Silicone elastomers with aromatic voltage stabilizers

A Razak, Aliff Hisyam; Skov, Anne Ladegaard

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):
Silicone elastomers with aromatic voltage stabilizers

Aliff Hisyam A Razak1,2 and Anne Ladegaard Skov*1

1 Danish Polymer Centre, Chemical and Biochemical Engineering, DTU, 2800 Lyngby, Denmark.
2 Faculty of Engineering Technology, University of Tun Hussein Onn Malaysia, 86400 Batu Pahat, Malaysia.
* Corresponding author: al@dtu.dk

A method to synthesise a polydimethylsiloxane-polyphenylmethylsiloxane (PDMS-PPMS) copolymer with electron-trapping effects has been developed utilising a quick hydrolysis reaction at ambient temperature and crosslinking via hydrolysisylation by a vinyl-functional crosslinker. The electrical breakdown strength, the storage modulus and the loss modulus of the elastomer were investigated, as well as the excitation energy from the collision between electron carriers and benzene rings in PDMS-PPMS copolymer measured by UV-vis spectroscopy. The developed elastomers were inherently soft with enhanced electrical breakdown strength due to delocalized p-electrons of aromatic rings attached to silicone backbone. The dielectric relative permittivity of PDMS-PPMS copolymers remained between 2 to 3 with low conductivity and low dielectric loss as well as high storage modulus with low viscous loss, thereby maintaining the electro-mechanical integrity of the elastomer.

Motivation: Increasing the electrical breakdown strength of DEs allows for larger actuation due to the possibility of utilizing larger electrical fields. Many studies on electrical breakdown of pre-strained DEs have been conducted, however less efforts have been focused on improving the electrical breakdown strength such as by blending in additives or by polymer structure modifications. In order to increase the electrical breakdown strength of polymers for e.g. the cable industry, additives like aromatic voltage stabilizers are used. Each works on using voltage stabilizers in polymers have mainly focused on polyethylene with the purpose of reducing power loss for high voltage insulation cables. As an alternative to utilise additives as voltage stabilizers, grafting aromatic compounds to silicone backbones may overcome the common problem of insolubility of the aromatic voltage stabilizer in the silicone elastomers due to phase separation (see Fig. 1). Preventing phase separation during preparation and during operation is a key requirement for long life-times of DEs.

Introduction:

Three modes of application of dielectric elastomer in artificial muscles technology: a) actuator, b) generator, c) sensor

Methodology:

Scheme 1 The hydrolysis reaction utilized when preparing PDMS-PPMS block copolymer with stoichiometric ratio of r = (Xy) / X, where m = 2, 6 are numbers of repeating phenylmethoxysiloxane units in PPMS, and n = 377, 231, 126, 80 are numbers of repeating dimethoxysiloxane units in PDMS.

Conclusion:

- Despite of having high electrical breakdown strength, the prepared PDMS-PPMS elastomer with different concentration of aromatic compounds showed increased storage modulus with low viscous loss as well as increased strain at break, hence maintaining electro-mechanical integrity of the elastomer.
- The increased Young’s moduli increases mechanical stability with strain-hardening behaviour, which is a desirable property for dielectric elastomers due to the suppression of electromechanical instability for long life-times.

Results:

a) Electrical breakdown strength

Table 1 Dielectric breakdown strength at 23 °C, Weibull parameters η and β, and R of linear fit for the reference elastomer (DMS-H31) and crosslinked PDMS-PPMS copolymers with different concentration of aromatic compounds.

<table>
<thead>
<tr>
<th>Crosslinked PDMS-PPMS copolymer</th>
<th>Thickness (V/μm)</th>
<th>Electrical breakdown strength (V/μm)</th>
<th>Weibull β parameter</th>
<th>Weibull η parameter</th>
<th>R²</th>
<th>Normalised electrical breakdown (V/μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMS-H31 (ref.)</td>
<td>235</td>
<td>53 ± 4</td>
<td>17</td>
<td>0.85</td>
<td>53.7</td>
<td>60.1</td>
</tr>
<tr>
<td>377DMS_2PPMS</td>
<td>81</td>
<td>53 ± 4</td>
<td>17</td>
<td>0.85</td>
<td>53.7</td>
<td>60.1</td>
</tr>
<tr>
<td>231DMS_2PPMS</td>
<td>90</td>
<td>60 ± 4</td>
<td>20</td>
<td>0.91</td>
<td>60.1</td>
<td>60.1</td>
</tr>
<tr>
<td>126DMS_6PPMS</td>
<td>80</td>
<td>65 ± 4</td>
<td>22</td>
<td>0.94</td>
<td>65.5</td>
<td>65.5</td>
</tr>
<tr>
<td>60DMS_2PPMS</td>
<td>114</td>
<td>54 ± 4</td>
<td>20</td>
<td>0.90</td>
<td>53.6</td>
<td>64.1</td>
</tr>
<tr>
<td>377DMS_6PPMS</td>
<td>81</td>
<td>64 ± 4</td>
<td>22</td>
<td>0.94</td>
<td>65.5</td>
<td>65.5</td>
</tr>
<tr>
<td>231DMS_6PPMS</td>
<td>95</td>
<td>54 ± 4</td>
<td>39</td>
<td>0.88</td>
<td>54.0</td>
<td>54.0</td>
</tr>
<tr>
<td>126DMS_6PPMS</td>
<td>95</td>
<td>56 ± 4</td>
<td>39</td>
<td>0.87</td>
<td>54.1</td>
<td>54.1</td>
</tr>
<tr>
<td>60DMS_6PPMS</td>
<td>95</td>
<td>56 ± 4</td>
<td>39</td>
<td>0.87</td>
<td>54.1</td>
<td>54.1</td>
</tr>
</tbody>
</table>

b) Weibull analysis

Fig. 2 Cumulative probability of failure of PDMS elastomer and PDMS-PPMS copolymers with different concentration of aromatic compounds: a) The copolymers with short-chain PPMS, b) The copolymers with long-chain PPMS. The dashed lines are the guidelines for eyes to observe and differentiate slopes of the data; C is in 10⁻⁴ mol g⁻¹.

c) Mechanical properties and stress-strain behaviour

Fig. 3 The storage and loss moduli of PDMS-PPMS elastomers with different concentrations of aromatic compounds at 23 °C; C is in 10⁻⁴ mol g⁻¹.

Fig. 4 Stress–strain curves for PDMS-PPMS elastomers with different concentrations of aromatic compounds at 23 °C; C is in 10⁻⁴ mol g⁻¹.

References: