Abstract

A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer material is based on a commercially available polydimethylsiloxane (PDMS) composition, which has been modified by embedding glycerol droplets into its matrix. The approach has two major advantages that make the material useful in a dielectric actuator. First, the glycerol droplets efficiently enhance the dielectric constant, which can reach very high values in the composite. Second, the liquid filler also acts as a softener that effectively decreases the elastic modulus of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to a very attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative-permittivity changes as a function of filler loading, and the applicability of the models is discussed.

Objectives

The aim of this work was to use polar liquids as high-permittivity fillers for silicone elastomers. The liquid fillers were expected to act similarly to solid fillers and effectively enhance the dielectric constant of resulting elastomers.

Results

Main findings:
- The Young’s modulus of composites decreases with increasing glycerol loading yet the ultimate strain remains unaffected.
- Glycerol droplets distributed within PDMS act as high-permittivity filler enhancing the dielectric constant of resulting composites.
- The composites were assessed by means of some of the most popular theoretical models predicting changes of relative permittivities as a function of filler content. Results show that the formula suggested by Jayasundere and Smith fits the experimental results most accurately.

Acknowledgments

The authors acknowledge funding from Innovationsfonden Denmark and from the DFG and the EU for equipment.

References