Heterologous production of immunosuppressant mycophenolic acid in Aspergillus nidulans

Jarczynska, Zofia Dorota; Hoof, Jakob Blæsbjerg; Aasted, Freja; Holm, Dorte Koefoed; Patil, Kiran Raosaheb; Nielsen, Kristian Fog; Mortensen, Uffe Hasbro

Published in:
Book of abstracts from the 13th European Conference on Fungal Genetics

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Heterologous production of immunosuppressant mycophenolic acid in *Aspergillus nidulans*

Filamentous fungi are well-known producers of a wide range of valuable secondary metabolites, which can be advantageously exploited e.g. in the pharmaceutical industry. One of the most prominent examples is mycophenolic acid (MPA). MPA inhibits inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyzes the rate limiting step in the guanine nucleotide synthesis. Since B- and T-lymphocytes rely entirely on de novo purine synthesis, MPA is used as an immunosuppressant during organ transplants. We have recently identified the mpa gene cluster in *Penicillium brevicompactum* [1] and have subsequently verified several steps in the MPA biosynthetic pathway [2,3,4]. However, the role of four genes remained to be characterized. We have therefore heterologously expressed the mpa cluster in a stepwise manner in *Aspergillus nidulans* and established a cell factory for MPA production. Using this strategy, we have demonstrated that MpaA possesses prenyl transferase activity and catalyzes the conversion from 5,7-dihydroxy-4-methylphtalide to 6-farnesyl-5,7-dihydroxy-4-methylphtalide (FDHMP). We have also shown that MpaG catalyzes the last enzymatic step in the biosynthesis of MPA *in vivo*, resulting in the production of MPA. Interestingly, one of the intermediates (demethyl-MPA) can be formed from FDHMP via an unknown enzymatic activity present in *A. nidulans*. Lastly, we also found exciting examples of cross chemistry in *A. nidulans*, which resulted in the production of MPA variants. In conclusion, we have successfully characterized the biosynthetic pathway of the top-selling drug, MPA and we have demonstrated that *A. nidulans* is a suitable cell factory for its heterologous production.