxicity?</td>
</tr>
<tr>
<td>chromosome 1 + 14 presenilin- metal transport</td>
<td>calcium dyshomeostasis, Cu/Zn dyshomeostasis</td>
<td>defective Ca²⁺ signaling, has been linked to Cu/Zn transport</td>
<td>mitochondrial damage, caspase-activated apoptosis</td>
<td>apoptosis, AD</td>
</tr>
<tr>
<td>chromosome 21 abnormal APP (amyloid balance)</td>
<td>possibly due to mutations near Cu or Zn regulatory sites or in zinc protease APP cleavage sites; some mutations in the Aβ sequence range of APP may enhance charge neutrality and hydrophobicity</td>
<td>APP processing shifted toward amyloidogenesis; or more hydrophobic amyloids produced if mutated in the Aβ region of APP</td>
<td>amyloid buildup</td>
<td>oxidative stress, mitochondrial dysfunction, excitotoxicity</td>
</tr>
<tr>
<td>chromosome 21 abnormal APP (ferrooxidase and iron homeostasis)</td>
<td>possibly due to mutations near Zn regulatory site or Fe(II) substrate site</td>
<td>APP ferroxidase activity impaired</td>
<td>function Fe(II/III) deficiency, Free Fe²⁺ Fenton chemistry</td>
<td>astrocyte dysfunction, neurodegeneration</td>
</tr>
<tr>
<td>chromosome 11 picalm</td>
<td>phosphatidylinositol-binding clathrin assembly protein</td>
<td>impaired clathrin mediated endocytosis</td>
<td>possible link to iron homeostasis</td>
<td>oxidative stress, mitochondrial dysfunction</td>
</tr>
<tr>
<td>chromosome 8 clustrin (CLU)</td>
<td>weakened clearance of Aβ involved in inflammation</td>
<td>impaired Aβ clearance via membrane transport</td>
<td>oxidative stress in energy-inefficient mitochondria</td>
<td>apoptosis, AD</td>
</tr>
<tr>
<td>chromosome 2 BIN1</td>
<td>bridging integrator 1 (BIN1)</td>
<td>impaired clathrin mediated endocytosis</td>
<td>impaired membrane transport, neuronal homeostasis</td>
<td></td>
</tr>
<tr>
<td>genes involved in zinc dyshomeostasis? (presenilin?)</td>
<td>lack of Zn²⁺ in synaptic vesicles of ZEN, impaired metabolism and neuro-modulation?</td>
<td>oxidative stress from Cu/Zn-SOD without Zn(II), excitotoxicity in ZEN, astrocytes?</td>
<td>disruption of Zn²⁺-induced protease activity and inhibition of mitochondrial aconitase?</td>
<td></td>
</tr>
<tr>
<td>genes involved in neuroinflammation and immune response? (CR1, CLU?)</td>
<td>weakened response to neuronal insults?</td>
<td>brain inflammation is tightly linked to zinc and MT function</td>
<td>impaired inflammatory pathways may aggravate dyshomeostasis?</td>
<td></td>
</tr>
</tbody>
</table>

Explanations and references are given in section 12.3.
<table>
<thead>
<tr>
<th>risk factor</th>
<th>functions</th>
<th>possible early pathogenesis</th>
<th>possible advanced pathogenesis</th>
<th>possible terminal pathogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxidative stress</td>
<td>damage to DNA and proteins</td>
<td>metalloprotein dysfunction (e.g., oxidized cysteines), and Aβ imbalance</td>
<td>mitochondrial dysfunction</td>
<td>apoptosis, AD</td>
</tr>
<tr>
<td>aging</td>
<td>reduced stress defenses, changes in life style, metal homeostasis, etc.</td>
<td>oxidative stress, accumulation of gene errors and chemical insults</td>
<td>see oxidative stress</td>
<td></td>
</tr>
<tr>
<td>high-caloric intake</td>
<td>higher metabolism causes premature aging and stress</td>
<td>see aging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>obesity</td>
<td>accelerated metabolism, aging; higher retention of exogenous metals</td>
<td>see aging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ischemia, brain lesions</td>
<td>hypoxic lesions leading to oxidative stress</td>
<td>see oxidative stress, disturbed homeostasis; oxidative stress from hypoxic lesions in neurons</td>
<td>zinc dyshomeostasis, see oxidative stress</td>
<td></td>
</tr>
<tr>
<td>diabetes</td>
<td>impaired energy metabolism</td>
<td>impaired cholesterol transport to mitochondria; dysfunctional MT; disrupted cytoskeleton</td>
<td>oxidative stress in energy-inefficient mitochondria oxidative stress, lack of Zn-transport?</td>
<td>ALS if exposure to spinal cord/motor neurons, AD if exposure to cerebral cortex?</td>
</tr>
<tr>
<td>exogenous exposure</td>
<td>bind ApoE4; disrupt zinc or iron homeostasis; bind neurotubulin; inhibit GTP–tubulin binding</td>
<td>impaired cholesterol transport to mitochondria; dysfunctional MT; disrupted cytoskeleton</td>
<td>oxidative stress in energy-inefficient mitochondria oxidative stress, lack of Zn-transport?</td>
<td>ALS if exposure to spinal cord/motor neurons, AD if exposure to cerebral cortex?</td>
</tr>
<tr>
<td>urban air pollution</td>
<td>heavy metal toxicity</td>
<td>see exogenous exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smoking</td>
<td>Cd exposure</td>
<td>see exogenous exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hypertension</td>
<td>increased risk of hypoxic lesions</td>
<td>see ischemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyperhomocysteinemia</td>
<td>impaired methylation pathways (MES/SAM)</td>
<td>apoptosis; reduced macrophage Aβ consumption; elevated Ca²⁺ levels</td>
<td>excitotoxicity; impaired Aβ clearance and apoptosis?</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>enhanced methylation pathways (MES/SAM)</td>
<td>see hyperhomocysteinemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>selenium</td>
<td>detoxifies heavy metals; ingredient in antioxidant glutathione peroxidase</td>
<td>see exogenous exposure, see oxidative stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vitamin C/E</td>
<td>antioxidants</td>
<td>see oxidative stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fish</td>
<td>contain vitamin A, C, and selenium</td>
<td>see oxidative stress, see selenium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>antioxidant metal chelators</td>
<td>for example, curcumin (turmeric, curry), EGCG, lipoic acid</td>
<td>see oxidative stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exercise</td>
<td>lower resting metabolism</td>
<td>see oxidative stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mental activity</td>
<td>efficient mitochondrial energy production and more ZEN in cerebral cortex/hippocampus</td>
<td>see oxidative stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>caloric restriction</td>
<td>lower resting metabolism</td>
<td>see oxidative stress, less sensitive to impaired ZEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian diet</td>
<td>curcumin</td>
<td>see oxidative stress</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Explanations and references are given in section 12.3."
site of APP and prevent nonamyloidogenic α-secretase activity, thus shifting APP cleavage toward Aβ production, leading to further Aβ buildup.67,288 Free Zn2+ may also inhibit APP ferroxidase activity at this stage,296 possibly causing functional iron deficiency resembling ceruloplasmin dysfunction,10,411,422 although the chronology of the pathogenesis of various metal ions remains to be determined.

(C) Active site Zn(II) transferred from functional MT allows extracellular metalloproteases to degrade Aβ, whereas free regulatory Zn2+ instead inhibits Aβ degradation by extracellular metalloproteases produced by the astrocytes, notably neprilysin, which is considered the main Aβ protease57,298 targeting both monomers and oligomers.99 This Zn2+ inhibition may impair Aβ clearance and leading to further Aβ buildup.94,292

(9) The excess free Zn2+ in local areas around neuropils may lead to Zn2+-induced hyperphosphorylation of tau,302 and Zn2+ subsequently remains localized in the neurofibrillary tangles.302

(10) Disrupted zinc homeostasis and elevated free Zn2+ may also lead to general accelerated aging processes and apoptosis by enhancing telomere shortening,641–643 or weakening apoptosis suppression,539,972 for example, via zinc-dependent histone deacetylases.978,979

(11) AD spreads from the cortical brain where ZEN are present that are central to memory formation.10 These neurons depend vitally on MT for maintaining homeostasis and stress control, and dysfunctional astrocytes (which are main producers of MT and are targets of exogenous metal exposure620) could contribute to their degeneration25,174 and are increasingly in focus as primary cells involved in neurological disease.429 The hippocampus is a main stage of AD8,10 and a main stage of metal ion dyshomeostasis.10,166,311,405,536 MT-3 has been found to reduce neurodegeneration in mouse hippocampus.605

(12) Retention of Zn2+ in vesicles for co-release with glutamate disturbs neuromodulation by lack of NMDA/GABA receptor inhibition.10,262,264,282–284 Free Zn2+ remains in neuropils.146–148 Without Zn2+ being co-released, glutamate is not modulated,25 causing excitotoxicity in gluzinergic neurons located in the cerebral cortex, in particular the limbic system.264,285 This leads to cognitive deficits, and the excess free Zn2+ ultimately leads to neuronal necrosis and apoptosis.10,298–300 Free Zn2+ down-regulates mitochondrial energy production, for example, by aconitase,634,638 and inhibits cytochrome c oxidase,635–637 the terminal Cu- and Fe-containing protein in the respiratory chain, an example where Cu, Zn, Fe, and oxidotive stress converge. While free Zn2+ inhibits aconitase, MT possibly contributes to aconitase activity by transfer of Zn(II), as observed in mice.635

(13) Zinc dyshomeostasis, a common feature of diabetes types I and II,547,650–653 also leads to impaired structural integrity of insulin hexamer,651,659,660 and lower glucose utilization, causing insulin resistance.384,645 These diabetes-like symptoms correlate with AD because they are both to some extent correlated by the same underlying variable, zinc dyshomeostasis.548

(14) The elevated Aβ-oligomer concentration induced by the growing free Zn2+ pool adds to the neurotoxic cascade by interfering with the mitochondria and further impairing energy metabolism,122,123,125 reducing the ability to retain the ion gradients. Possibly, this (as claimed by the amyloid cascade) is a critical trigger of self-perpetuating pathogenic cycle (Figure 1S), that is, further ROS generation, MT dysfunction, elevated free Zn2+ and depressed bound Zn(II), further amyloid imbalance, further mitochondrial insult, and further ROS generation. A threshold or trigger succeeded by accelerated pathogenesis may explain the rapid disease progression of AD.

12.4. Further Comments on the Pathogenesis

The zinc cascade presented above is not complete, and while the individual facts are settled, their causal relationships are currently hypothetical. Also, the zinc cascade is not complete because cascades relating to, for example, copper, iron, and oxidative stress have been down-played but must be incorporated for completeness. Together, the metal ion hypothesis, as exemplified by the zinc cascade above, may explain why one-dimensional treatments such as antiamyloid drugs have so far been of limited use in AD therapy,55,136 since they do not affect the underlying pathogenic pathways described.

During aging, one may say that the organism faces a metal-homeostatic challenge relating to increased free metal ion pools that provide oxidative stress and metabolic challenges to the mitochondria. Given zinc’s essential role in controlling apoptosis, telomere shortening, mitochondrial energy production, and transcription via zinc-fingers, zinc is likely to be a central player in aging processes, and its dyshomeostasis would disturb these processes. The zinc cascade is an example of a minimal model that could explain in a systemic way genetic, lifestyle, and environmental risk factors and the pathological changes observed in AD and reconcile it with the accelerated aging concepts. As a minimal model, it requires expansion and further justification, and certain steps are likely to be less relevant than others. Some of the possible implications are collected in Tables 2 and 3, showing genetic and lifestyle/exogenous risk factors and their possible, hypothetical relations to metal ion homeostasis. Any future more refined theory of AD pathogenesis should probably attempt to account for many of these risk factors as well.

Other cascades arising, for example, from copper and iron dyshomeostasis will display pathogenic features that overlap substantially with each other and with the zinc cascade described above, for example, via Cu,Zn-MT-3, multicopper Fe2+-oxidizing ceruloplasmin, Cu- and Fe-containing cytochrome c oxidase, and Cu,Zn-SOD-1. Dysfunctional metalloproteins caused by mutations or post-translational modifications that impair K\textsubscript{46}’s by modifying the metal binding sites may be key targets in neurodegeneration, but whether any of the three metals, Fe, Cu, or Zn, is more fundamental in causing dyshomeostasis is unclear, but the consequence of enhanced free metal pools should be the same, as also discussed with respect to iron.377 Also, the various metal ions display different pathways of amyloid oligomerization and fibrillation.755 It should be a key goal in future research to resolve these metal ion cascades in time and space and to unite genetic risk factors with environmental and lifestyle risk factors in a systemic model that can explain both the familial and the sporadic cases of the
Review

chemical Reviews

13. CONCLUDING REMARKS: TEN FOCAL POINTS OF FUTURE RESEARCH

AD, the major form of dementia, is one of mankind’s grand challenges, a devastating disease affecting millions of people and their families, and a substantial and growing burden to society, with prevalence increasing rapidly. Because the pathogenic mechanism of AD is poorly understood, current treatments are mainly symptom-relieving and are at best effective for up to a year. The role of metals such as copper, iron, calcium, and zinc in AD has dramatically expanded over the last decades. A large number of research groups are devoted to an understanding of the underlying biochemical causes of AD, and most of these involve pathways that are governed by regulatory or catalytic metal sites. In addition, most known environmental and lifestyle risk factors of AD can be related to underlying biochemical processes that directly rely on metal ions, as described in this review.

The role of metal dyshomeostasis is also emerging with respect to other neurological disorders, which are closely associated with metal ion-controlled structural and functional integrity of proteins such as APP, prion protein, α-synuclein, and SOD-1, and in terms of AD, specifically APP, Aβ, a large range of zinc-dependent proteases involved in Aβ production and clearance, and underlying metal-homeostatic proteins, notably MTs, which have been described in this review. Because of this emerging paradigm shift, the vibrant field of bioinorganic chemistry may now have a unique opportunity to interact with the enigmatic and immensely complex research in neurological disorders. Hopefully, bioinorganic chemists will take up the challenge. This review has attempted to provide a first encounter between the fields.

Some of the most interesting focal points of future AD research on the interface between bioinorganic chemistry and neuroscience are described in the following:

1. Metal ion locations in time and space during AD pathogenesis. A clear consensus should be established regarding the free and bound pools of Zn, Cu, and Fe in various parts of the brain as a function of disease progression, to remove current uncertainties in this regard, because the redistribution from bound to free pools seems to be critical in disease progression. An understanding should be achieved of how these metal ion imbalances affect APP processing, Aβ production—clearance balance, and molecular toxicity at various stages of AD.

2. Risk factors and metal homeostasis. A specific focal point of mechanistic understanding is genetic, lifestyle, and environmental causes of metal ion dyshomeostasis and how these relate etiologically to other pathological features such as oxidative stress, Aβ imbalance, and tau hyperphosphorylation. Is sporadic AD a spiral etiology of all these risk factors, together increasing total risk of AD as age progresses, or are there critical thresholds and turning points? Homeostasis should be further explored, for example, via metallothioneins, prion proteins, copper and zinc transporters, iron regulatory proteins, ceruloplasmin, divalent metal transporter 1, and heme oxygenases, with a focus on understanding how genetic weaknesses or stress-induced post-translational modifications impair the functions of these proteins.

3. APP-regulating chelators. A third focal point of future therapies could be the use of coordination chemistry expertise in the design of new α-secretase enhancers and β/γ-secretase inhibitors that protect the regulatory zinc and copper sites in APP to restore the nonamyloidogenic pathway. Given the relatively large Ks’s of natural antioxidant chelators, it is plausible that EGCG, curcumin, and lipoic acid enhance α-secretase activity by stripping excess Zn2⁺ from α-secretase-regulatory APP sites or bind excessive free Zn2⁺ accumulated by zinc dyshomeostasis, which inhibit APP ferroxidase activity and thus potentially cause iron dyshomeostasis and metabolic disruption in neuronal mitochondria. While some of these ideas for future AD prevention have been recently discussed, having zinc and copper regulatory sites in APP as specific targets has not yet been pursued.

4. Metal–protein-attenuating compounds. A fourth focal point would be the clinical development of new metal chelators, which can either target the Cu(II) and Zn(II) amyloid oligomers directly to enable subsequent degradation by, for example, nephrilysin, which is also Zn(II)-dependent, or target free metal ions that induce amyloidosis. Current development of chelators such as ciprofloxin has been somewhat disappointing, and more knowledge is required, because metal chelation constitutes a risky perturbation of the CNS. Too strong chelators may be dangerous because they can strip active sites and normal regulatory sites of their metal ions; thus they should be designed with appropriate and selective binding in mind, with key dissociation constants for such designs discussed in this review. The history of ciprofloxin, notably the SMON outbreak in Japan, showed the risks associated with large doses of metal chelators. One of several toxic modes of Aβ possibly relates to its stripping of Cu from prion protein to disrupt NMDA receptors and Ca2⁺ signaling, and possibly, the large amount of copper, iron, and zinc found in amyloid plaques derive from proteins that have lost their function during the AD pathogenesis.

5. Oligomerization inhibitors. A fifth, related focal point would be preferential stabilization of innocent, non-
oligomeric complexes involved in metal—amyloid interaction mechanisms. Such a strategy would include development of Cu–Aβ transition state (de)stabilizing molecules that either lower the barrier for formation of innocent Aβ–Cu–Aβ species or enlarge the barrier for the competing oligomerization steps. All approaches mentioned in 3–5 rely on the conscious design of adequate BBB-penetrable, drug-like metal chelators exhibiting K_d’s in the correct ranges (in the 10^{-10} M range) with emphasis on selectivity between Cu, Zn, and Fe, depending on the target. For example, Zn(II) will often bind ~ 100 times more weakly than Cu(II) in 1:1 ratios as seen in amyloids and various relevant proteins, and a balance between soft and hard ligands may aid toward obtaining optimal selectivity while preventing stripping bound Zn(II) and Cu(II) from active sites of key proteins.

6. Bioinorganic diagnosis. The bioinorganic chemistry of AD may also substantially contribute to new, efficient, and unambiguous diagnosis, given that amyloid load is a poor marker for progression, and blood protein markers may be feasible. Efficient biomarkers that detect AD in the preclinical phase could markedly improve treatment. Current markers include absolute levels of Aβ42 in the cerebrospinal fluid (decreased in AD) and overall amyloid retention in the brain (increased in AD), tau protein levels in the cerebrospinal fluid (increased in AD), structural evidence for neurodegeneration from magnetic resonance imaging, and, as seen in other neurodegenerative diseases, impaired glucose (fluorodeoxyglucose) uptake probably due to impaired mitochondrial function. Biomarkers may be ranked according to their diagnostic accuracy and ability to provide early diagnosis, suggesting that Aβ markers rank above tau protein markers. The same logic might be applied to markers of free vs bound metal ion pools. Literature examples include iron heme pools as a marker, MT levels as a marker, or the ratio of Cu to MT or ceruloplasmin that may monitor AD progression. Given the findings reviewed here, one might suggest to investigate any combination of the local ratios between Fe, Zn, Cu, ceruloplasmin, heme oxygenase, and MT levels together with oxidative stress markers, APP or secretase levels, and Aβ42/Aβ40 ratios. Ratios are likely to be less sensitive to individual variation and better reflect de facto dyshomeostasis and may be encouraged. Some ratios may be achieved either in blood serum, plasma, or cerebrospinal fluid, remembering that disease progress correlates with local metal redistributions from bound intracellular to free pools. Also, as mentioned in focal point 1, marker output should be a function of time as well as space.

7. Multifunctional antioxidants. A somewhat different approach is the focus on antioxidant medicine, which can however in many cases be combined with metal chelator function, as evident in a number of natural antioxidant chelators. Also, understanding the extremely complex and wide-ranging interplay between metal homeostasis and oxidative stress in neurological disorders should probably be a primary objective in the future.

8. Clear distinctions between AD and accelerated aging. Given the similarities between various types of dementia and geriatric depression and the similarities in the underlying neurochemical changes, notably oxidative stress and metal ion homeostasis, a better understanding of possible critical events that trigger sporadic AD seems warranted. A central focal point could be the distinct differences between AD and “accelerated aging”, for example, by comparing AD pathological features not just to same-age controls but also to older controls. Such research would pinpoint exactly how AD distinguishes itself from an accelerated aged brain, for example, the sporadic causes of the amyloid imbalance. Notably, if a pathogenic threshold is reached, it should provide a transition in the levels of markers that correspond to accelerated aging, toward markers that are unique to AD. The timing of markers is therefore crucial. The various markers could be tested both in same-age and in older-age controls and in AD.

9. Lifestyle and diet in relation to metal homeostasis. A ninth focal point is the optimization of lifestyle and dietary prevention strategies that may reduce the nongenetic risk factors discussed in this review, which in many cases relate directly to metal ion homeostasis or oxidative stress. Importantly, we are beginning to understand why certain diets and lifestyles are beneficial or constitute risk factors, relating to the complex interplay between metabolism, metal homeostasis, and oxidative stress, and this would contribute to our overall understanding of the bioinorganic chemistry of AD.

10. Causes of the cellular origins of AD. A tenth focal point is to identify the cellular origins of AD, where many paths seem to converge toward a role of the impaired zinc-enriched neurons in the parts of the brain most affected by AD, hippocampus and the astrocytes, which maintain neuron (metal) homeostasis and are particularly rich in metal ions and MTs. To exemplify this, aceruloplasminemia, the neurological disease associated with mutations in the multicopper ferroxidase ceruloplasmin, leads to deformation of astrocytes, and MT-3 can reduce neurodegeneration in mouse hippocampus.

As will hopefully be clear from reading this review, bioinorganic chemistry and neuroscience, while previously considered somewhat incommensurable, will continue to produce tremendous synergies in the future. The main goal of such an alliance would probably be new combination treatments that address in a systemic way several of the risk factors and imbalances described in this review, for example, combinations of MPACs, antioxidants, and APP modulators. Particular emphasis might be placed on combining chelators with affinities for Fe, Cu, and Zn suitable for APP modulation and inhibition of Aβ oligomerization with simultaneous antioxidant function. Such combination treatments could not only reduce side effects but in fact be necessary, because other treatments addressing only one aspect of the etiology will most likely be inefficient. Thus, the impact of the bioinorganic chemistry with a strong emphasis on structure–function correlations, careful identification of key targets, and a systemic approach to underlying pathways as attempted here could be game-changing and may hopefully help to improve the prospects for the millions of people suffering from this terrible disease.
Kasper Planeta Kepp is Associate Professor at the Technical University of Denmark, DTU Chemistry. He received his Ph.D. from Lund University under the supervision of Professor Ulf Ryde and has been a postdoctoral associate at Yale University and Stanford University, working with Professor William L. Jorgensen and Edward I. Solomon, respectively. His research at DTU centers around the theoretical description of metalloproteins, with particular emphasis on vitamin B12-dependent systems, iron proteins, and lately metallothioneins. He has published about 40 internationally reviewed papers and was recently awarded the Danish National Young Elite Researcher Prize.

ACKNOWLEDGMENTS
The Danish Center for Scientific Computing (DCSC) and the Danish National Science Research Council (FNU, Steno Grant: 272-08-0041) are gratefully acknowledged for support.

LIST OF ABBREVIATIONS AND ACRONYMS

Aβ amyloid-β, 40- or 42-residue peptide derived from APP; the most characteristic molecular symptom of AD
AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
ADAM a disintegrin and metalloprotease family. Family of ALS amyotrophic lateral sclerosis
APP amyloid precursor protein
ASD autism spectrum disorder
BACE-1 another acronym for β-secretase (beta-site APP cleaving enzyme 1)
BBB blood–brain barrier
CNS central nervous system
CtrlI copper transport protein 1
DMT-1 divalent metal transporter 1, an iron and copper transport protein active in neurons
GABA γ-aminobutyric acid, the main inhibitory neurotransmitter of the CNS
GSH glutathione; an important antioxidant

GSSG glutathione disulfide; the oxidized dimer of GSH containing a disulfide bridge
HIF hypoxia-inducible factor; transcription factor activated by hypoxia or lack of Fe and governing a large part of the cellular response to energy input shortage-related stress
HO-2 heme oxygenase isoform 2, a heme degrading enzyme expressed in neurons
LRP1 lipoprotein-receptor-related protein 1, aka apolipoprotein E receptor (APOER)
MCPT-1 mild cognitive impairment
MES methionine synthase, a cobalt (B12) enzyme converting homocysteine to methionine of importance in neurochemistry
MPAC metal–protein-attenuating compounds
MT metallothionein; there are four main classes, MT-1, MT-2, MT-3, and MT-4; MT-1 has many isoforms
MTF-1 metal-responsive transcription factor-1
NMDA N-methyl-D-aspartate, an amino acid neurotransmitter agonist working on glutamate-dependent receptors of the NMDA-R type
NMDA-R N-methyl-D-aspartate receptor, a class of glutamate receptors that are affected by NMDA
RNS reactive nitrogen species, for example, nitric oxide, NO*
ROS reactive oxygen species, for example, H₂O₂, O₂, HO*
SAM S-adenosyl methionine, a central molecule in the methyl transfer system (the SAM Cycle) and in neurochemistry; AD is associated with low SAM levels
sAPPα secreted, soluble amyloid precursor protein, a nonamyloidogenic peptide fragment derived from APP by cleavage of the α-site by α-secretase type
SOD superoxide dismutase; there are three forms in humans, intracellular SOD-1, containing Cu and Zn, SOD-2, containing Fe or Mn, and extracellular SOD-3, containing Cu and Zn
STAT3 signal transducer and activator of transcription 3; transcription factor involved in cell growth and apoptosis
ZEN zinc-enriched neurons; glutamatergic neurons that co-release Zn²⁺ from synaptic vesicles to modulate neurotransmission
ZIP a family of zinc-transporter proteins, important for controlling the free Zn²⁺ pool
ZnT a family of zinc-transporter proteins; transports Zn²⁺ into synaptic vesicles of ZEN

REFERENCES

5224 dx.doi.org/10.1021/cr300009k Chem. Rev. 2012, 112, 5193–5239

(41) Miu, A. C.; Benga, O. *Alzheimer’s Dis.* 2006, 10, 179.

