A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

Publication date: 2015

Document Version
Peer reviewed version

Citation (APA):
A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

Aliff Hisyam A Razak¹,², Peter Szabo¹ and Anne Ladegaard Skov¹

¹ Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.
²Faculty of Engineering Technology, University of Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

Abstract

Conductive PDMS-PEG block copolymers (Mₐ = 3 – 5 kg/mol) were chain-extended (Mₐ = 30 – 45 kg/mol) using hydrosilylation reaction as presented in figure 1. Subsequently, the extended copolymers were added to a conductive nano-filler (multi-walled carbon nanotubes – MWCNTs) in order to enhance conductivity. The combination of soft chain-extended PDMS-PEG block copolymers and conductive MWCNTs results in a soft and conductive block copolymer composite which potentially can be used as a compliant and highly stretchable electrode for dielectric elastomers. The addition of MWCNTs into the PDMS-PEG matrix not only increases the conductivity, but also increases mechanical strength by reinforcing the network. However, incorporating MWCNTs into the PDMS-PEG matrix is challenging due to strong van der Waals forces between the MWCNTs². In the present study, MWCNTs were dispersed in organic solvent (N-methyl pyrrolidinone) with 1 wt% of surfactant (Triton X-100). The dispersion of MWCNTs in PDMS-PEG system is shown in figure 2 where MWCNTs (dark areas) are well-distributed in the system indicating an acceptable dispersion although some big clusters appear in the optical microscope image. The conductivity of 4 phr MWCNTs is 10⁻³ S/cm compared to 10⁻¹ S/cm of a non-stretchable reference conducting silicone elastomer (LR3162 from Wacker). Furthermore, PDMS-PEG block copolymer with 4 phr MWCNTs (Young’s modulus, Y = 0.26 MPa) is softer and more stretchable than LR3162 (Y = 1.17 MPa).

Fig. 1

Fig. 2

References