An exact approach for aggregated formulations

Gamst, Mette; Spoorendonk, Simon

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
1. How many navigable road kilometers do TomTom maps cover worldwide?
 A) 34.8 million
 B) 42.0 million
 C) 68.9 million

2. What is the total length of the entire Berlin road network?
 A) 5,200 km
 B) 6,300 km
 C) 7,400 km

3. What was the total distance travelled in Berlin by TomTom users reporting anonymously speed data from January until March 2012?
 A) 2,483,178 km
 B) 5,205,726 km
 C) 7,738,423 km

4. How many traffic jams does TomTom HD Traffic detect and broadcast in a typical afternoon rush hour in Berlin?
 A) 26
 B) 85
 C) 120

5. How long did an average driver with a daily commute of 30 minutes free-flow travel time spend in traffic jams in Berlin in 2011?
 A) 35 hours
 B) 69 hours
 C) 83 hours

6. In which hour of the week is traffic slowest going west on Straße des 17. Juni in front of the TU Berlin main building?
 A) Mondays @ 17:00-18:00
 B) Tuesdays @ 17:00-18:00
 C) Fridays @ 16:00-17:00

7. The plots below show average jam lengths (Y-axis) over time (X-axis) on the entire German Autobahn network. Which one of the plots depicts a Thursday, which one a Friday and which one a Saturday?
 A)
 B)
 C)

Quiz forms can be found in the conference bag. Quiz results will be announced at the TomTom Minisymposium Wednesday, 22 Aug, 13:15-14:45, H104

Looking for a job at e.g. TomTom Berlin: http://tomtom.jobs

Quiz forms can be found in the conference bag.
Quiz results will be announced at the TomTom Minisymposium Wednesday, 22 Aug, 13:15-14:45, H104

"TomTom routing and traffic research: data, models and algorithms"

Wednesday, 22 August 2012, 13:15 - 14:45
H104, Main Building, TU Berlin
WELCOME TO ISMP 2012

On behalf of the ISMP 2012 Organizing Committee, the Technische Universität Berlin, and the Mathematical Optimization Society, I welcome you to ISMP 2012, the 21st International Symposium on Mathematical Programming.

The symposium covers all theoretical, computational, and practical aspects of mathematical optimization. With roughly six-hundred invited and contributed sessions, fifteen invited state-of-the-art lectures, five history lectures, totaling well over seventeen-hundred presentations, this is by far the largest ISMP so far. Roughly two-thousand participants from more than sixty countries all over the world will learn about the most recent developments and results and discuss new challenges from theory and practice. These numbers are a clear indication of the importance of Mathematical Optimization as a scientific discipline and a key technology for future developments in numerous application areas.

Berlin is an exciting city that has experienced dramatic political, economical and social changes within the past 25 years. The opening ceremony of ISMP 2012 will take place at the Konzerthaus on the historic Gendarmenmarkt which is considered one of the most beautiful squares in Europe. The conference dinner will take place at the Haus der Kulturen der Welt (“House of the Cultures of the World”) located in the Tiergarten park with a beer garden on the banks of the Spree river and a view on the German Chancellery. I hope that you will also find the time to take a look around Berlin on your own, to obtain a feeling for the vibrant life style, and to explore the many attractions of this wonderful city.

Finally, I would like to express my sincere appreciation to all of the many volunteers who made this meeting possible. I wish to acknowledge, in particular, the members of the program committee, the cluster chairs, and the many session organizers for setting up the scientific program. My sincere thanks go to the members of the organizing committee and everyone involved in the local organization – the system administrators, secretaries, student assistants, PhD students, and postdocs – for the many days, weeks and even months of work.

I wish you all an enjoyable and memorable ISMP 2012 in Berlin.

Berlin, August 2012

Martin Skutella
Welcome to ISMP 2012 ... 1
Sponsors ... 2
Opening ceremony .. 3
Overview of events .. 4
Registration and general information 5
Social program .. 6
Speaker and chair information 7
Plenary and semi-plenary lectures 8
Historical lectures ... 16
P vs. NP .. 19
List of clusters and cluster chairs 20
Exhibitors ... 22
Campus map ... 25
Floor plans .. 26
Daily events and sessions 28
Parallel sessions Monday 10:30–12:00 30
Parallel sessions Monday 13:15–14:45 32
Parallel sessions Monday 15:15–16:45 35
Parallel sessions Tuesday 10:30–12:00 38
Parallel sessions Tuesday 13:15–14:45 41
Parallel sessions Tuesday 15:15–16:45 44
Parallel sessions Wednesday 10:30–12:00 47
Parallel sessions Wednesday 13:15–14:45 50
Parallel sessions Wednesday 15:15–16:45 53
Parallel sessions Thursday 10:30–12:00 56
Parallel sessions Thursday 13:15–14:45 59
Parallel sessions Thursday 15:15–16:45 62
Parallel sessions Friday 10:30–12:00 65
Parallel sessions Friday 13:15–14:45 68
Parallel sessions Friday 15:15–16:45 71
Abstracts of parallel sessions 74
Index of names ... 276

The opening ceremony takes place on Sunday, August 19, 18:00, at the “Konzerthaus am Gendarmenmarkt”.
Chair: Günter M. Ziegler
Musical accompaniment: Berliner Sibelius Orchester
Conducted by Vinzenz Weissenburger

Welcome addresses
◦ Martin Skutella
 (Organizing Committee Chair)
◦ Nicolas Zimmer
 (Permanent Secretary for Economics, Technology and Research of the State of Berlin)
◦ Paul Uwe Thamsen
 (First Vice President of the Technische Universität Berlin)
◦ Philippe Toint
 (Chair of the Mathematical Optimization Society)

Awards
◦ Dantzig Prize for original research which by its originality, breadth and depth, is having a major impact on the field of mathematical optimization
◦ Lagrange Prize for outstanding works in the area of continuous optimization
◦ Fulkerson Prize for outstanding papers in the area of discrete mathematics
◦ Beale-Orchard-Hayes Prize for excellence in computational mathematical programming
◦ Tseng Lectureship for outstanding contributions in the area of continuous optimization, consisting of original theoretical results, innovative applications, or successful software development
◦ Tucker Prize for an outstanding doctoral thesis: Announcement of the three finalists

Reception
The opening ceremony is followed by a reception with a magnificent view on Gendarmenmarkt.
OVERVIEW OF EVENTS

Registration
- Sunday, August 19, 15:00–18:00
 Konzerthaus Berlin
 (Gendarmenmarkt, 10117 Berlin)
- Monday, August 20, 07:00–18:30
 Main Building of TU Berlin
 (Straße des 17. Juni 135, 10623 Berlin)
- Tuesday through Friday, August 21–24, 7:30 – 18:30
 Main Building of TU Berlin
 (Straße des 17. Juni 135, 10623 Berlin)
- From Monday through Friday, the central activities like registration etc. will take place in the Main Building of the TU Berlin (Straits des 17. Juni 135). The conference office and the information desk are located in the lobby of the Main Building.

For a detailed map of the campus and the buildings please see page 25.

- Airport Registration Service: From Friday, August 17, 14:00, through Sunday, August 19, 16:00, ISMP 2012 would like to welcome you at the Berlin airports TXL and SXF.
 Find more details on how to obtain this service on the ISMP 2012 webpage (http://ismp2012.mathopt.org).

Opening Ceremony and Reception
Sunday, August 19, 18:00, at the Konzerthaus am Gendarmenmarkt, featuring symphonic music by the Berliner Sibelius Orchester; followed by a reception with beverages and some fingerfood (see 3).

Please consult the ISMP Berlin Guide for instructions on how to get to the Konzerthaus.

Awards
During the opening ceremony, the following prizes will be awarded: Dantzig Prize, Lagrange Prize, Fulkerson Prize, Beale-Orchard-Hayes Prize, and Tseng Memorial Lectureship. Moreover, the Tucker Prize finalists will be announced.

The Tucker Prize will be awarded during the Tucker Prize Session on Monday at 10:30 in room MA 041 [Math Building] followed by presentations by the finalists.

The Tseng Memorial Lecture will take place on Tuesday at 17:00 in room H 0105 (Main Building).

Plenary and Semi-Plenary Lectures
Featured state-of-the-art lectures are given by 15 distinguished speakers. (See page 8.)

Historical Lectures
Five special history lectures are scheduled reporting on work of Euler, Leibniz, Weierstrass, Minkowski, and the inventor of the electronic computer Konrad Zuse. (See page 16.)

Parallel Sessions
More than 1700 talks are given in almost 600 invited and contributed sessions. See program on page 30 and, in more detail, on page 74.

All alterations in the scientific program and other important information for participants will be announced on a message board near the information desk in the lobby of the Main Building.

Conference Dinner
The conference dinner will take place on Wednesday, August 22, 19:00, at the Haus der Kulturen der Welt ("House of the Cultures of the World") located in the Tiergarten park with a beer garden on the shores of the Spree river and a view on the German Chancellery.

Tickets are 40 € and can be purchased at the ISMP registration desk.

Please consult the ISMP Berlin Guide for instructions on how to get to the Haus der Kulturen der Welt.

Receptions
- Monday, August 20, 18:00
 Informal welcome reception at TU Berlin with soft drinks, beer and pretzels.
- Friday, August 24, 18:00
 Farewell gathering at TU Berlin with beverages and snacks.

MOS Business Meeting
The business meeting of the Mathematical Optimization Society (MOS) will take place on Tuesday, August 21, at 18:15 in room H 0105.
REGISTRATION AND GENERAL INFORMATION

Registration. Your registration fee includes admittance to the complete technical program and most special programs.

The following social/food events are also included: Opening ceremony including reception on Sunday evening, welcome reception on Monday evening, farewell gathering on Friday evening, and all morning and afternoon coffee breaks.

The Wednesday evening conference dinner requires a separate payment of 40 €.

Badges required for conference sessions. ISMP badges must be worn at all sessions and events. Attendees without badges will be asked to go to the registration desk to register and pick up their badges.

All attendees, including speakers and session chairs, must register and pay the registration fee.

Conference dinner tickets. The Wednesday evening conference dinner is open to attendees and guests who registered and paid in advance for tickets. The tickets are included in your registration envelope. There may be a limited number of tickets available on site. Go to the ISMP registration desk to inquire. Tickets are 40 €.

Questions and information. The organizers, staff of the conference desk, and the student assistants will be identifiable by colored name tags and orange T-shirts. Please contact them if you have any questions.

Do not hesitate to inquire about all necessary information concerning the conference, orientation in Berlin, accommodation, restaurants, going out, and cultural events at the information desk which is located in the lobby of the Main Building.

Getting around by public transport. The conference badge allows you to use all public transport in and around Berlin (zone ABC) during the symposium from August 19 to August 24. In order to identify yourself, you need to carry along your passport or national ID card. Please refer to the ISMP Berlin Guide for more information on public transport in Berlin.

Internet access. If your home university participates in eduroam and you have an account, you can directly connect to eduroam WiFi at TU Berlin.

Otherwise, for using the WiFi network in the TU Berlin, eduroam guest accounts will be provided to you. You will receive the username and password with your registration. To access the WiFi network, you will need to install certificates to connect to eduroam which can be found on the ISMP USB flash drive or downloaded at the first login. In case of problems, please contact the WiFi helpdesk which is located in the lobby of the Main Building.

Snacks and coffee breaks. Coffee, tea, and beverages are served during all breaks in the Main Building (H) and the Mathematics Building (MA). Moreover, various cafeterias are located in the Main Building (H) and Mathematics Building (MA).

Food. The Mensa of the TU Berlin offers plenty of opportunities for lunch at moderate prices. In the vicinity of the TU Berlin, there are also many different restaurants from fast food to gourmet restaurants. For the daily lunch break, please consult the Restaurant Guide (leaflet) for a list of nearby cafeterias and restaurants. Moreover, a selection of nice restaurants, cafés, pubs, bars etc. in different neighborhoods of Berlin can be found in the ISMP Berlin Guide.

You find both guides in your conference bag and on the ISMP USB flash drive.

Cloakroom. Participants are asked to look carefully after their wardrobe, valuables, laptops and other belongings for which the organizers are not liable. You will find a cloakroom in the Main Building.

ISMP Berlin Guide. You want to experience Berlin as Berliners do? Valuable information that you might find useful during your stay can be found in the ISMP Berlin Guide in your conference bag and on the ISMP USB stick. Getting around, sightseeing, and going out are some of the topics covered. And, of course, you can find a great collection of restaurants, cafés, bars, pubs etc.

Snacks and coffee breaks. Coffee, tea, and beverages are served during all breaks in the Main Building (H) and the Mathematics Building (MA). Moreover, various cafeterias are located in the Main Building (H) and Mathematics Building (MA).

Food. The Mensa of the TU Berlin offers plenty of opportunities for lunch at moderate prices. In the vicinity of the TU Berlin, there are also many different restaurants from fast food to gourmet restaurants. For the daily lunch break, please consult the Restaurant Guide (leaflet) for a list of nearby cafeterias and restaurants. Moreover, a selection of nice restaurants, cafés, pubs, bars etc. in different neighborhoods of Berlin can be found in the ISMP Berlin Guide.

You find both guides in your conference bag and on the ISMP USB flash drive.

Cloakroom. Participants are asked to look carefully after their wardrobe, valuables, laptops and other belongings for which the organizers are not liable. You will find a cloakroom in the Main Building.

ISMP Berlin Guide. You want to experience Berlin as Berliners do? Valuable information that you might find useful during your stay can be found in the ISMP Berlin Guide in your conference bag and on the ISMP USB stick. Getting around, sightseeing, and going out are some of the topics covered. And, of course, you can find a great collection of restaurants, cafés, bars, pubs etc.

Messages. The best way for people to reach you is to contact you directly at your hotel. Please leave your hotel phone number with your colleagues and family members. For urgent messages, call the ISMP registration desk: +49 (0)30 31421000. Registration staff will transcribe the message and post it on the message board located near registration.

You can also contact colleagues attending the meeting using this message board. Please check the board periodically to see if you have received any messages.
SOCIAL PROGRAM

Monday, August 20, 14:00–16:00
Discover the historic heart of Berlin
Every street in the center of Berlin has history, much of it no longer visible: On this walk you will meet the ghosts and murmers of Prussians and Prussian palaces, Nazis and Nazi architecture, Communists and real, existing socialist architecture, as well as visit some sites of the present.
Meetingpoint: Book store “Berlin Story”, Unter den Linden 40 [near S ’Unter den Linden’, Bus 100, 200].
Tickets: 15 EUR
Groupsize: min 5; max 25
Booking Deadline: August 13
Pre-booking requested at info@stattreisenberlin.de

Tuesday, August 21, 14:00–16:00
Where was the Wall
Berlin: the heart of the cold war. So little is left. Walking the former “deathstrip” between Checkpoint Charlie and Potsdam Square, listen to the stories of how a city was violently split in 1961, how one lived in the divided city, how some attempted to escape from the east, how the wall fell in 1989, and memory today.
Meetingpoint: Underground Station Stadtmitte, on the platform of the U6 (not of the U2!). End: Potsdamer Platz
Tickets: 15 EUR
Groupsize: min 5; max 25
Booking Deadline: August 13
Pre-booking requested at info@stattreisenberlin.de

Wednesday, August 22, 14:00–16:00
Where was the Wall
Berlin: the heart of the cold war. So little is left. Walking the former “deathstrip” between Checkpoint Charlie and Potsdam Square, listen to the stories of how a city was violently split in 1961, how one lived in the divided city, how some attempted to escape from the east, how the wall fell in 1989, and memory today.
Meetingpoint: Underground Station Stadtmitte, on the platform of the U6 (NOT of the U2!). End: Potsdamer Platz
Tickets: 15 EUR
Groupsize: min 5; max 25
Booking Deadline: August 13
Pre-booking requested at info@stattreisenberlin.de

Thursday, August 23, 14:00–16:00
Potsdam – Residence of Frederic the Great
To many outside Germany Potsdam, where the Prussian Kings lived, symbolized Prussia; one spoke of a battle between Potsdam and Weimar for the German soul. But what was Potsdam really? A city of the military, certainly, but also a city of immigrants; a city defined by the court, yes, but also much, more.
Meetingpoint: Potsdam, Alter Markt, Obelisk, close to Potsdam-Hauptbahnhof (S7; RB)
Tickets: 18 EUR
Groupsize: min 5; max 25
Booking Deadline: August 13
Pre-booking requested at info@stattreisenberlin.de

For the booking of further individual tours you may check the website of the tour operator StattReisen Berlin GmbH at www.stattreisenberlin.de.
You can book most of the tours in various languages for mini groups from 120 EUR.
SPEAKER AND CHAIR INFORMATION

Speaker guidelines

Audio-visual services. All session rooms will be equipped with a computer projector with VGA input. Please follow these guidelines to ensure a successful presentation:

- Please bring your laptop to your session. We strongly recommend that you pre-arrange with other speakers in your session to ensure that at least one of you brings a laptop which can be connected to the computer projector.
- Please bring a power adapter which can be connected to the German grid. We recommend that you do not attempt to run your presentation off the laptop battery.
- If your notebook does not provide a standard VGA port to connect to the beamer, please have the required adapter at hand (e.g., Mini DisplayPort or dvi to VGA).
- Please arrive at your session at least 15 minutes before it begins. All presenters in a session should set up and test the connection to the projector before the session begins.
- We encourage speakers to have at hand a USB flash drive with a copy of their presentation.
- If you need an overhead projector for your talk, please contact the registration office on arrival. Overhead projectors will only be available in exceptional cases.

Presentation guidelines. The room and location of your session are listed on page 30 ff. and in detail on page 74 ff. Please arrive at your session at least 15 minutes early for technical set-up and to check in with the session chair.

Time your presentation to fit within the designated time span of 25 minutes, leaving enough time for audience questions and change of speaker.

There will be a speakers’ preparation room available in the Main Building in room H 1036. Student assistants will provide support for the handling of the computer projectors.

Program information desk. If you have general questions about the meeting or questions about your own presentation, stop by at the Program Information Desk located in lobby of the Main Building. We ask Session Chairs to notify the Information Desk about any last-minute changes or cancellations; these changes will be posted outside the meeting rooms.

Assistance during your session. If you have a problem in your session room related to technical needs or any other requests, please contact one of the student assistants wearing an orange T-shirt.

Session chair guidelines

The role of the Chair is to coordinate the smooth running of the session and introduce each speaker. The chair begins and ends each session on time. Each talk lasts 25 minutes plus 5 minutes for discussion and change of speaker. Please stick to the order of talks and times announced in the program.
PLENARY AND SEMI-PLENARY LECTURES: Monday

Plenary lecture

Mon.09:00.H0105

Rakesh V. Vohra

Polymatroids and auction theory

Chair John Birge

A polymatroid is a polytope associated with a submodular function. Its not often one can write a sentence that contains at least three words designed to scare small animals and little children, but there it is. Polymatroids will be familiar to students of optimization because of their attractive properties. Less well known is that these useful creatures are to be found lurking in the roots of auction theory. In this talk, I will describe how they arise and give examples of why they are useful in auction theory.

Rakesh Vohra is the John L. & Helen Kellogg Professor of Managerial Economics and Lapsed Math Programmer. He occupies himself with the usual obligations of a faculty member … sitting and thinking and, when required, standing and professing. He thinks mostly about pricing, auctions and the design of markets. He professes on the same but with less success.

Semi-plenary lecture

Mon.17:00.H0105

Dimitris Bertsimas

A computationally tractable theory of performance analysis in stochastic systems

Chair Friedrich Eisenbrand

Modern probability theory, whose foundation is based on the axioms set forth by Kolmogorov, is currently the major tool for performance analysis in stochastic systems. While it offers insights in understanding such systems, probability theory is really not a computationally tractable theory. Correspondingly, some of its major areas of application remain unsolved when the underlying systems become multidimensional: Queueing networks, network information theory, pricing multi-dimensional financial contracts, auction design in multi-item, multi-bidder auctions among others. We propose a new approach to analyze stochastic systems based on robust optimization. The key idea is to replace the Kolmogorov axioms as primitives of probability theory, with some of the asymptotic implications of probability theory: the central limit theorem and law of large numbers and to define appropriate robust optimization problems to perform performance analysis. In this way, the performance analysis questions become highly structured optimization problems (linear, conic, mixed integer) for which there exist efficient, practical algorithms that are capable of solving truly large scale systems. We demonstrate that the proposed approach achieves computationally tractable methods for (a) analyzing multiclass queueing networks, (b) characterizing the capacity region of network information theory and associated coding and decoding methods generalizing the work of Shannon, (c) pricing multi-dimensional financial contracts generalizing the work of Black, Scholes and Merton, (d) designing multi-item, multi-bidder auctions generalizing the work of Myerson. This is joint work with my doctoral student at MIT Chaithanya Bandi.

Dimitris Bertsimas is currently the Boeing Leaders for Global Operations Professor of Management and the co-director of the Operations Research Center at the Massachusetts Institute of Technology. He has received a BS in Electrical Engineering and Computer Science at the National Technical University of Athens, Greece in 1985, a MS in Operations Research at MIT in 1987, and a PhD in Applied Mathematics and Operations Research at MIT in 1988. Since 1988, he has been in the MIT faculty. His research interests include optimization, stochastic systems, data mining, and their applications. In recent years he has worked in robust optimization, health care and finance. He is a member of the National Academy of Engineering and he has received several research awards including the Farkas prize, the SIAM Optimization prize and the Erlang Prize.
Semi-plenary lecture

Mon.17:00.H0104
Katya Scheinberg
Using randomized models in black-box and derivative free optimization
Chair Luís Nunes Vicente

All derivative free methods rely on sampling the objective function at one or more points at each iteration. Direct search methods (developed by Dennis, Torczon, Audet, Vicente and others) rely on sample sets of defined configuration, but different scales. Model-based DFO methods (developed by Powell, Conn, Scheinberg, Toint, Vicente, Wild and others) rely on building interpolation models using sample points in proximity of the current best iterate. Constructing and maintaining these sample sets has been one of the most essential issues in DFO. Many of the existing results have been summarized in a book by Conn, Scheinberg, Vicente, where all the sampling techniques considered for deterministic functions are deterministic ones. We will discuss the new developments for using randomized sampled sets within the DFO framework. Randomized sample sets have many advantages over the deterministic sets. In particular, it is often easier to enforce “good” properties of the models with high probability, rather than the in the worst case. In addition, randomized sample sets can help automatically discover a good local low dimensional approximation to the high dimensional objective function. We will demonstrate how compressed sensing results can be used to show that reduced size random sample sets can provide full second order information under the assumption of the sparsity of the Hessian. We will discuss new convergence theory developed for the randomized models where we can, for instance, show that as long as the models are “good” with probability more than ½ then our trust region framework is globally convergent with probability 1 under standard assumptions.

Katya Scheinberg is an associate professor in the Industrial and Systems Engineering Department at Lehigh University. A native from Moscow, she earned her undergraduate degree in operations research from the Lomonosov Moscow State University in 1992 and then received her PhD in operations research from Columbia in 1997. Scheinberg was a Research Staff Member at the IBM T. J. Watson Research center for over a decade, where she worked on various applied and theoretical problems in optimization, until moving back to Columbia as a visiting professor in 2009 and later on to Lehigh. Her main research areas are related to developing practical algorithms (and their theoretical analysis) for various problems in continuous optimization, such as convex optimization, derivative free optimization, machine learning, quadratic programming, etc. Scheinberg has also published a book in 2008 titled, Introduction to Derivative Free Optimization, which is co-authored with Andrew R. Conn and Luis N. Vicente. She is currently the editor of Optimax, the MOS newsletter, and an associate editor of SIAM OPT.

Tuesday

Plenary lecture

Tue.09:00.H0105
Robin Thomas
A new look at excluding a non-planar graph
Chair Gérard Cornuéjols

At the heart of the Graph Minors project of Robertson and Seymour lies a deep theorem saying that every graph G with no minor isomorphic to a fixed graph H has a certain structure. The structure can then be exploited to deduce far-reaching consequences. The exact statement requires some explanation, but roughly it says that there exists an integer k depending on H only such that G has a tree-decomposition into pieces, each of which has a k-near embedding in a surface S that does not embed H. Here a k-near embedding means that after deleting at most k vertices the graph can be drawn in S without crossings, except for k local areas of non-planarity, where crossings are permitted, but the graph is constrained in a different way, again depending on the parameter k. I will explain the theorem and its applications, and then will discuss recent work: a much simpler proof and a variation on the theorem, which adds some restrictive assumptions, but is much easier to state and to apply. Part of this is joint with Ken-ichi Kawarabayashi and Paul Wollan, and part is joint with Sergey Norin.

Robin Thomas received his PhD from Charles University in Prague, formerly Czechoslovakia, now the Czech Republic. He has worked at the Georgia Institute of Technology since 1989. Currently he is Regents’ Professor of Mathematics and Director of the multidisciplinary PhD program in Algorithms, Combinatorics, and Optimization. In 1994 and 2009 he and his coauthors won the D. Ray Fulkerson prize in Discrete Mathematics.
This lecture will be given by the prize winner of the Tseng Memorial Lectureship. The prize was established in 2011 and will be awarded for the first time during the opening ceremony of ISMP 2012.

A basic strategy for linear optimization over a complicated convex set is to try to express the set as the projection of a simpler convex set that admits efficient algorithms. This philosophy underlies all lift-and-project methods in the literature which attempt to find polyhedral or spectrahedral lifts of complicated sets. Given a closed convex cone K and a convex set C, there is an affine slice of K that projects to C if and only if a certain “slack operator” associated to C can be factored through K. This theorem extends a result of Yannakakis who showed that polyhedral lifts of polytopes are controlled by the non-negative factorizations of the slack matrix of the polytope. The connection between cone lifts and cone factorizations of convex sets yields a uniform framework within which to view all lift-and-project methods, as well as offers new tools for understanding convex sets. I will survey this evolving area and the main results that have emerged thus far.

Rekha Thomas received a PhD in Operations Research from Cornell University in 1994 under the supervision of Bernd Sturmfels. After holding postdoctoral positions at the Cowles Foundation for Economics at Yale University and ZIB, Berlin, she worked as an assistant professor of Mathematics at Texas A&M University from 1995–2000. Since 2000, she has been at the University of Washington in Seattle where she is now the Robert R. and Elaine F. Phelps Endowed Professor of Mathematics. Her research interests are in optimization and computational algebra.
Convexity arises quite naturally in financial risk management. In risk preferences concerning random cashflows, convexity corresponds to the fundamental diversification principle. Convexity is a basic property also of budget constraints both in classical linear models as well as in more realistic models with transaction costs and constraints. Moreover, modern securities markets are based on trading protocols that result in convex trading costs. This talk gives an introduction to certain basic concepts and principles of financial risk management in simple optimization terms. We then review some convex optimization techniques used in mathematical and numerical analysis of financial optimization problems.

Teemu Pennanen is the Professor of Mathematical Finance, Probability and Statistics at King’s College London. Before joining KCL, Professor Pennanen worked as Managing Director at QSA Quantitative Solvency Analysts Ltd, with a joint appointment as Professor of Stochastics at University of Jyväskylä, Finland. His earlier appointments include a research fellowship of the Finnish Academy and several visiting positions in universities abroad. Professor Pennanen’s research interests include financial risk management, financial econometrics, mathematical finance and the development of computational techniques for risk management. He has authored more than 30 journal publications and he has been a consultant to a number of financial institutions including Bank of Finland, Ministry of Social Affairs and Health and The State Pension Fund.

Molecular systems exhibits complicated dynamical behavior that is responsible for its (biological or nanotechnological) functionality. The effective dynamics can be characterized by the switching behavior between several metastable states, the so-called conformations of the system. Therefore, steering a molecular system from one conformation into another one means controlling its functionality. This talk considers optimal control problems that appear relevant in molecular dynamics (MD) applications and belong to the class of ergodic stochastic control problems in high dimensions. It will be demonstrated how the associated Hamilton-Jacobi-Bellman (HJB) equation can be solved. The main idea is to first approximate the dominant modes of the MD transfer operator by a low-dimensional, so-called Markov state model (MSM), and then solve the HJB for the MSM rather than the full MD. The approach rests on the interpretation of the corresponding HJB equation as a nonlinear eigenvalue problem that, using a logarithmic transformation, can be recast as a linear eigenvalue problem, for which the principal eigenvalue and the associated eigenfunction are sought. The resulting method will be illustrated in application to the maximization of the population of alpha-helices in an ensemble of small biomolecules (Alanine dipeptide).

Christof Schütte is a professor in the Mathematics and Computer Science Department at Freie Universität Berlin (FU). He holds a diploma in physics from Paderborn University and a PhD in mathematics from FU. Since 2008, he is the co-chair of the DFG Research Center MATHEON in Berlin and the head of the Biocomputing Group at FU. Christof gave a plenary lecture at ICIAM 2007 in Zurich and was an invited speaker at the 2010 International Congress of Mathematicians in Hiderabad. His research is on modeling, simulation and optimization in the life sciences with a special focus on stochastic multiscale problems in molecular and systems biology and on information-based medicine. He is currently the head of the Innovation Laboratory “Math for Diagnostics” in Berlin.
Modern electricity systems provide a plethora of challenging issues in optimization. The increasing penetration of low carbon renewable sources of energy introduces uncertainty in problems traditionally modeled in a deterministic setting. The liberalization of the electricity sector brought the need of designing sound markets, ensuring capacity investments while properly reflecting strategic interactions. In all these problems, hedging risk, possibly in a dynamic manner, is also a concern. The fact of representing uncertainty and/or competition of different companies in a multi-settlement power market considerably increases the number of variables and constraints. For this reason, usually a trade-off needs to be found between modeling and numerical tractability: the more details are brought into the model, the harder becomes the optimization problem. Both for optimization and generalized equilibrium problems, we explore some variants of solution methods based on Lagrangian relaxation and on Benders decomposition. Throughout we keep as a leading thread the actual practical value of such techniques in terms of their efficiency to solve energy related problems.

Claudia Sagastizábal is on leave from a researcher position at INRIA, in France, and is currently adjunct as a long-term visit to IMPA, in Rio de Janeiro. After finishing her undergraduate math studies in Argentina, Claudia moved to Paris, where she got her PhD in 1993 and her habilitation degree in 1998, both at the University Paris I Panthéon-Sorbonne. She has taught optimization in Argentina, France, and Brazil and is co-author of the book “Numerical Optimization: Theoretical and Practical Aspects” published by Springer. Claudia has also served in various program committees of international conferences and was elected Council Member-at-large in the Mathematical Optimization Society for the period 2009–2012. In parallel with her academic activities, Claudia has held consulting appointments for companies such as Electricité de France, Gaz de France-Suez, Renault-France, Robert Bosch, Petrobras, and Eletrobras. Her research interests lie in the areas of nonsmooth optimization as well as convex and variational analysis, always driven by real-life applications, with emphasis on the energy sector.

This talk deals with algorithms and complexity results about the minimization of convex functions over integer points in convex regions. We begin with a survey about the current state of art. Then we discuss results about to the speed of convergence of a black box algorithm that iteratively solves special quadratic integer subproblems with a constant approximation factor. Despite the generality of the underlying problem we prove that we can detect efficiently w.r.t. our assumptions regarding the encoding of the problem a feasible solution whose objective function value is close to the optimal value. We also show that this proximity result is best possible up to a polynomial factor. Next we discuss a new “cone-shrinking algorithm” that allows us to prove that integer convex optimization with a constant number of variables is polynomial time solvable. Parts of our results are based on joint work with M. Baes, A. del Pia, Y. Nesterov, S. Onn. The other part is based on joint work with M. Baes, T. Oertel, C. Wagner.

Robert Weismantel was born in 1965 in München, Germany. After studying mathematics at the University of Augsburg, he moved with Martin Grötschel to the Konrad-Zuse-Zentrum für Informationstechnik in Berlin (ZIB) in 1991. From the TU Berlin he received his PhD degree in 1992 and his second PhD degree (Habilitation) in 1995. In the years 1991–1997 he was a researcher at ZIB. From 1998 to 2010 he was a Professor [C4] for Mathematical Optimization at the University of Magdeburg. In 2010, he was elected Full Professor at the Department of Mathematics at ETH Zurich. His main research interest is integer and mixed integer optimization: specifically he was working on primal integer programming, the theory of Hilbert bases, and cutting plane theory. More recently he is working on nonlinear integer optimization. His work has been distinguished with several prizes and honors: His PhD thesis was awarded a Carl Ramsauer Prize. He received the Gerhard Hess Research Prize of the German Science Foundation and IBM–Faculty Awards in 2007 and 2010. He is currently a Co-Editor of Mathematical Programming A.
Thursday

Plenary lecture

Thu.09:00.H0105

Richard G. Baraniuk
Compressive signal processing

Chair Luís Nunes Vicente

Sensing and imaging systems are under increasing pressure to accommodate ever larger and higher-dimensional data sets; ever faster capture, sampling, and processing rates; ever lower power consumption; communication over ever more difficult channels; and radically new sensing modalities. This talk will overview the foundations and recent progress on compressive signal processing, a new approach to data acquisition and processing in which analog signals are digitized and processed not via uniform sampling but via measurements using more general, even random, test functions. In stark contrast with conventional wisdom, the new theory asserts that one can combine “sub-Nyquist-rate sampling” with large-scale optimization for efficient and accurate signal acquisition when the signal has a sparse structure. The implications of compressive sensing are promising for many applications and enable the design of new kinds of communication systems, cameras, imagers, microscopes, and pattern recognition systems. Special emphasis will be placed on the pros and cons of the compressive sensing technique.

Richard G. Baraniuk is the Victor E. Cameron Professor of Electrical and Computer Engineering at Rice University. His research interests lie in new theory, algorithms, and hardware for sensing, signal processing, and machine learning. He is a Fellow of the IEEE and AAAS and has received national young investigator awards from the US NSF and ONR, the Rosenbaum Fellowship from the Isaac Newton Institute of Cambridge University, the ECE Young Alumni Achievement Award from the University of Illinois, and the Wavelet Pioneer and Compressive Sampling Pioneer Awards from SPIE. His work on the Rice single-pixel compressive camera has been widely reported in the popular press and was selected by MIT Technology Review as a TR10 Top 10 Emerging Technology for 2007. For his teaching and education projects, including Connexions (cnx.org), he has received the C. Holmes MacDonald National Outstanding Teaching Award from Eta Kappa Nu, Tech Museum of Innovation Laureate Award, the Internet Pioneer Award from the Berkman Center for Internet and Society at Harvard Law School, the World Technology Award for Education, the IEEE-SPS Education Award, and the WISE Education Award.

Semi-plenary lecture

Thu.17:00.H0104

Michael P. Friedlander
Data fitting and optimization with randomized sampling

Chair Luís Nunes Vicente

For many structured data-fitting applications, incremental gradient methods (both deterministic and randomized) offer inexpensive iterations by sampling only subsets of the data. They make great progress initially, but eventually stall. Full gradient methods, in contrast, often achieve steady convergence, but may be prohibitively expensive for large problems. Applications in machine learning and robust seismic inversion motivate us to develop an inexact gradient method and sampling scheme that exhibit the benefits of both incremental and full gradient methods.

Michael P. Friedlander is Associate Professor of Computer Science at the University of British Columbia. He received his PhD in Operations Research from Stanford University in 2002, and his BA in Physics from Cornell University in 1993. From 2002 to 2004 he was the Wilkinson Fellow in Scientific Computing at Argonne National Laboratory. He was a senior fellow at UCLA’s Institute for Pure and Applied Mathematics in 2010. He serves on the editorial boards of SIAM J. on Optimization, SIAM J. on Matrix Analysis and Applications, Mathematical Programming Computation, Optimization Methods and Software, and the Electronic Transactions on Numerical Analysis. His research is primarily in developing numerical methods for constrained optimization, their software implementation, and applications in signal processing and image reconstruction.
Amin Saberi
Rounding by sampling and traveling salesman problems
Chair Friedrich Eisenbrand

I will talk about a new technique for rounding the solution of linear programming relaxations of combinatorial optimization problems. In particular, I will present new algorithms for symmetric and asymmetric traveling salesman problems, improving the best known approximation ratios for these problems.

Amin Saberi is an Associate Professor and 3COM faculty scholar in Stanford University. He received his B.Sc. from Sharif University of Technology and his PhD from Georgia Institute of Technology in Computer Science. His research interests include algorithms, approximation algorithms, and algorithmic aspects of games, markets, and networks. He is a Frederick Terman Fellow (2005–2010), an Alfred Sloan Fellow (2010–2012), and the recipient of National Science Foundation Career award as well as best paper awards in FOCS 2011 and SODA 2010.

Nikhil Bansal
Semidefinite optimization in discrepancy theory
Chair Friedrich Eisenbrand

The concept of discrepancy is intimately related to several fundamental topics in mathematics and theoretical computer science, and deals with the following type of question. Given a collection of sets on some elements, color each element red or blue such that each set in the collection is colored as evenly as possible. Recently, there have been several new developments in discrepancy theory based on connections to semidefinite programming. This connection has been useful in several ways. It gives efficient polynomial time algorithms for several problems for which only non-constructive results were previously known. It also leads to several new structural results in discrepancy itself, such as tightness of the so-called determinant lower bound, improved bounds on the discrepancy of the union of set systems and so on. We will give a brief survey of these results, focusing on the main ideas and the techniques involved.

Nikhil Bansal is an Associate Professor in the Department of Mathematics and Computer Science at Eindhoven University of Technology. He obtained his PhD from Carnegie Mellon University in 2003, and worked at the IBM T.J. Watson Research Center until 2011, where he also managed the Algorithms group. His main research interests are the design and analysis of approximation and online algorithms. For his work, he has co-received best paper awards at FOCS 2011, ESA 2011 and ESA 2010, and also IBM Research best paper awards for 2007 and 2010.
Minimization problems with nonsmooth, nonconvex, perhaps even non-Lipschitz regularization terms have wide applications in image restoration, signal reconstruction and variable selection, but they seem to lack optimization theory. On L_p non-Lipschitz regularized minimization, we show that finding a global optimal solution is strongly NP-hard. On the other hand, we present lower bounds of nonzero entries in every local optimal solution without assumptions on the data matrix. Such lower bounds can be used to classify zero and nonzero entries in local optimal solutions and select regularization parameters for desirable sparsity of solutions. Moreover, we show smoothing methods are efficient for solving such regularized minimization problems. In particular, we introduce a smoothing SQP method which can find an affine scaled epsilon-stationary point from any starting point with complexity $O(\varepsilon^{-2})$, and a smoothing trust region Newton method which can find a point satisfying the affine scaled second order necessary condition from any starting point. Examples with six widely used nonsmooth nonconvex regularization terms are presented to illustrate the theory and algorithms. Joint work with W. Bian, D. Ge, L. Niu, Z. Wang, Y. Ye, Y. Yuan.

Xiaojun Chen received her PhD degree in Computational Mathematics from Xi’an Jiaotong University, China in 1987 and PhD degree in Applied Mathematics from Okayama University of Science, Japan in 1991. She was a postdoctoral fellow at the University of Delaware, an Australia Research Fellow in the University of New South Wales and a Professor in Hirosaki University, Japan. She joined the Hong Kong Polytechnic University as a Professor in 2007. Her current research interests include nonsmooth nonconvex optimization, stochastic equilibrium problems and numerical approximation methods on the sphere with important applications in engineering and economics. She has published over 80 papers in major international journals in operations research and computational mathematics. Prof. Chen has won many grants as a principal investigator from several government funding agencies and organized several important international conferences. She serves in the editorial boards of five mathematical journals including SIAM Journal on Numerical Analysis.

First-order methods have been advocated for solving optimization problems of large scale. Although they are sometimes the most appropriate techniques, we argue that in many applications it is advantageous to employ second-order information as an integral part of the iteration. This is particularly so when parallel computing environments are available. In this talk, we take a broad view of second-order methods, and center our discussion around three applications: convex L1 regularized optimization, inverse covariance estimation, and nonlinear programming. We note that many efficient methods for these problems can be derived using a semi-smooth Newton framework, which allows us to compare their manifold identification and subspace minimization properties. We propose an algorithm employing a novel active-set mechanism that is of interest in machine learning, PDE-constrained optimization, and other applications. We also discuss dynamic sampling techniques, illustrate their practical performance, and provide work complexity bounds. The talk concludes with some observations about the influence that parallel computing has on large scale optimization calculations.

Jorge Nocedal is a professor in the Industrial Engineering Department at Northwestern University. He holds a B.S. degree in physics from the National University of Mexico and a PhD in applied mathematics from Rice University. Prior to moving to Northwestern, he taught at the Courant Institute of Mathematical Sciences. He is a SIAM Fellow and an ISI Highly Cited Researcher (mathematics category). In 1998 he was appointed Bette and Neison Harris Professor at Northwestern. Jorge was an invited speaker at the 1998 International Congress of Mathematicians in Berlin. His research focuses on the theory, algorithms and applications of nonlinear programming, and he has developed widely used software, including L-BFGS and Knitro. He is currently Editor-in-Chief of the SIAM Journal on Optimization.
Many outstanding scientists and managers were necessary to get the computer to the point of development that we know today. Konrad Zuse (1910–1995) is almost unanimously accepted as the inventor of the first working, freely programmable machine using Boolean logic and binary floating point numbers. This Machine – called Z3 – was finished by Konrad Zuse in May 1941 in his small workshop in Berlin-Kreuzberg. In this presentation the achievements of Charles Babbage (1823), the development of the secret COLOSSUS-Project (UK, 1943), Howard Aiken’s Mark I (USA), and the ENIAC (USA) are outlined. Konrad Zuse’s contributions to computer development are presented, of course, as well, with many surprising pictures and videos. It is not well known that Konrad Zuse founded, in 1949, a computer company that produced 251 computers of a value of 51 Million Euros. It was the first company which produced computers in a commercial way.

Horst Zuse, the oldest of Konrad Zuse’s five children, was born on November 17, 1945 in Hindelang (Bavaria, Germany). He received his PhD degree in computer science from Technische Universität Berlin (TUB) in 1985. From 1975–2010 he was a senior research scientist at TUB. His research interests are information retrieval systems, software engineering, software metrics, computer history and computer architectures. In 1991 he published the book Software Complexity – Measures and Methods [De Gruyter Publisher]. In 1998 the book A Framework for Software Measurement [De Gruyter Publisher] followed. In 1998 he received the habilitation [Privatdozent] in the area of Praktische Informatik (Practical Computer Science), and since 2006 he has been a Professor at the University of Applied Sciences in Senftenberg.

The universal genius Gottfried Wilhelm Leibniz (1646–1716) contributed to nearly all scientific disciplines and left the incredibly huge amount of about 200,000 sheets of paper that are kept in the Leibniz Library of Hannover. About 4,000 of them regarding natural sciences, medicine, technology have been digitized and are freely available in the internet: http://ritter.bbaw.de. Less than half of them have been published up to now. Hence we know for example – for the time being – only about one fourth of his mathematical production. The lecture will give a short survey of his biography and mainly deal with the following six aspects: 1. Leibniz as an organizer of scientific work: His presidency of the Berlin Academy of Sciences; 2. His rigorous foundation of infinitesimal geometry; 3. Leibniz as the inventor of the differential and integral calculus; 4. His conception of and his contributions to a general combinatorial art (symmetric functions, number theory, insurance calculus); 5. His proposals for engineering improvements in mining; 6. Leibniz’s invention of the first real four-function calculating machine.

Eberhard Knobloch, born in 1943 in Görlitz, Germany, studied mathematics, classical philology, and history of science and technology at Freie Universität Berlin and Technische Universität Berlin. In 1972 he did a PhD in history of science and technology, in 1976 he passed the habilitation for university professors at Technische Universität Berlin. Since 2002 he is professor of history of science and technology at this university and Academy professor at the Berlin-Brandenburg Academy of Sciences and Humanities (BBAW). He is a member of several national and international academies of sciences, president of the International Academy of the History of Science, past president of the European Society for the History of Science, Honorary professor of the Chinese Academy of Sciences. He published or edited more than 300 papers or books on the history of science and technology, he is a member of the editorial boards of sixteen international journals. His main scientific interests concern the history and philosophy of mathematical sciences and Renaissance technology. He is project leader of the A. v. Humboldt research group and the two Leibniz research groups at BBAW.
We will explore three of Euler’s genius contributions:

1. The seven bridges of Königsberg: How a problem of “Recreational Mathematics” led to the creation of Graph Theory.
2. The Basel problem: A healthy dose of serious numerical computing on the way to a $\zeta(2)$.
3. The polyhedron formula: Tracing the polyhedron formula from Stockholm to the Berne mountains.

Günter M. Ziegler, born in München, Germany, in 1963, got a PhD at MIT in 1987, became a Professor of Mathematics at TU Berlin 1995, and moved to FU Berlin in 2011 as a MATHEON Professor. He became the founding chair of the Berlin Mathematical School in 2006. His interests connect discrete and computational geometry (especially polytopes), algebraic and topological methods in combinatorics, discrete mathematics and the theory of linear and integer programming. He is the author of *Lectures on Polytopes* (Springer 1995) and of *Proofs from THE BOOK* (with Martin Aigner, Springer-Verlag 1998), which has by now appeared in 14 languages. His latest book is *Darf ich Zahlen? Geschichten aus der Mathematik* (*Do I count? Stories from Mathematics*; English translation to appear). Günter Ziegler’s honors include a Leibniz Prize (2001) of the German Research Foundation DFG, the Chauvenet Prize (2004) of the Mathematical Association of America, and the 2008 Communicator Award of DFG and Stifterverband. He is a member of the executive board of the Berlin-Brandenburg Academy of Sciences, and a member of the German National Academy of Sciences Leopoldina. From 2006–2008 he was the President of the German Mathematical Society DMV. In 2008 he initiated and co-organized the German National Science Year “Jahr der Mathematik” and now directs the DMV Mathematics Media Office and the DMV Network Office Schools–Universities.
Thursday

Historical lecture Thu.17:00.H1012

Jürgen Sprekels

Karl Weierstrass and optimization

Chair Richard Cottle

The work of Karl Weierstrass, the outstanding Berlin mathematician who was one of leading mathematical researchers of the second half of the nineteenth century, had a deep impact on the theory of optimization and on variational calculus. In this talk, we review some aspects of his contributions to the field.

Jürgen Sprekels, born 1948 in Hamburg, Germany, studied mathematics at the University of Hamburg, where he received his PhD in 1975 and his habilitation in 1977. After professorships in Augsburg (1981–88) and Essen (1988–94), he became Full Professor for Applied Analysis at the Humboldt-Universität zu Berlin in 1994. Since 1994 he has been the director of the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, the non-university mathematical research institute that hosts the Secretariat of the International Mathematical Union (IMU) and the German Mathematical Society (DMV). He was also one of the founders of the mathematical research center MATHEON in Berlin. His research focuses on the analysis and optimal control of nonlinear systems of PDEs arising in applications, with an emphasis on hysteresis phenomena, phase transitions, and free boundary problems. He conducted several industrial cooperation projects, in particular, in the growth of semiconductor bulk single crystals. He (co-)authored two research monographs and more than 150 papers in refereed journals and conference proceedings.

Historical lecture Thu.17:30.H1012

Martin Grötschel

Hermann Minkowski and convexity

Chair Richard Cottle

Convexity of a set or function is a property that plays an important role in optimization. In this lecture a brief survey of the history of the notion of convexity and, in particular, the role Hermann Minkowski played in it, will be given.

Martin Grötschel, born in Schwelm, Germany in 1948, studied mathematics and economics at Ruhr-Universität Bochum from 1969–1973. He received his PhD (1977) and his habilitation (1981) from Bonn University. He was Full Professor of Applied Mathematics at Augsburg University (1982–1991). Since 1991 he has been Professor at the Institute of Mathematics of Technische Universität Berlin and Vice President of the Zuse Institute Berlin [ZIB]. From 2002 to 2008 he served as chair of the DFG Research Center MATHEON. Martin Grötschel was President of the German Mathematical Society DMV 1993–1994, and he has been serving the International Mathematical Union as Secretary since 2007. He is a member of four academies (BBAW, Leopoldina, acatech, NAE) and since 2001 in the executive board of BBAW. In 2011 he became chairman of the executive board of the Einstein Foundation Berlin. His scientific honors include the Leibniz, the Dantzig and the Fulkerson Prize and four honorary degrees. His main areas of scientific interest are discrete mathematics, optimization and operations research with a particular emphasis on the design of theoretically and practically efficient algorithms for hard combinatorial optimization problems occurring in practice.
LIST OF CLUSTERS AND CLUSTER CHAIRS

- **Approximation and online algorithms**
 Organizer: Leen Stougie, David P. Williamson

- **Combinatorial optimization**
 Organizer: Jochen Könemann, Jens Vygen

- **Complementarity and variational inequalities**
 Organizer: Michael C. Ferris, Michael Ulbrich

- **Conic programming**
 Organizer: Raphael Hauser, Toh Kim Chuan

- **Constraint programming**
 Organizer: Michela Milano, Willem-Jan van Hoeve

- **Derivative-free and simulation-based optimization**
 Organizer: Luís Nunes Vicente, Stefan Wild

- **Finance and economics**
 Organizer: Thomas F. Coleman, Karl Schmedders

- **Game theory**
 Organizer: Asu Ozdaglar, Guido Schäfer

- **Global optimization**
 Organizer: Christodoulos A. Floudas, Nikolaos V. Sahinidis

- **Implementations and software**
 Organizer: Tobias Achterberg, Andreas Wächter

- **Integer and mixed-integer programming**
 Organizer: Andrea Lodi, Robert Weismantel

- **Life sciences and healthcare**
 Organizer: Gunnar W. Klau, Ariela Sofer

- **Logistics, traffic, and transportation**
 Organizer: Marco E. Lübbecke, Georgia Perakis

- **Mixed-integer nonlinear programming**
 Organizer: Sven Leyffer, François Margot

- **Multi-objective optimization**
 Organizer: Jörg Fliege, Johannes Jahn

- **Nonlinear programming**
 Organizer: Philip E. Gill, Stephen J. Wright

- **Nonsmooth optimization**
 Organizer: Amir Beck, Jérôme Bolte

- **Optimization in energy systems**
 Organizer: Alexander Martin, Claudia Sagastizábal

- **PDE-constrained optimization and multi-level/multi-grid methods**
 Organizer: Matthias Heinkenschloss, Michael Hintermüller

- **Robust optimization**
 Organizer: Aharon Ben-Tal, Dimitris Bertsimas

- **Sparse optimization and compressed sensing**
 Organizer: Ben Recht, Michael Saunders, Stephen J. Wright

- **Stochastic optimization**
 Organizer: Shabbir Ahmed, David Morton

- **Telecommunications and networks**
 Organizer: Andreas Bley, Mauricio G. C. Resende

- **Variational analysis**
 Organizer: René Henrion, Boris Mordukhovich

ICCOPT 2013

ICCOPT 2013, The Fourth International Conference on Continuous Optimization, will take place in Lisbon, Portugal, from July 27 to August 1, 2013. ICCOPT is a recognized forum of discussion and exchange of ideas for researchers and practitioners in continuous optimization, and one of the flagship conferences of the Mathematical Optimization Society.

ICCOPT 2013 is organized by the Department of Mathematics of FCT, Universidade Nova de Lisboa, in its Campus de Caparica, located near a long beach, 15 minutes away by car (and 30 by public transportation) from the center of Lisbon, on the opposite side of the river Tagus.

ICCOPT 2013 includes a Conference and a Summer School. The Conference (July 29 – August 1) will count with the following Plenary Speakers:

- Paul I. Barton (MIT, Massachusetts Inst. Tech.)
- Michael C. Ferris (Univ. Wisconsin)
- Yurii Nesterov (Univ. Catholique de Louvain)
- Yinyu Ye (Stanford Univ.)

and the following Semi-plenary Speakers:

- Amir Beck (Technion, Israel Inst. Tech.)
- Regina Burachik (Univ. South Australia)
- Sam Burer (Univ. Iowa)
- Coralia Cartis (Univ. Edinburgh)
- Michel De Lara (Univ. Paris-Est)
- Victor DeMiguel (London Business School)
- Michael Hintermüller (Humboldt-Univ. Berlin)
- Ya-xiang Yuan (Chinese Academy of Sciences)

The Summer School (July 27–28) is directed to graduate students and young researchers in the field of continuous optimization, and includes two courses:

- Summer Course on Sparse Optimization and Applications to Information Processing (July 28, 2013), by Mário A. T. Figueiredo (Technical Univ. Lisbon and IT) Stephen J. Wright (Univ. Wisconsin)

There will be a paper competition for young researchers in Continuous Optimization (information available from the website below).

The three previous versions of ICCOPT were organized respectively in 2004 at Rensselaer Polytechnic Institute (Troy, NY, USA), in 2007 at McMaster University (Hamilton, Ontario, Canada), and in 2010 at University of Chile (FCFM, Santiago, Chile).

The meeting is chaired by Luís Nunes Vicente (Organizing Committee) and Katya Scheinberg (Program Committee) and locally coordinated by Paula Amaral (Local Organizing Committee).

The website is http://eventos.fct.unl.pt/iccopt2013
REAL-WORLD
MATHEMATICAL
OPTIMIZATION

OUR DAILY CHALLENGES
VEHICLE ROUTING . INVENTORY MANAGEMENT . PRODUCTION PLANNING
CONTAINER TERMINAL OPERATIONS . SUPPLY CHAIN MANAGEMENT . AIRPORT LOGISTICS
FRAUD DETECTION . MULTICOMMODITY FLOW . GRAPH PARTITIONING ...

OUR METHODS
MIXED INTEGER PROGRAMMING . BRANCH & BOUND . CONSTRAINT PROGRAMMING
SPECIALISED HEURISTICS . COMPUTATIONAL INTELLIGENCE . SIMULATION
COMBINATORIAL OPTIMIZATION . DYNAMIC PROGRAMMING ...

INFORM develops intelligent software systems for the optimized planning and
control of business processes. These systems are based on advanced decision
support technologies from Operations Research and Computational Intelligence.
Complementing existing administrative IT solutions, they are applied to business
operations where situation responsive, high quality decision making under time
pressure is essential in order to boost productivity. Today, 400 INFORM employees
provide tailored solutions to optimize operations at over 1,000 companies from
various sectors world-wide.

INFORM is the first company to receive the company award from GOR (German Association
for Operations Research), which recognizes the economic benefits derived from the
Operations Research-based INFORM software.

www.inform-software.com
EXHIBITORS

The exhibit area is located in the ‘Lichthof’ of the Main Building. The exhibition is open Monday, August 20, to Friday, August 24, 9:00–17:00.

TomTom – Maps, Traffic, Navigation

Address: De Ruyterkade 154
City: Amsterdam
Zip: 1011 AC
Country: The Netherlands
Contact person: Dr. Heiko Schilling
Email address: Heiko.Schilling@tomtom.com
Email address: tomtom.pr@tomtom.com
URL: www.tomtom.com

TomTom is the leading global supplier of in-car mapping, traffic and navigation solutions. With over 70 million customers worldwide we are focused on providing the best possible navigation experience. Our products are based on our navigation software tool kit – called NavKit – for which we provide commercial and academic licenses including according map and traffic data. Learn more at our booth (“Lichthof”) and our minisymposium on Wed, 22 Aug, 13:15–14:45, H104 (TU main building).

Springer

Address: Tiergartenstraße 17
City: Heidelberg
Zip: 69121
Country: Germany
Contact person: Petra Baumeister
Email address: petra.baumeister@springer.com
URL: www.springer.com

Come browse key Mathematics titles in print and electronic format and learn how our innovative products and services can advance your research. We welcome your proposal! Follow @SpringerMath on twitter for the latest news and updates. Springer – your partner in publishing.

PTV Group

PTV AG, traffic mobility logistics

Address: Stumpfstraße 1
City: Karlsruhe
Zip: 76131
Country: Germany
Contact person: info@ptv.de
URL: www.ptv.de

For more than 25 years PTV AG has been supplying logistics professionals and transportation planners with optimization tools. From public transport network design to cost-benefit forecasts for large transportation schemes to tour optimization and fleet management for trucks – PTV software is always part of the toolbox. See us at our exhibit to learn more!

FICO

Address: Maximilianstraße 35a
City: München
Zip: 80539
Country: Germany
Contact person: Frank Haeger
Email address: frankhaeger@fico.com
URL: www.fico.com

FICO (formerly Fair Isaac) delivers superior predictive analytics solutions that drive smarter decisions. The company’s groundbreaking use of mathematics to predict consumer behavior has transformed entire industries and revolutionized the way risk is managed and products are marketed. Clients in 80 countries rely on FICO, amongst them the world’s top banks.

INFORM GmbH

Address: Pascalstraße 23
City: Aachen
Zip: 52076
Country: Germany
Contact person: Dr. Ulrich Dorndorf
Email address: Ulrich.Dorndorf@inform-software.com
URL: www.inform-software.com

The Institute for Operations Research and Management, INFORM GmbH, develops intelligent software on the basis of Operations Research and Computational Intelligence. This software is applied in Supply Chains, Aviation, Production Control, Logistics, Fraud Prevention in Finance, and in Healthcare.

AMPL Optimization

Address: 900 Sierra Place SE
City: Albuquerque, NM
Zip: 87108-3379
Country: USA
Contact person: Robert Fourer
Email address: 4er@ampl.com
URL: www.ampl.com

AMPL Optimization develops and supports the AMPL modeling language, a powerful and natural tool for creating and managing the large, complex optimization problems that arise in numerous applications. AMPL is notable for supporting a broad range of linear and nonlinear problem formulations and a large selection of popular large-scale solvers.
OptiRisk Systems
Address: 1, Oxford Road
City: Uxbridge, UK
Zip: UB9 4DA
Country: UK
Email address: info@optirisk-systems.com
URL: www.optirisk-systems.com
OptiRisk Systems offers products and services in Optimisation and Risk Modelling. Our software products extend AMPL with an IDE (AMPLDev) and with new language features (SAMPL) focused on Stochastic Programming and Robust Optimisation. Our stochastic solver FortSP uses decomposition and regularisation methods and processes two-stage and multistage continuous and integer problems.

SAS
Address: SAS Campus Drive
City: Cary, North Carolina
Zip: 27513
Country: USA
Contact person: Ed Hughes
Email address: Ed.Hughes@sas.com
URL: www.sas.com
SAS provides a broad array of optimization modeling and solution capabilities within a unified framework. New features cover LP, MILP, OP, and NLP, comprising new solvers, new controls, and the use of multicore and grid computing. Highlights include a powerful decomposition-based LP/MILP solver and new local search optimization methods.

Deutsche Mathematiker-Vereinigung
Address: Genthiner Straße 13
City: Berlin
Zip: 10785
Country: Germany
Contact: Doris Glaser
Email: exhibition@degruyter.com
URL: www.degruyter.com
The independent academic publishing house De Gruyter can look back on a history spanning over 260 years. The publishing group with headquarters in Berlin and Boston annually publishes over 800 new titles in the humanities, medicine, science, technology, and law and approx. 500 journals and digital media.
Taylor & Francis Group
Address: 4 Park Square, Milton Park
City: Abingdon, Oxon
Zip: 0X14 4RN
Country: UK
Contact person: Angela Dickinson
Email address: angela.dickinson@tandf.co.uk
URL: www.tandfonline.com

Building on two centuries’ experience, Taylor & Francis has grown rapidly over the last two decades to become a leading international academic publisher. During the conference we are offering 14 days free online access to our portfolio of Mathematics journals. Come to our booth for more details and to find out how you can be in with a chance of winning a selection of prizes including a Dell Laptop, an Apple IPAD and an Amazon Kindle!

Cambridge University Press
Address: Shaftesbury Road
City: Cambridge
Zip: CB2 8RU
Country: UK
Contact Person: Nina Wallis
Email: nwallis@cambridge.org
URL: http://www.cambridge.org/knowledge

Cambridge University Press is a not-for-profit organization that advances learning, knowledge and research worldwide. It is an integral part of the University of Cambridge and for centuries has extended its research and teaching activities through a remarkable range of academic and educational books, journals, and examination papers. Come and visit our stand for 20% off all titles on display.
CAMPUS MAP

- Math Building (MA)
- Main Building (H)
- Mensa
- Ernst-Reuter-Platz
- Underground Station 'Ernst-Reuter-Platz'
- Straße des 17. Juni
- Bus lines: 245, M45, X9
- Steinplatz
- Harndenstraße
- Fasanenstraße

Directions:
- 5 min walk to Urban Rail Station 'Tiergarten'
- 5 min walk to Train Station/Urban Rail Station 'Zoologischer Garten'
- 5 min walk to Train Station/Urban Rail Station 'Zoologischer Garten'
<table>
<thead>
<tr>
<th>Day</th>
<th>When</th>
<th>What</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, August 17</td>
<td>14:00–23:59</td>
<td>Airport Registration Service</td>
<td>Airports Tegel and Schönefeld</td>
</tr>
<tr>
<td>Saturday, August 18</td>
<td>00:00–23:59</td>
<td>Airport Registration Service</td>
<td>Airports Tegel and Schönefeld</td>
</tr>
<tr>
<td>Sunday, August 19</td>
<td>00:00–16:00</td>
<td>Registration</td>
<td>Konzerthaus Berlin</td>
</tr>
<tr>
<td></td>
<td>15:00–18:00</td>
<td>Opening Ceremony & Reception</td>
<td>Konzerthaus Berlin</td>
</tr>
<tr>
<td></td>
<td>18:00–22:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday, August 20</td>
<td>07:00–18:30</td>
<td>Registration</td>
<td>Main Building of TU Berlin</td>
</tr>
<tr>
<td></td>
<td>09:00–17:00</td>
<td>Exhibits</td>
<td>’Lichthof’, Main Building</td>
</tr>
<tr>
<td></td>
<td>09:00–09:50</td>
<td>Plenary Lecture: Rakesh Vohra</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td></td>
<td>10:00–10:30</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>10:30–12:00</td>
<td>Technical Sessions (Mon.1)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>10:30–12:00</td>
<td>Tucker Prize Session</td>
<td>MA041, Math Building</td>
</tr>
<tr>
<td></td>
<td>12:00–13:15</td>
<td>Lunch Break [on your own]</td>
<td>see Restaurant Guide</td>
</tr>
<tr>
<td></td>
<td>13:15–14:45</td>
<td>Technical Sessions (Mon.2)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>14:45–15:15</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>15:15–16:45</td>
<td>Technical Sessions {Mon.3}</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Katya Scheinberg</td>
<td>H0104, Main Building</td>
</tr>
<tr>
<td></td>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Dimitris Bertsimas</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td></td>
<td>18:00–20:00</td>
<td>Welcome Reception</td>
<td>’Lichthof’, Main Building</td>
</tr>
<tr>
<td></td>
<td>19:00–</td>
<td>MOS Council Meeting</td>
<td>H1035, Main Building</td>
</tr>
<tr>
<td>Tuesday, August 21</td>
<td>07:30–18:30</td>
<td>Registration</td>
<td>Main Building of TU Berlin</td>
</tr>
<tr>
<td></td>
<td>09:00–17:00</td>
<td>Exhibits</td>
<td>’Lichthof’, Main Building</td>
</tr>
<tr>
<td></td>
<td>09:00–09:50</td>
<td>Plenary Lecture: Robin Thomas</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td></td>
<td>10:00–10:30</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>10:30–12:00</td>
<td>Technical Sessions (Tue.1)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>12:00–13:15</td>
<td>Lunch Break [on your own]</td>
<td>see Restaurant Guide</td>
</tr>
<tr>
<td></td>
<td>13:15–14:45</td>
<td>Technical Sessions (Tue.2)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>14:45–15:15</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>15:15–16:45</td>
<td>Technical Sessions {Tue.3}</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td></td>
<td>17:00–17:50</td>
<td>Tseng Memorial Lecture</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td></td>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Teemu Pennanen</td>
<td>H0104, Main Building</td>
</tr>
<tr>
<td></td>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Rekha Thomas</td>
<td>H1058, Main Building</td>
</tr>
<tr>
<td></td>
<td>17:00–17:50</td>
<td>Historical Lecture: Eberhard Knobloch</td>
<td>H1012, Main Building</td>
</tr>
<tr>
<td></td>
<td>18:15–</td>
<td>MOS Business Meeting</td>
<td>H0105, Main Building</td>
</tr>
</tbody>
</table>
Daily events and sessions

Wednesday, August 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30–18:30</td>
<td>Registration</td>
<td>Main Building of TU Berlin</td>
</tr>
<tr>
<td>09:00–17:00</td>
<td>Exhibits</td>
<td>'Lichthof', Main Building</td>
</tr>
<tr>
<td>09:00–09:50</td>
<td>Plenary Lecture: Christof Schütte</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td>10:00–10:30</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>10:30–12:00</td>
<td>Technical Sessions (Wed.1)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>12:00–13:15</td>
<td>Lunch Break (on your own)</td>
<td>see Restaurant Guide</td>
</tr>
<tr>
<td>12:00–13:15</td>
<td>MP Journal Board Meeting</td>
<td>H1035, Main Building</td>
</tr>
<tr>
<td>13:15–14:45</td>
<td>Technical Sessions (Wed.2)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>13:15–14:45</td>
<td>TomTom Session</td>
<td>H0104, Main Building</td>
</tr>
<tr>
<td>14:45–15:15</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>15:15–16:45</td>
<td>Technical Sessions (Wed.3)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Claudia Sagastizábal</td>
<td>H0104, Main Building</td>
</tr>
<tr>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Robert Weismantel</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td>17:00–17:50</td>
<td>Historical Lecture: Günter M. Ziegler</td>
<td>H1012, Main Building</td>
</tr>
<tr>
<td>19:00–</td>
<td>Conference Dinner</td>
<td>Haus der Kulturen der Welt</td>
</tr>
</tbody>
</table>

Thursday, August 23

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30–18:30</td>
<td>Registration</td>
<td>Main Building of TU Berlin</td>
</tr>
<tr>
<td>09:00–17:00</td>
<td>Exhibits</td>
<td>'Lichthof', Main Building</td>
</tr>
<tr>
<td>09:00–09:50</td>
<td>Plenary Lecture: Richard Baraniuk</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td>10:00–10:30</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>10:30–12:00</td>
<td>Technical Sessions (Thu.1)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>12:00–13:15</td>
<td>Lunch Break (on your own)</td>
<td>see Restaurant Guide</td>
</tr>
<tr>
<td>13:15–14:45</td>
<td>Technical Sessions (Thu.2)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>14:45–15:15</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>15:15–16:45</td>
<td>Technical Sessions (Thu.3)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>15:15–16:45</td>
<td>Klaus Tschira Session (in German)</td>
<td>MA041, Math Building</td>
</tr>
<tr>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Michael P. Friedlander</td>
<td>H0104, Main Building</td>
</tr>
<tr>
<td>17:00–17:50</td>
<td>Semi-Plenary Lecture: Amin Saberi</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td>17:00–17:25</td>
<td>Historical Lecture: Jürgen Sprekels</td>
<td>H1012, Main Building</td>
</tr>
<tr>
<td>17:30–17:55</td>
<td>Historical Lecture: Martin Grötschel</td>
<td>H1012, Main Building</td>
</tr>
</tbody>
</table>

Friday, August 24

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30–18:30</td>
<td>Registration</td>
<td>Main Building of TU Berlin</td>
</tr>
<tr>
<td>09:00–17:00</td>
<td>Exhibits</td>
<td>'Lichthof', Main Building</td>
</tr>
<tr>
<td>09:00–09:50</td>
<td>Semi-Plenary Lecture: Xiaojun Chen</td>
<td>H0104, Main Building</td>
</tr>
<tr>
<td>09:00–09:50</td>
<td>Semi-Plenary Lecture: Nikhil Bansal</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td>10:00–10:30</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>10:30–12:00</td>
<td>Technical Sessions (Fri.1)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>12:00–13:15</td>
<td>Lunch Break (on your own)</td>
<td>see Restaurant Guide</td>
</tr>
<tr>
<td>13:15–14:45</td>
<td>Technical Sessions (Fri.2)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>14:45–15:15</td>
<td>Coffee Break</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>15:15–16:45</td>
<td>Technical Sessions (Fri.3)</td>
<td>Main Building and Math Building</td>
</tr>
<tr>
<td>17:00–17:50</td>
<td>Plenary Lecture: Jorge Nocedal</td>
<td>H0105, Main Building</td>
</tr>
<tr>
<td>18:00–</td>
<td>Farewell Gathering</td>
<td>'Lichthof', Main Building</td>
</tr>
</tbody>
</table>
Monday: 10:30–12:00

Special session: Tucker session
- **Organizer**: Daniel Ralph
- **Monday 10:30–12:00**
 - *Special session*: Tucker session (Organizer: Daniel Ralph) [p. 74]
 - MA 041

MA 041
- **Monday 10:30–12:00**
 - Approximation and online algorithms: Approximations in routing and others (Organizers: Sylvia Boyd and David Shmoys) [p. 74]
 - Approximation and online algorithms: Approximation in routing and others (Organizers: Sylvia Boyd and David Shmoys) [p. 74]
 - Approximation and online algorithms: Approximation in routing and others (Organizers: Sylvia Boyd and David Shmoys) [p. 74]
 - Approximation and online algorithms: Approximation in routing and others (Organizers: Sylvia Boyd and David Shmoys) [p. 74]

H 3005
- **Monday 10:30–12:00**
 - Combinatorial optimization: Global placement
 - Combinatorial optimization: Global placement
 - Combinatorial optimization: Global placement
 - Combinatorial optimization: Global placement

H 3007
- **Monday 10:30–12:00**
 - Combinatorial optimization: Matching on a single count
 - Combinatorial optimization: Matching on a single count
 - Combinatorial optimization: Matching on a single count
 - Combinatorial optimization: Matching on a single count

H 3009
- **Monday 10:30–12:00**
 - Conic programming: Geometry and duality in convex programming
 - Conic programming: Geometry and duality in convex programming
 - Conic programming: Geometry and duality in convex programming
 - Conic programming: Geometry and duality in convex programming

H 3011
- **Monday 10:30–12:00**
 - Combinatorial optimization: Combinatorial optimization in chip design I
 - Combinatorial optimization: Combinatorial optimization in chip design I
 - Combinatorial optimization: Combinatorial optimization in chip design I
 - Combinatorial optimization: Combinatorial optimization in chip design I

H 3013
- **Monday 10:30–12:00**
 - Combinatorial optimization: Combinatorial optimization in chip design II
 - Combinatorial optimization: Combinatorial optimization in chip design II
 - Combinatorial optimization: Combinatorial optimization in chip design II
 - Combinatorial optimization: Combinatorial optimization in chip design II

H 3015
- **Monday 10:30–12:00**
 - Combinatorial optimization: Combinatorial optimization in chip design III
 - Combinatorial optimization: Combinatorial optimization in chip design III
 - Combinatorial optimization: Combinatorial optimization in chip design III
 - Combinatorial optimization: Combinatorial optimization in chip design III

H 3017
- **Monday 10:30–12:00**
 - Combinatorial optimization: Combinatorial optimization in chip design IV
 - Combinatorial optimization: Combinatorial optimization in chip design IV
 - Combinatorial optimization: Combinatorial optimization in chip design IV
 - Combinatorial optimization: Combinatorial optimization in chip design IV
<table>
<thead>
<tr>
<th>Topic</th>
<th>Title</th>
<th>Author(s)</th>
<th>Organizer(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global optimization: Optimization models and methods for computer vision</td>
<td>Message passing algorithms for MAP-MRF inference</td>
<td>Vladimir Kolmogorov</td>
<td>Jiming Peng and Vikas Singh</td>
<td>H 2053</td>
</tr>
<tr>
<td></td>
<td>Convex relaxation techniques with applications in computer vision</td>
<td>Daniel Cremers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions</td>
<td>Maxwell Collins</td>
<td></td>
<td>H 1058</td>
</tr>
<tr>
<td>Implementations and software: Testing environments for machine learning and compressed sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spot: A linear-operator toolbox for Matlab</td>
<td>Michael Friedlander</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studying effects of various step selection strategies in first order approaches to compressed sensing and other composite optimization problems</td>
<td>Katya Scheinberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constructing test instances for basis pursuit denoising</td>
<td>Dirk Lorenc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Column generation and decomposition</td>
<td></td>
<td></td>
<td></td>
<td>H 2013</td>
</tr>
<tr>
<td></td>
<td>Allocation of proposals to reviewers to facilitate effective ranking: a branch and price approach</td>
<td>Ozgur Ozpeynirci</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A column generation approach for solving the patient admission scheduling problem</td>
<td>Richard Lusby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Integer programming algorithms I</td>
<td></td>
<td></td>
<td></td>
<td>H 2032</td>
</tr>
<tr>
<td></td>
<td>A fixed-point iterative approach to integer programming and distributed computation</td>
<td>Chuangyin Dang</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exploiting symmetry in integer convex optimization using core points</td>
<td>Thomas Rehn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Advances in integer programming</td>
<td></td>
<td></td>
<td></td>
<td>H 2043</td>
</tr>
<tr>
<td></td>
<td>Combinatorial, computational, and geometric approaches to the colourful simplicial depth</td>
<td>Antoine Deza</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ordered weighted average optimization of combinatorial problems</td>
<td>Justo Puerto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Recent progress in MIP</td>
<td>Strength of cross cuts</td>
<td>Marco Molinaro</td>
<td></td>
<td>H 2033</td>
</tr>
<tr>
<td></td>
<td>On t-branch split cuts for mixed-integer programs</td>
<td>Sanjeeb Dash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life sciences and healthcare: Computational genomics</td>
<td>自动纠正测序错误的Fiona方法</td>
<td>Hugues Richard</td>
<td>Alexander Schönfeld</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNA sequence design</td>
<td>Marianna D’Addario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Facility location and p-median problems</td>
<td></td>
<td></td>
<td></td>
<td>H 0106</td>
</tr>
<tr>
<td></td>
<td>On the p-median problem with uncertainty in the cost matrix</td>
<td>Sergio García Quiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solving the Fermat-Weber location problem by the hyperbolic smoothing approach</td>
<td>Vincius Xavier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Supply chain optimization</td>
<td>Multi-period price promotions in a single-supplier, multi-retailer supply chain under asymmetric demand information</td>
<td>Joseph Geunes</td>
<td></td>
<td>H 0111</td>
</tr>
<tr>
<td></td>
<td>A multi-objective economic lot-sizing problem with environmental considerations</td>
<td>Dolores Romero Morales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming: Global mixed-integer nonlinear optimization I</td>
<td></td>
<td></td>
<td></td>
<td>MA 004</td>
</tr>
<tr>
<td></td>
<td>Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs</td>
<td>Ignacio Grossmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A multilevel approach to global optimization of MINLP problems</td>
<td>Milos Bogataj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-objective optimization: Linear and integer multiobjective optimization</td>
<td></td>
<td></td>
<td></td>
<td>H 1029</td>
</tr>
<tr>
<td></td>
<td>Reference point method for multi-criteria optimization with integer variables</td>
<td>Markku Kalio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A multi-objective linear programming approach to data envelopment analysis</td>
<td>Matthias Ehrgott</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear programming: Methods for nonlinear optimization I</td>
<td>How does the linear independence assumption affect algorithms of nonlinear constrained optimization</td>
<td>Xin-Wei Liu</td>
<td></td>
<td>H 0107</td>
</tr>
<tr>
<td></td>
<td>A nonlinear preconditioner for experimental design problems</td>
<td>Mario Mommer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear programming: Nonlinear optimization I</td>
<td>Alternating direction methods and relative error criteria for augmented Lagrangians</td>
<td>Eckstein Jonathan</td>
<td>Frank E. Curtis and Daniel Robinson</td>
<td>H 0110</td>
</tr>
<tr>
<td></td>
<td>A family of second order methods for L1 convex optimization</td>
<td>Gillian Chiu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear programming: Algorithms for optimal control I</td>
<td>Separable formulations of optimum experimental design problems</td>
<td>Dennis Janka</td>
<td></td>
<td>H 0112</td>
</tr>
<tr>
<td></td>
<td>Hierarchical dynamic optimization – Numerical methods and computational results for estimating parameters in optimal control problems</td>
<td>Kathrin Hatz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Truncated nonsmooth newton multigrid methods for nonsmooth minimization</td>
<td>Carsten Gräser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monday 13:15–14:45

Nonsmooth optimization: Iterative methods for variational analysis
- Celia Jean-Alexis: The second order generalized derivative and generalized equations
 [Organizer: Alain Pietrus] [p. 83]
- Robert Bailey: Set-valued Newton's method for computing convex invariant sets
 [Elza Farkhi: The directed subdifferential and applications] [H 1012]

Optimization in energy systems: Optimization models to manage risk and uncertainty in power systems operations
- Jinye Zhao: Adaptive robust optimization for the security constrained unit commitment problem
 [Organizers: Raphael Chabar and Luiz Barroso] [p. 83]
- Anthony Papavasiliou: Applying high performance computing to multiarea stochastic unit commitment for high wind penetration

Optimization in energy systems: Unit commitment and inventory problems
- Robert Baier: Set-valued Newton's method for computing convex invariant sets
 [Elza Farkhi: The directed subdifferential and applications] [H 1012]
- Celia Jean-Alexis: The second order generalized derivative and generalized equations
 [Organizer: Alain Pietrus] [p. 83]
- Kin Keung Lai: A stochastic approach to power inventory optimization
 [Ali Koc: Parallel branch-cut-price for solving multistage stochastic unit commitment problems] [MA 550]
- Rene Pinnau: Exploiting model hierarchies in space mapping optimization
 [Optimization in energy systems: Unit commitment and inventory problems] [p. 84]

PDE-constrained optimization and multi-level/multi-grid methods
- Michael Ulbrich: An adaptive semismooth Newton-CG method for constrained parameter identification in seismic tomography
 [Optimization in energy systems: Unit commitment and inventory problems] [MA 415]
- Rene Pinnau: Exploiting model hierarchies in space mapping optimization
 [Organizer: Michael Ulbrich] [p. 84]

Robust optimization: Extensions of robust optimization models
- Alexandre Street: Energy and reserve scheduling under a joint GT n − K security criterion: An adjustable robust optimization approach
 [Optimization in energy systems: Unit commitment and inventory problems] [p. 84]
- Elza Farkhi: The directed subdifferential and applications
 [Optimization in energy systems: Unit commitment and inventory problems] [p. 84]
- Anthony Papavasiliou: Applying high performance computing to multiarea stochastic unit commitment for high wind penetration
 [Optimization in energy systems: Unit commitment and inventory problems] [p. 84]

Stochastic optimization and compressed sensing: New models and algorithms in sparse optimization
- Nicolas Boumal: Riemannian algorithms and estimation bounds for synchronization of rotations
 [Organizer: Benjamin Recht] [p. 85]
- Mark Davenport: A simple framework for analog compressive sensing
 [Benjamin Recht: Atomic norm denoising with applications to spectrum estimation and system identification] [H 1028]

Stochastic optimization: Advances in stochastic optimization
- David Brown: Optimal sequential exploration: Bandits, clairvoyants, and wildcats
 [Organizer: David Brown] [p. 85]
- Ciamac Moallemi: Pathwise optimization for linear convex systems
 [Constantine Caramanis: Optimization at all levels: Probabilistic Envelope Constraints] [MA 141]

Stochastic optimization: Optimization of physical systems under uncertainty
- Victor Zavala: Stochastic optimization: Impacts on electricity markets and operations
 [Organizer: Mihai Anitescu] [p. 85]
- Jim Luedtke: Branch-and-cut approaches for chance-constrained formulations of reliable network design problems
 [Bernardo Pagnocelli: The optimal harvesting problem under risk aversion] [MA 144]

Stochastic optimization: Decisions policies and estimation techniques in a stochastic environment
- Alwin Haenel: A SP approach for decision-dependent uncertainty in production planning under non-compliance risk
 [Organizer: Fabian Bastin] [p. 86]
- Fabian Bastin: On the combination of Hessian approximations for data estimation
 [Xinan Yang: Approximate dynamic programming with Bézier curves/surfaces for top-percentile traffic routing] [H 3503]
- Jim Luedtke: Branch-and-cut approaches for chance-constrained formulations of reliable network design problems
 [Bernardo Pagnocelli: The optimal harvesting problem under risk aversion] [H 1012]

Approximation and online algorithms: Real-time scheduling
- Martin Niemeier: Scheduling with an orthogonal resource constraint
 [Organizer: Sanjoy Baruah] [p. 87]
- Suzanne van der Ster: Mixed-criticality scheduling of sporadic task systems on a single machine
 [Jian-Jia Chen: Resource augmentation in real-time systems] [H 3010]
Combinatorial optimization: Combinatorial optimization in chip design II

- **Organizer:** Ulrich Brenner
- **Participants:**
 - Ulrike Suhl: Lagrangian relaxation and quadratic minimum cost flows for gate sizing
 - Christoph Bartoschek: Fast buffering of repeater trees
 - Stephan Held: Delay bounded Steiner trees and time-cost tradeoffs for faster chips

H 3004

Combinatorial optimization: Structural graph theory and methods

- **Organizer:** Paul Wolanski
- **Participants:**
 - Sang-Ho Oum: Vertex-minors and pivot-minors of graphs
 - Gwenaël Joret: Excluded forest minors and the Erdős-Pósa Property
 - Serguei Norine: Pairs of disjoint cycles

H 3005

Combinatorial optimization: Discrete structures and algorithms I

- **Organizer:** Satoru Fujishige
- **Participants:**
 - Shuji Kijima: Efficient randomized rounding in permutahedron
 - Júlia Pap: Characterizing and recognizing generalized polymatroids
 - Jens Massberg: Dual consistency and cardinality constrained polytopes

H 3008

Combinatorial optimization: Scheduling I

- **Organizer:** Vincenzo Bonifaci
- **Participants:**
 - Thomas Rieger: Two variants of flexible job shop scheduling with blockages
 - Leen Stougie: Scheduling with job-splitting and fixed setup
 - George Steiner: Scheduling and the traveling salesman problem on permuted monge matrices

H 3012

Combinatorial optimization: Recoverable robust combinatorial optimization

- **Organizer:** Arie Koster
- **Participants:**
 - Christina Büsing: k-distance recoverable robustness
 - Arie Koster: The recoverable robust knapsack problem
 - Marjan van den Akker: Column generation for the demand robust shortest path problem

H 3013

Combinatorial optimization: Scheduling algorithms II

- **Organizer:** Florian Jarre
- **Participants:**
 - Michal Kocvara: Introducing PENLAB, a Matlab code for nonlinear conic optimization
 - Mirjam Dür: Remarks on copositive plus matrices and the copositive plus completion problem
 - Peter Dickinson: Considering the complexity of complete positivity using the Ellipsoid method

H 3021

Complementarity and variational inequalities: Game theoretic analysis and optimization for resource allocation in communication systems

- **Organizer:** Zhi-Quan (Tom) Luo
- **Participants:**
 - Slawomir Stanczak: Progress and challenges in decentralized resource allocation optimization
 - Zhi-Quan (Tom) Luo: Linear precoder optimization and base station selection for heterogeneous networks
 - Gesualdo Scutari: Monotone communication games

MA 041

Complementarity and variational inequalities: Optimization and equilibrium problems I

- **Organizer:** Christian Kanzow
- **Participants:**
 - Oliver Stein: On differentiability properties of player convex generalized Nash equilibrium problems
 - Alexandra Schwartz: Biased lottery versus all-pay auction contests: A revenue dominance theorem
 - Michael Ferris: Stochastic variational inequalities and MOPEC

MA 313

Conic programming: Algorithms for matrix optimization problems

- **Organizer:** Florian Jarre
- **Participants:**
 - Qingna Li: Sequential semismooth Newton method for nearest low-rank correlation matrix problem
 - Chengjing Wang: On how to solve large scale matrix log-determinant optimization problems
 - Yu Xia: Gradient methods for a general least squares problem

H 2036

Conic programming: Nonlinear semidefinite programs and copositive programs

- **Organizer:** Florian Jarre
- **Participants:**
 - Michal Kocvara: Introducing PENLAB, a Matlab code for nonlinear conic optimization
 - Mirjam Dür: Remarks on copositive plus matrices and the copositive plus completion problem
 - Peter Dickinson: Considering the complexity of complete positivity using the Ellipsoid method

H 2038

Constraint programming: Improved representations for constraint programming

- **Organizer:** Jean-Charles Régis
- **Participants:**
 - Willem-Jan van Hoeve: Applying decision diagrams to constraint optimization problems
 - Michel Rueher: Using IIS for error localization
 - Charlotte Truchet: Octagonal domains for constraint programming

H 3003A

Finance and economics: New developments in computational finance

- **Organizer:** Thomas Coleman
- **Participants:**
 - Thomas Coleman: On the use of automatic differentiation to efficiently determine first and second derivatives in financial applications
 - Raquel Fonseca: Robust value-at-risk with linear policies
 - Christoph Reisinger: The effect of the payoff on the penalty approximation of American options

H 3027

Game theory: Large games and networks: Control and approachability

- **Organizer:** Dario Bauso
- **Participants:**
 - Giacomo Como: Stability analysis of transportation networks with multiscale driver decisions
 - Dario Bauso: Time-averaged consensus and distributed approachability in large multi-agent networks
 - Peter Caines: Nash equilibria in radial communication networks via mean field game theory

MA 043

Global optimization: Global optimization: Algorithms and applications

- **Organizer:** Oleg Prokopyev
- **Participants:**
 - Stefano Rebennack: Good linear approximations for MINLP problems with tolerance guarantee
 - Oleg Prokopyev: Optimal design of the annual influenza vaccine with autonomous manufacturer
 - Olesya Zhupańska: A nonlinear semidefinite programming approach to design of materials

H 2053

Implementations and software: Optimization tools for R

- **Organizer:** Erling Andersen
- **Participants:**
 - Henrik Friberg: The R-to-MOSEK optimization interface
 - Oleg Prokopyev: Optimal design of the annual influenza vaccine with autonomous manufacturer
 - Steven Dirkse: GDXRRW: Exchanging data between GAMS and R

H 1058
Optimization in energy systems: Network operation under failures and losses
Richard Chen: Survivability-constrained generation unit commitment with post-contingency corrective recourse
Jose Canto dos Santos: New genetic algorithms for contingencies selection in electric power systems
Maicon Evaldt: Optimal allocation of equipment for monitoring and identification of commercial losses in distribution networks

PDE-constrained optimization and multi-level/multi-grid methods
Pavel Zhlobich: Multilevel quasiseparable matrices in PDE-constrained optimization
Iterative solution of PDE constrained optimization and subproblems
Gregor Kriwet: Covariance matrix computation for parameter estimation in nonlinear models solved by iterative linear algebra methods
Lutz Lehmann: Optimal sequencing of primal, adjoint and design steps

Robust optimization: Robust nonlinear optimization
Mart in Mevissen: Distributionally robust optimization for polynomial optimization problems
Hans Pirnay: An algorithm for robust optimization of nonlinear dynamic optimization problems
Daniel Fleischman: On the trade-off between robustness and value

Sparse optimization and compressed sensing: Sparse optimization and generalized sparsity models
Rayan Saab: Recovering compressively sampled signals using partial support information
Emmanuel Candès: PhaseLift: Exact phase retrieval via convex programming
Gitta Kutyniok: Clustered sparsity

Stochastic optimization: Applications in natural resources
Gankhuyag Danzan: Regional economical mathematical models considering ecolological factors
Ralf Lenz: Optimization of water network operation under uncertainties
Adriana Piazza: The optimal harvesting problem under price uncertainty

Stochastic optimization: Production, inventory and project management
Wen-Lung Huang: Optimal aggregate production planning with fuzzy data
Ali Randa: Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem
Takashi Hasuike: Risk control approach to critical path method in mathematical programming under uncertainty

Stochastic optimization: Stochastic mixed-integer programming
Lanah Evers: The orienteering problem under uncertainty: Robust optimization and stochastic programming compared
Ward Romeijn: On the performance of a class of convex approximations for integer recourse models
Simge Kucukyavuz: Decomposition algorithms with Gomory cuts for two-stage stochastic integer programs

Telecommunications and networks: Wireless networks
Sergey Astrakov: The full efficient monitoring of stripe with external deployment sensors
Ashutosh Nigam: A Lagrangian heuristic for delay constrained relay node placement problem in wireless sensor networks
André Berger: Constrained resource assignments: Fast algorithms and applications in wireless networks

Variational analysis: Eigenvalue and semi-infinite optimization
Sara Grundel: Variational analysis of the spectral abscissa for defective and derogatory matrices
Tatiana Tchemisova: On a constructive approach to optimality conditions for convex SIP problems with polyhedral index sets
Julia Eaton: On the subdifferential regularity of functions of roots of polynomials

Variational analysis: Variational analysis and economic equilibrium
Abderrahim Jourani: A characterization of the free disposal condition for nonconvex economies on infinite-dimensional commodity spaces
Jean-Marc Bonnisseau: On the rank of payoff matrices with long-term assets
Alejandro Jofré: The robust stability of every equilibrium in economic models of exchange even under relaxed standard conditions

Monday: 15:15–16:45

Approximation and online algorithms: Location and routing problems
Tim Nonner: Polynomial-time approximation schemes for shortest path with alternatives
Adria Bock: The school bus problem
Artem Panin: On approximability some location and pricing problems

Combinatorial optimization: Interactions between optimization and game theory in scheduling
Marc Uetz: Mechanism design for single machine scheduling by ILP
Ruben Hoeksma: Price of anarchy for minsum related machine scheduling
Neil Olver: Approximation algorithms for scheduling via coordination mechanisms

Combinatorial optimization: Exact and approximation algorithms on graphs
Denis Cornaz: Strengthening Lovász bound for coloring with a new graph transformation
Frédéric Meunier: A routing problem raised by self-service bike hiring systems
Henning Bruhn: Clique or hole in claw-free graphs
Monday: 15:15–16:45

Combinatorial optimization: Distances in graphs

Christian Wulff-Nilsen: Approximate distance oracles with improved preprocessing and query time

Rachit Agarwal: The space-stretch-time tradeoff in distance oracles

Christian Wulff-Nilsen: Approximate distance oracles with improved preprocessing and query time

Liam Roditty: A survey on distance oracles

Combinatorial optimization: Scheduling II

Matthew Oster: A branch-and-cut algorithm for solving the capacitated max-cut with an application in scheduling

Stefan Berggren: On the diameter of partition polytopes and non-approximability of constrained clustering

Sara Zahedi: Hardness and non-approximability of constrained clustering

Combinatorial optimization: Constrained clustering

Peter Gritzmann: On the diameter of partition polytopes and vertex-disjoint cycle cover

Steffen Borgwardt: On the diameter of partition polytopes and vertex-disjoint cycle cover

András Sebő: On the diameter of partition polytopes and vertex-disjoint cycle cover

Combinatorial optimization: Equilibria and combinatorial structures

Britta Peis: Cooperative games and fractional programming

Tamás Király: Multiplayer multicommodity flows

Tom McCormick: A primal-dual algorithm for weighted abstract cut packing

Complementarity and variational inequalities: Analysis and learning in variational inequalities

Shu Lu: Learning parameters and equilibria in noise-corrupted Cournot games with misspecified price functions

Andreas Fischer: A framework for convex optimization and its implications to second-order methods

Complementarity and variational inequalities: Optimization and equilibrium problems II

Christian Kanzow: Nash equilibrium multiobjective elliptic control problems

Francisco Facchinei: Solving quasi-variational inequalities via their KKT conditions

Conic programming: Semidefinite programming applications

Defeng Sun: A successive SDP relaxation method for distance geometry problems

Robert Freund: Implementation-robust design: Modeling, theory and application to photonic crystal design with bandgaps

Robert Ghaddar: A global optimization approach for binary polynomial programs

Conic programming: Matrix optimization

Defeng Sun: Computing the nearest Euclidean distance matrix

Bin Wu: The Moreau-Yosida regularization of the Ky Fan k-norm related functions

Renato Monteiro: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods

Constraint programming: Constraint programming standard and industrial applications

Narendra Jussien: JSR331 – Standard for Java constraint programming API

Abder Aggoun: Modelling and solving a class of combinatorial problems in supply chain using the Choco constraint programming system

Finance and economics: Risk management in finance and insurance

Walter Farkas: Acceptability and risk measures: effectiveness, robustness and optimality

Cosimo-Andrea Munari: Risk measures and capital requirements with multiple eligible assets

Game theory: Design of optimal mechanisms

Rudolf Müller: Computationally feasible automated mechanism design: General approach and a case study on budget-balanced and nearly efficient randomized mechanisms for single-parameter domains

Konrad Mierendorf: Generalized reduced-form auctions: A network-flow approach

Global optimization: Algorithms and relaxations for nonconvex optimization problems

Jeff Linderoth: Generalized reduced-form auctions: A network-flow approach

Bissan Ghaddar: A global optimization approach for binary polynomial programs

Maria Polukarov: Optimal payments in dominant-strategy mechanisms for single-parameter domains

Konrad Mierendorf: Generalized reduced-form auctions: A network-flow approach

Implementations and software: MILP software I

Thorsten Koch: The SCIP Optimization Suite 3.0 – It's all in the bag!
Monday: 15:15–16:45

Integer and mixed-integer programming: MILP formulations II
Stefan Schmieder: Optimizing life cycle costs for buildings

Integer and mixed-integer programming: Trends in mixed integer programming I
Organizers: Andrea Lodi and Robert Weismantel

Integer and mixed-integer programming: Linear optimization
Sergei Chubanov: An improved polynomial relaxation-type algorithm for linear programming

Life sciences and healthcare: Therapy planning
Åsa Holm: A new optimization model for brachytherapy dose plans

Logistics, traffic, and transportation: Applications in transportation problems
Joshua Magbagbeola: Operations research approach to enhancing enterprise through alliances: A case study of Mowe Town, Ogun State, Nigeria

Mixed-integer nonlinear programming: Tight relaxations
Author: Stefan Vigerske

Multi-objective optimization
Antonio Flores-Tlacuahuac: An utopia-tracking approach to multiobjective predictive control

Nonlinear programming: Methods for nonlinear optimization III
Yuan Shen: New augmented lagrangian-based proximal point algorithms for convex optimization with equality constraint

Nonlinear programming: Nonlinear optimization III
Organizers: Frank E. Curtis and Daniel Robinson

Nonlinear programming: Unconstrained optimization I
Saman Babaie-Kafaki: A modification on the Hager-Zhang conjugate gradient method

Nonsmooth optimization: Nonsmooth optimization in imaging sciences
Organizer: Gabriel Peyré

Optimization in energy systems: Optimisation models for renewables integration
Enzo Sauma: Transmission planning and generation response for integrating renewables

Integrating convex polyhedral and mixed-integer programming
Ali Fattahi: A novel integer programming formulation for U-shaped line balancing problems type-1

Lattice-free sets, branching disjunctions, and mixed-integer programming
Oktay Gunluk: Lattice-free sets, branching disjunctions, and mixed-integer programming

Models for school networks planning
Rui Oliveira: Models for school networks planning

On the safety of Gomory cut generators
Giacomo Nannicini: On the safety of Gomory cut generators

Optimizing life cycle costs for buildings
Ali Fattahi: A novel integer programming formulation for U-shaped line balancing problems type-1

The kernel simplex method
Roland Wunderling: The kernel simplex method

The convex hull of vectors of functions
Ambros Gleixner: Rapid optimality-based bound tightening

An utopia-tracking approach to multiobjective predictive control
Antonio Flores-Tlacuahuac: An utopia-tracking approach to multiobjective predictive control

Fair multiobjective optimization: Models and techniques
Kai-Simon Goetzmann: Compromise solutions

An improved polynomial relaxation-type algorithm for linear programming
Sergei Chubanov: An improved polynomial relaxation-type algorithm for linear programming

Comparative study of reduced total travel times in check-pattern and hierarchical express systems
Hidefumi Miura: Comparative study of reduced total travel times in check-pattern and hierarchical express systems

Models for school networks planning
Rui Oliveira: Models for school networks planning

Exterior point simplex-type algorithms for linear and network optimization problems
Angelo Sifaleras: Exterior point simplex-type algorithms for linear and network optimization problems

Extending mathematical programming insights to control and signal processing problems
Javier Peña: Extending mathematical programming insights to control and signal processing problems

Multiobjective optimization
Organizer: Emilio Carrizosa

Convergence properties of augmented Lagrangian methods under the second-order sufficient optimality condition
Mikhail Solodov: Convergence properties of augmented Lagrangian methods under the second-order sufficient optimality condition

Feasibility detection in nonlinear optimization
Frank E. Curtis: Feasibility detection in nonlinear optimization

Two-phase active set methods with applications to inverse covariance estimation
Figen Oztoprak: Two-phase active set methods with applications to inverse covariance estimation

Transmission planning and generation response for integrating renewables
Enzo Sauma: Transmission planning and generation response for integrating renewables

Back up wind power firm contract sales on hydro generation with stochastic optimization: A Brazilian case study
Álvaro Vega: Backing up wind power firm contract sales on hydro generation with stochastic optimization: A Brazilian case study

Transmission network operation and planning with probabilistic security to facilitate the connection of renewable generation
Rodrigo Moreno: Transmission network operation and planning with probabilistic security to facilitate the connection of renewable generation
<table>
<thead>
<tr>
<th>Topic</th>
<th>Speakers</th>
<th>Organizers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization in energy systems</td>
<td>Martin: Multistage stochastic optimization of power dispatch and multiperiod duality of CVaR</td>
<td>Raimund Kovacevic</td>
<td>MA 550</td>
</tr>
<tr>
<td></td>
<td>Georg Pflug: Stochastic bilevel programs with applications to electricity contracts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bita Analui: Multistage stochastic optimization problems under model ambiguity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDE-constrained optimization and multi-level/multi-grid methods</td>
<td>Kevin Sturm: Shape optimization for an interface problem in linear elasticity for distortion compensation</td>
<td>Antoine Laurain</td>
<td>MA 415</td>
</tr>
<tr>
<td></td>
<td>Volker Schultz: On the usage of the shape Hessian in aerodynamic shape optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robust optimization</td>
<td>Phanipa Thipwiwatpotjana: Pessimistic, optimistic, and minimax regret approaches for linear programs under uncertainty</td>
<td>Ebrahim Nasrabadi</td>
<td>H 3503</td>
</tr>
<tr>
<td></td>
<td>Michael Römer: Linear optimization with variable parameters: Robust and generalized linear programming and their relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mohammad Mehdi Nasrabadi: A fuzzy programming approach to robust optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparse optimization and compressed sensing</td>
<td>Wotao Yin: Augmented L1 and nuclear-norm minimization with a globally linearly convergent algorithm</td>
<td>Michel Baes</td>
<td>H 1028</td>
</tr>
<tr>
<td></td>
<td>Lin Xiao: A proximal-gradient homotopy method for the sparse least-squares problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization</td>
<td>Lijian Chen: Solving chance-constrained optimization by Bernstein polynomial approximation</td>
<td>Sumit Kunnumkal</td>
<td>MA 141</td>
</tr>
<tr>
<td></td>
<td>Sumit Kunnumkal: Randomization approaches for network RM with choice behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization</td>
<td>Retsef Levi: Near-optimal algorithms for assortment planning under dynamic substitution and stochastic demand</td>
<td>Retsef Levi</td>
<td>MA 144</td>
</tr>
<tr>
<td></td>
<td>Dragos Ciocan: Dynamic allocation problems with volatile demand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization</td>
<td>Miguel Lejeune: Advances in probabilistically constrained optimization</td>
<td>Miguel Lejeune</td>
<td>MA 376</td>
</tr>
<tr>
<td></td>
<td>Ahmed Shabbir: Probabilistic set covering with correlations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecommunications and networks</td>
<td>Brigitte Jaumard: Path vs. cutset column generation models for the design of IP-over-WDM optical networks</td>
<td>Brigitte Jaumard</td>
<td>H 3002</td>
</tr>
<tr>
<td></td>
<td>Jørgen Haahr: Heuristic planning of shared backup path protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variational analysis</td>
<td>Xiaqi Yang: Optimality conditions via exact penalty functions</td>
<td>Zhaoxiang Yang</td>
<td>H 2035</td>
</tr>
<tr>
<td></td>
<td>Bozhi Tian: An interior-point $\ell_{\frac{1}{2}}$-penalty method for nonlinear programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variational analysis</td>
<td>Mau Nam Nguyen: Variational analysis of minimal time functions with unbounded dynamics and generalized smallest enclosing circle problems</td>
<td>Nguyen Dong Yen</td>
<td>H 2051</td>
</tr>
<tr>
<td></td>
<td>Andrew Eberhard: Approaches to optimality conditions using nonsmooth and variational methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday 10:30–12:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximation and online algorithms</td>
<td>Konstantinos Georgiou: Black-box reductions for cost-sharing mechanism design</td>
<td>Chaitanya Swamy</td>
<td>H 3010</td>
</tr>
<tr>
<td></td>
<td>Berthold Vöcking: A universally-truthful approximation scheme for multi-unit auctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>Stefano Gualandi: Resource constrained shortest paths with a super additive objective function</td>
<td>Steiner trees</td>
<td>H 3004</td>
</tr>
<tr>
<td></td>
<td>Hiroshige Dan: Finding the shortest cycle in directed graphs under some constraints on passing vertices and paths</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marika Karbstein: Approximation and min-max results for the Steiner connectivity problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Subtopic</td>
<td>Organizers</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>Submodularity and covering</td>
<td>Maxim Sviridenko, Andreas Krause, Rico Zenklusen</td>
<td>116</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>LP based approximation algorithms for location and routing</td>
<td>Jaroslaw Byrka, Anna Blasiak, Zachary Friggstad</td>
<td>116</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>Scheduling III</td>
<td>Evgeny Gafarov, Jens Poppenborg, Sandro Bosio</td>
<td>116</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>Trees and words</td>
<td>Winfried Hochstättler, Marcin Krzywkowski, Yasuko Matsui</td>
<td>116</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>Data structures and algorithms for VLSI routing</td>
<td>Dirk Müller, Christian Schulte, Michael Gester</td>
<td>116</td>
</tr>
<tr>
<td>Complementary and variational inequalities</td>
<td>Complementarity properties of linear transformations on Euclidean Jordan algebras</td>
<td>Jeyaraman Irulappasamy, Jiyuan Tao, Roman Sznaider</td>
<td>117</td>
</tr>
<tr>
<td>Complementary and variational inequalities</td>
<td>Matrix classes for linear complementarity problems</td>
<td>Todd Munson, Richard Cottle, Gabriele Uchida</td>
<td>117</td>
</tr>
<tr>
<td>Conic programming</td>
<td>Smoothing methods for symmetric cone complementarity problems</td>
<td>Cong Cheng, Ellen Fukuda, Shunsuke Hayashi</td>
<td>117</td>
</tr>
<tr>
<td>Conic programming</td>
<td>New advances in conic programming</td>
<td>Julia Sponsel, Cristian Dobre, Juan Vera</td>
<td>117</td>
</tr>
<tr>
<td>Constraint programming</td>
<td>Constraint programming for routing and scheduling</td>
<td>Jean-Guillaume Fages, Arnaud Malapert, Louis-Martin Rousseau</td>
<td>118</td>
</tr>
<tr>
<td>Derivative-free and simulation-based optimization</td>
<td>Derivative-free optimization and constraints</td>
<td>Giovanni Fasano, Kevin Koller, Mjöd Powell</td>
<td>118</td>
</tr>
<tr>
<td>Finance and economics</td>
<td>Portfolio optimization</td>
<td>Sergio Ortobelli Lozza, Arnaud Malapert, Louis-Martin Rousseau</td>
<td>118</td>
</tr>
<tr>
<td>Game theory</td>
<td>Game-theoretic models in operations</td>
<td>Ilan Lobel, Hamid Nazerzadeh, Georgia Perakis</td>
<td>119</td>
</tr>
<tr>
<td>Global optimization</td>
<td>Convex optimization approaches to polynomial optimization problems</td>
<td>Amélie Lambert, Franz Rendl, Janez Povh</td>
<td>119</td>
</tr>
<tr>
<td>Implementations and software</td>
<td>MIPLIB software II</td>
<td>Martin Tieves, Michael Joswig, Frédéric Gariot</td>
<td>119</td>
</tr>
</tbody>
</table>
Tuesday: 13:15–14:45

PDE-constrained optimization and multi-level/multi-grid methods
- Adjoint methods in PDE-constrained optimization
 - Andrea Walther: Adaptive finite element discretizations in optimal control of PDEs
 - Ronald Hettler: Adaptive space-time finite element approximations of parabolic optimal control problems

Robust optimization
- Dynamic optimization and its applications
 - Omid Navaied: Robust optimization in radiation therapy

Stochastic optimization
- Combinatorial optimization
 - Pablo Parrilo: Cone factorizations and lifts of convex sets
 - Stephen Vavasis: Identifying large submatrices using convex programming
 - Joao Gouveia: Semidefinite lifts of polytopes
 - Francois Glineur: Compact polyhedral approximations for convex sets defined by polynomials

Telecommunications and networks
- Flow and path problems
 - Sylvia Boyd: The traveling salesman problem on cubic and subcubic graphs
 - Anke van Zuylen: A proof of the Boyd-Carr conjecture

Variational analysis
- Nonsmooth analysis via piecewise-linearization
 - Andreas Griewank: On piecewise linearization and lexicographic differentiation

Approximation and online algorithms
- Practical implementations and models using approximation algorithms
 - Rodrigo Carrasco: Experimental results of approximation algorithms for energy aware scheduling

Conjunctive optimization
- Lift-and-project methods for combinatorial optimization problems
 - Eden Chlamtac: Reduced integrality gaps and improved approximations via lift-and-project methods

Combinatorial optimization
- Lift-and-project methods for combinatorial optimization problems
 - André Soares: Shorter tours by nicer ears
<table>
<thead>
<tr>
<th>Topic</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial optimization: Combinatorics and geometry of linear optimization</td>
<td>Francisco Santos: Counter-examples to the Hirsch conjecture</td>
<td>[p. 129]</td>
<td>H 3008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicolai Hähnle: An abstract view on the polynomial Hirsch conjecture</td>
<td>[p. 129]</td>
<td>H 3012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yuriy Zinchenko: Polytopes and arrangements: Diameter and curvature</td>
<td>[p. 130]</td>
<td>H 3013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan Schneider: BonnCell: Placement of leaf cells in VLSI design</td>
<td>[p. 130]</td>
<td>H 3021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stefan Hougardy: Transistor level layout: Algorithms and complexity</td>
<td>[p. 130]</td>
<td>H 3030A</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Matching and related problems</td>
<td>Kristóf Bérzó: Restricted b-matchings</td>
<td>[p. 130]</td>
<td>H 3036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kenjiro Takazawa: Covering cuts in bridgeless cubic graphs</td>
<td>[p. 130]</td>
<td>H 3038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarah Miracle: Mixing times of self-organizing lists and biased permutations</td>
<td>[p. 131]</td>
<td>H 3041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David Hartvigsen: A generalized k-matching problem</td>
<td>[p. 131]</td>
<td>H 3043</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Matching and related problems</td>
<td>Francisco Santos: Counter-examples to the Hirsch conjecture</td>
<td>[p. 131]</td>
<td>H 3047</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicolai Hähnle: An abstract view on the polynomial Hirsch conjecture</td>
<td>[p. 131]</td>
<td>H 3049</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yuriy Zinchenko: Polytopes and arrangements: Diameter and curvature</td>
<td>[p. 131]</td>
<td>H 3051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan Schneider: BonnCell: Placement of leaf cells in VLSI design</td>
<td>[p. 131]</td>
<td>H 3055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarah Miracle: Mixing times of self-organizing lists and biased permutations</td>
<td>[p. 132]</td>
<td>H 3061</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Matching and related problems</td>
<td>Francisco Santos: Counter-examples to the Hirsch conjecture</td>
<td>[p. 132]</td>
<td>H 3067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicolai Hähnle: An abstract view on the polynomial Hirsch conjecture</td>
<td>[p. 132]</td>
<td>H 3069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarah Miracle: Mixing times of self-organizing lists and biased permutations</td>
<td>[p. 133]</td>
<td>H 3075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David Hartvigsen: A generalized k-matching problem</td>
<td>[p. 133]</td>
<td>H 3077</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarah Miracle: Mixing times of self-organizing lists and biased permutations</td>
<td>[p. 133]</td>
<td>H 3083</td>
<td></td>
</tr>
<tr>
<td></td>
<td>David Hartvigsen: A generalized k-matching problem</td>
<td>[p. 133]</td>
<td>H 3085</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday: 13:15–14:45

- **Amir Ali Ahmadi: Joint spectral radius, path-complete graphs, and semidefinite programming**
- **Xuan Vinh Doan: Feature extraction and data clustering with semidefinite programming**
- **Qihang Lin: First-order algorithms for optimal trade execution**
- **Somayeh Moazeni: Regularized robust optimization for optimal portfolio execution**

Global optimization: Rigorous global optimization

- **Hermann Schichl: Balanced rigorous relaxation methods in global optimization**
- **Ferenc Domes: Finding global robust solutions of robust quadratic optimization problems**
- **Arnold Neumaier: Projective methods for constraint satisfaction and global optimization**

Finance and economics: Financial optimization

- **Yuying Li: A novel method for computing an optimal VaR portfolio**
- **Qihang Lin: First-order algorithms for optimal trade execution with dynamic risk measures**
- **Somayeh Moazeni: Regularized robust optimization for optimal portfolio execution**

Game theory: Coordination mechanisms for efficient equilibria

- **Laurent Gourves: On the price of anarchy of the set cover game**
- **Rudolf Müller: Mechanism design for decentralized online machine scheduling**
- **Martin Gairing: Coordination mechanisms for congestion games**

Implementations and software: Software for constraint programming

- **Paul Shaw: Automatic search in CP optimizer**
- **Peter Nightingale: Watched literals and generating propagators in constraint programming**
- **Guido Tack: Towards MiniZinc 2.0**

Integer and mixed-integer programming: Advances in integer programming

- **Alejandro Toriello: Optimal toll design: A lower bound framework for the traveling salesman problem**
- **Minjiao Zhang: Cardinality-constrained continuous mixing set**
- **Ricardo Fukasawa: New inequalities for mixing sets arising in chance constrained programming**
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer and mixed-integer programming: Trends in mixed integer programming III</td>
<td>Tamás Kis: Strengthening the MIP formulation of a bilevel lot-sizing problem</td>
<td>[p. 133]</td>
<td>H 2032</td>
</tr>
<tr>
<td></td>
<td>Fabio Furini: Heuristic and exact algorithms for the interval min-max regret knapsack problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life sciences and healthcare: Bioinformatics and combinatorial optimization II</td>
<td>Johannes Köster: Protein hypernetworks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tamás Kis: Charge group partitioning in biomolecular simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rumen Andonov: Optimal DALI protein structure alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Hub location problems</td>
<td>Julia Sender: A local improvement heuristic for a hub location problem in wagonload traffic</td>
<td>[p. 134]</td>
<td>H 0106</td>
</tr>
<tr>
<td></td>
<td>Vinicius Armentano: Tabu search for the hub covering problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiroaki Mohri: Some extended network hub problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michal Penn: Cyclic routing of unmanned aerial vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tal Raviv: Optimal control of battery switching stations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Logistics and network optimization: New problems and new approaches</td>
<td>Tamás Terlaky: Conic representation of the convex hull of disjunctions of convex sets and conic cuts for mixed integer second order cone optimization</td>
<td>[p. 136]</td>
<td>MA 005</td>
</tr>
<tr>
<td></td>
<td>Sarah Drewes: Cover inequalities and outer-approximation for mixed-01 SOCps</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antonio Morsi: Solving MINLPs on loosely coupled networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaisa Miettinen: Interactive Pareto Navigator method for nonconvex multiobjective optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hans Trinkaus: Multi criteria decision support in real-time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marco Rozgic: Interior point methods for the optimization of technological forming processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anders Forsgren: Inexact Newton methods with applications to interior methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christian Kirches: A real-time iteration scheme for mixed-integer nonlinear model predictive control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christopher Hendrich: A double smoothing technique for solving nondifferentiable convex optimization problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization in energy systems: Stochastic programming applications in energy systems</td>
<td>Cosmin Petra: Scalable stochastic optimization of power grid energy systems</td>
<td>[p. 137]</td>
<td>MA 549</td>
</tr>
<tr>
<td></td>
<td>Suvrajeet Sen: Scalable stochastic optimization of power grid energy systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization in energy systems: Stochastic programming models for electricity generation planning</td>
<td>Oscar Carreno: Developing optimization software for Colombian power system planning</td>
<td>[p. 137]</td>
<td>MA 550</td>
</tr>
<tr>
<td></td>
<td>Michel Gendreau: Midterm hydro generation scheduling under inflow uncertainty using the progressive hedging algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization in energy systems: Stochastic programming models for electricity generation planning</td>
<td>Karsten Klose: Developing optimization software for Colombian power system planning</td>
<td>[p. 138]</td>
<td>MA 415</td>
</tr>
<tr>
<td></td>
<td>Simon Stinge: Applications of optimal control in electromagnetic flow measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dietmar Hömberg: Optimal control problems arising in the industrial growth of bulk semiconductor single crystals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robust optimization: Applications of robust optimization</td>
<td>Ihsan Yanköglu: Robust simulation-based optimization with Taguchian regression models</td>
<td>[p. 138]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dick Den Hertog: Robust sparse regression and orthogonal matching pursuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsan Sheng Ng: Target-oriented robust optimization for gas field development planning</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tuesday: 15:15–16:45

Robust optimization: Advances in robust optimization (Organizer: Wolfram Wiesemann) [p. 139]
- Robust optimization: Block coordinate descent method for block-structured problems (Organizer: Peter Richtarik)
- Huan Xu: A distributional interpretation of robust optimization, with applications in machine learning
- Boris Houska: Lifting methods for generalized semi-infinite programs
- Wolfram Wiesemann: Robust Markov decision processes

Sparse optimization and compressed sensing: Coordinate descent methods for huge-scale optimization (Organizer: Peter Richtarik)
- Jonas Schneider: Nonparametric estimation using Bayesian mixtures in sparse networks
- Silvia Bogomolova: Confidence regions for level sets – sufficient conditions
- Peter Richtarik: Parallel block coordinate descent methods for huge-scale optimization

Stochastic optimization: Statistical learning with applications in machine learning (Organizer: Daniel Kuhn)
- Martin Takáć: Distributed block coordinate descent for statistical learning
- Petar Djurić: Randomized distributed optimization

Spar programming and compressed sensing: Coordinate descent methods for huge-scale optimization (Organizer: Peter Richtarik)
- Petar Djurić: Parallel block coordinate descent for sparse programming
- Martin Takáć: Distributed block coordinate descent for statistical learning

Tuesday: 15:15–16:45

Stochastic optimization: Topics in stochastic programming (Organizer: Petr Lachout) [p. 139]
- Silvia Vogel: Confidence regions for level sets – sufficient conditions
- Petr Lachout: Local information in stochastic optimization
- Milos Kopa: Robustness in stochastic programs with risk and probabilistic constraints

Stochastic optimization: Computational aspects of stochastic integer programming for large-scale and real-world problems (Organizer: Jörg Rambau) [p. 140]
- Jonas Schweiger: Multi-scenario topology optimization in gas networks
- Miriam Kießling: ISPO – integrated size and price optimization for a fashion discounter with many branches

Stochastic optimization: Approximation and online algorithms (Organizer: Sylvia Boyd and David Shmoys) [p. 140]
- Mohit Singh: A randomized rounding approach to the traveling salesman problem
- Tobias Mömke: Approximations for metric TSP
- Marcin Mucha: 13/9-approximation for graphic TSP

Combinatorial optimization: Approximation and online algorithms (Organizer: Tamás Király) [p. 141]
- Ho Yeung: A randomized rounding approach to the traveling salesman problem
- Thomas Rothvoss: Approximating graph TSP by matchings
- David Bremner: Minimum norm points on the boundary of convex polytopes

Combinatorial optimization: LP relaxations (Organizer: Petr Lachout) [p. 143]
- Maria Teresa Godinho: On a time-dependent formulation for the traveling salesman problem
- Dorit Hochbaum: Flow-based algorithms that solve clustering problems related to graph expansion, network design, and sensor placement
- Yong Hong Kuo: On the mixed set covering, partitioning and packing problem
<table>
<thead>
<tr>
<th>Topic</th>
<th>Authors</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial optimization: New insights for old problems</td>
<td>Lisa Fleischer</td>
<td>H 3013</td>
<td>143</td>
</tr>
<tr>
<td>Combinatorial optimization: Competitive strategies for routing flow over time</td>
<td>Omar Larre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: A simple and fast 2-approximation algorithm for the one-warehouse multi-retailer problem</td>
<td>Omar Larre, Andreas S. Schulz</td>
<td>H 3021</td>
<td>144</td>
</tr>
<tr>
<td>Complementarity and variational inequalities: Differential variational inequalities</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>MA 041</td>
<td></td>
</tr>
<tr>
<td>Complementarity and variational inequalities: MPECs in function space II</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>MA 313</td>
<td></td>
</tr>
<tr>
<td>Concomitant programming: First-derivative and interior methods in convex optimization</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 2036</td>
<td></td>
</tr>
<tr>
<td>Concomitant programming: Conic and convex programming in statistics and signal processing I</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 2038</td>
<td></td>
</tr>
<tr>
<td>Constraint programming: Constraint programming methodology</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 3003A</td>
<td></td>
</tr>
<tr>
<td>Derivative-free and simulation-based optimization: Novel approaches in derivative-free optimization</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 3503</td>
<td></td>
</tr>
<tr>
<td>Finance and economics: Applications and algorithms</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 3027</td>
<td></td>
</tr>
<tr>
<td>Game theory: New LCP-based market equilibrium algorithms</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>MA 043</td>
<td></td>
</tr>
<tr>
<td>Global optimization: From quadratic through factorable to black-box global optimization</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 2053</td>
<td></td>
</tr>
<tr>
<td>Implementations and software: NLP and MINLP software</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 1058</td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Advances in mixed integer programming</td>
<td>Mohammad Hassan Farshbaf-Shaker</td>
<td>H 2013</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday: 15:15–16:45

- 45

- **H 3013**
 - Lisa Fleischer: Competitive strategies for routing flow over time
 - Omar Larre: Existence and uniqueness of equilibria for flows over time

- **H 3021**
 - Omar Larre: Existence and uniqueness of equilibria for flows over time

- **MA 041**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of vector-valued elastic Allen-Cahn variational inequalities

- **MA 313**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of quasistatic plasticity

- **H 2036**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 2038**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 3003A**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 3503**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 3027**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **MA 043**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 2053**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 1058**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming

- **H 2013**
 - Mohammad Hassan Farshbaf-Shaker: Optimal control of nonlinear convex semidefinite programming
Integer and mixed-integer programming: Trends in mixed integer programming [p. 147]

- **Tiziano Parriani:** An analysis of natural approaches for solving multicommodity-flow problems
- **Alexandra Newman:** Practical guidelines for solving difficult linear and mixed integer programs

Integer and mixed-integer programming: Location problems [p. 148]

- **Alfredo Marin:** Discrete ordered non-linear median problems with induced order
- **Wilbert Wilhelm:** The stochastic healthcare facility configuration problem

Logistics, traffic, and transportation: Exact approaches to routing problems [p. 148]

- **Vladimir Deineko:** A framework for vehicle routing
- **Stefan Ropke:** Exact and heuristic solution methods for the generalized asymmetric vehicle routing problem and the capacitated arc routing problem

Logistics, traffic, and transportation: Approximation algorithms for supply chain management and logistics optimization models [p. 148]

- **Tim Carnes:** A primal-dual approximation algorithm for air ambulance routing and deployment
- **Gonzalo Rometo:** Allocating subsidies to minimize a commodity’s market price – a network design approach

Mixed-integer nonlinear programming: Convex relaxations for nonconvex optimization problems [p. 149]

- **Kurt Anstreicher:** Second-order-cone relaxations for extended trust-region subproblems
- **Carlos Cardonha:** A fast solution method applied to the vehicle positioning problem and its multi-periodic, online, and robust extension

Multi-objective optimization: Applications of multiobjective optimization to planning horizons on portfolio optimization [p. 149]

- **Ceren Tuncer Såkar:** Effects of multiple criteria and different planning horizons on portfolio optimization
- **Lino Alvarez-Vazquez:** Air pollution and industrial plant location: A multi-objective optimization approach

Nonlinear programming: Interior-point methods [p. 149]

- **Li-Zhi Liao:** A study of the dual affine scaling continuous trajectories for linear programming
- **Mouna Hassan:** The \(l_1 \) - Penalty Interior Point Method

Nonlinear programming: Recent advances in nonlinear optimization [p. 150]

- **Nicholas Gould:** SQP Filter methods without a restoration phase
- **Philip Gill:** Regularization and convexification for SQP methods

Nonlinear programming: Real-time optimization III [p. 150]

- **Markus Kögler:** On real-time optimization for model predictive control using multiplier methods and Nesterov's gradient method
- **Gabriele Pannocchia:** On the convergence of numerical solutions to the continuous-time constrained LQR problem

Nonsmooth optimization: Large-scale structured optimization [p. 150]

- **Arkadi Nemirovski:** Randomized first-order algorithms for bilinear saddle point problems and their applications to \(l_1 \) minimization
- **Guanghui Lan:** Stochastic first- and zero-order methods for nonconvex stochastic programming

Optimization in energy systems: Optimization for power grids [p. 151]

- **Arvind Raghunathan:** Global optimization of power flow problems
- **Naiyuan Chiang:** Solving SCOPF problems by a new structure exploiting interior point method

Optimization in energy systems: Mathematical optimization for mid-term operation planning in gas networks [p. 151]

- **Björn Geißler:** A new approach for solving MINLPs applied to gas network optimization
- **Jesco Humpola:** Topology optimization for nonlinear network flows

PDE-constrained optimization and multi-level/multi-grid methods: Optimization applications in industry II [p. 151]

- **Stefan Ulbrich:** Multi-level optimization based on adaptive discretizations and reduced order models for engineering applications
- **Martin Gröpl:** A certified reduced basis approach for parameterized linear-quadratic optimal control problems

Robust optimization: Applications of robust optimization II [p. 152]

- **Allison O’Hair:** Adaptive, dynamic and robust optimization to learn human preferences
- **Andy Sun:** Adaptive robust optimization for the security constrained unit commitment problem

Optimization in energy systems: Mathematical optimization for mid-term operation planning in gas networks [p. 151]

- **Björn Geißler:** A new approach for solving MINLPs applied to gas network optimization
- **Bernhard Willert:** A high accuracy optimization model for gas networks

PDE-constrained optimization and multi-level/multi-grid methods: Optimization applications in industry II [p. 151]

- **Stefan Ulbrich:** Multi-level optimization based on adaptive discretizations and reduced order models for engineering applications
- **Martin Gröpl:** A certified reduced basis approach for parameterized linear-quadratic optimal control problems

Robust optimization: Applications of robust optimization II [p. 152]

- **Allison O’Hair:** Adaptive, dynamic and robust optimization to learn human preferences
- **Andy Sun:** Adaptive robust optimization for the security constrained unit commitment problem
Wednesday: 10:30–12:00

Robust optimization: Theory of robust optimization

Organizer: Dick Den Hertog

Dick Den Hertog: Deriving robust counterparts of nonlinear uncertain inequalities

Andreas Tillmann: Heuristic optimality check and computational solver comparison for basis pursuit denoising

Stochastic optimization: Advances in stochastic programming

Organizer: Daniel Kuhn

Angelos Georghiou: A stochastic capacity expansion model for the UK energy system

Panos Parpas: Dimensionality reduction and a maximum principle for multidimensional optimal control problems

Daniel Kuhn: Polyhedrality in distributionally robust optimization

Stochastic optimization: Approximation algorithms for stochastic combinatorial optimization

Organizer: Chaitanya Swamy

Inge Goertz: Stochastic vehicle routing with recourse

Ramamoorthi Ravi: Approximation algorithms for correlated knapsacks and non-negativity constraints

Combinatorial optimization: Extended formulations in discrete optimization II

Organizers: Gautier Stauffer and Volker Kaibel

Mathieu Van Vyve: Projecting an extended formulation

Kanstantsin Pashkovich: Constructing extended formulations using polyhedral relations

Dirk Oliver Theis: Some lower bounds on sizes of positive semidefinite extended formulations

Combinatorial optimization: Combinatorics and geometry of linear optimization III

Organizers: Jesús De Loera and Antoine Deza

Shinji Mizuno: An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables

Ilan Adler: The equivalence of linear programs and zero-sum games

Uri Zwick: Subexponential lower bounds for randomized pivoting rules for the Simplex algorithm

Approximation and online algorithms: Scheduling and packing: Approximation with algorithmic game theory in mind

Organizer: Asaf Levin

Leah Epstein: General settings for packing problems

Asaf Levin: A unified approach to truthful scheduling on related machines

Rob van Stee: The price of anarchy for selfish routing is two

Combinatorial optimization: Algorithm for matrices and matroids

Organizer: Olaf Parberry

Matthias Walter: A simple algorithm for testing total unimodularity of matrices

Leonidas Pitsoulis: Decomposition of binary signed-graphic matroids

Combinatorial optimization: On the robust knapsack problem

Ulrich Pferschy: On the robust knapsack problem

Wednesday, 10:30–12:00
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
<th>Room</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial optimization: Heuristics I</td>
<td>Badri Toppur: A divide-and-bridge heuristic for Steiner minimal trees on the Euclidean plane</td>
<td>157</td>
<td>H 3012</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Yuri Frota: Upper and lower bounds for the constrained forest problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shunji Umetani: A heuristic algorithm for the set multicover problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Network flows</td>
<td>Maria Afsharirad: Maximum dynamic flow interdiction problem</td>
<td>157</td>
<td>H 3013</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Andreas Karrenbauer: Planar min-cost flow in nearly $O(n^{3/2})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chandra Chekuri: Multicommodity flows and cuts in polynomial networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Routing for public transportation</td>
<td>Matthias Müller-Hannemann: Coping with delays: Online timetable information and passenger-oriented train disposition</td>
<td>157</td>
<td>H 3021</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Thomas Pajor: Round-based public transit routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hannah Bast: Next-generation route planning: Multi-modal, real-time, personalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Network flows</td>
<td>[Organizer: Peter Sanders]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Routing for public transportation</td>
<td>[Organizer: Peter Sanders]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complementarity and variational inequalities: Complementarity modeling and its game theoretical applications</td>
<td>[Organizer: Samir Neogy]</td>
<td>158</td>
<td>MA 041</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Samir Neogy: Generalized principal pivot transforms, complementarity modeling and its applications in game theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abhijit Gupta: Complementarity model for a mixture of stochastic game</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Organizer: Samir Neogy]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complementarity and variational inequalities: Advances in the theory of complementarity and related problems I</td>
<td>[Organizer: Samir Neogy]</td>
<td>158</td>
<td>MA 313</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jein-Shan Chen: Lipschitz continuity of solution mapping of symmetric cone complementarity problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexey Kurennoy: On regularity conditions for complementarity problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conic programming: New conic optimization approaches for max-cut and graph equipartition</td>
<td>[Organizer: Miguel Anjos]</td>
<td>158</td>
<td>H 2036</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Nathan Kris洛克: Improved semidefinite bounding procedure for solving max-cut problems to optimality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andreas Schmutzer: Branch-and-cut for the graph 2-equipartition problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conic programming: Conic and convex programming in statistics and signal processing II</td>
<td>[Organizer: Venkat Chandrasekaran]</td>
<td>159</td>
<td>H 2038</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Joel Tropp: Sharp recovery bounds for convex deconvolution, with applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constraint programming: Modeling and reformulation</td>
<td>[Organizer: Mark Wallace]</td>
<td>159</td>
<td>H 3003A</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Mark Wallace: Inferring properties of models from properties of small instances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helmut Simonis: Building global constraint models from positive examples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative-free and simulation-based optimization: Exploiting structure in derivative-free optimization</td>
<td>[Organizers: Luís Nunes Vicente and Stefan Wild]</td>
<td>159</td>
<td>H 3503</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Carl Kelley: Sparse interpolatory models for molecular dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warren Hare: Derivative free optimization for finite minimax functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Péter Erdős: Have oil and gas prices got separated?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Schuerle: Price dynamics in gas markets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Florentina Paraschiv: Modelling negative electricity prices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game theory: Games over networks</td>
<td>[Organizer: Asu Ozdaglar]</td>
<td>160</td>
<td>3005</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Asu Ozdaglar: Network security and contagion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pablo Parrilo: Near-potential network games</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ali Jadbaia: A game-theoretic model of competitive contagion and product adoption in social networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game theory: Variational inequalities in games</td>
<td>Evgeniy Golshiein: Many-person games with convex structure</td>
<td>160</td>
<td>MA 043</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Vikas Jain: Constrained vector-valued dynamic game and symmetric duality for multiobjective variational problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global optimization: Optimal hybrid control theory approaches to global optimization</td>
<td>[Organizer: Zelda Zabransky]</td>
<td>161</td>
<td>H 2053</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Zelda Zabransky: Solving non-linear discrete optimization problems via continuation: An interior-point algorithm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wolf Kohn: Hybrid dynamic programming for rule constrained multi-objective optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementations and software: Implementations of interior point methods</td>
<td>[Organizer: Erling Andersen]</td>
<td>161</td>
<td>1058</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Csaba Meszaros: Exploiting hardware capabilities in implementations of interior point methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erling Andersen: On recent improvements in the interior-point optimizer in MOSEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Scheduling I</td>
<td>Hesham Alfares: Integer programming model and optimum solution for a bi-objective days-off scheduling problem</td>
<td>161</td>
<td>H 2013</td>
<td>10:30–12:00</td>
</tr>
<tr>
<td></td>
<td>Andy Feit: MILP model for athletic conference scheduling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andrea Rait: Minimising tardiness in parallel machine scheduling with set-up times and mould type restrictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Title</td>
<td>Organizer(s)</td>
<td>Pages</td>
<td>H 2032</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>programming IV</td>
<td>Friedrich Eisenbrand: On bin packing, the MIRUP conjecture and discrepancy theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming I</td>
<td>Laura Galli: Reformulating mixed-integer quadratically constrained quadratic programs</td>
<td>Yi-Shuai Niu: On combination of DCA branch-and-bound and DC-Cut for solving mixed-0–1 linear programs</td>
<td>[p. 163]</td>
<td>MA 042</td>
</tr>
<tr>
<td>Nonlinear programming: Regularization techniques in optimization I</td>
<td>Jacek Gondzio: Recent advances in the matrix-free interior point method</td>
<td>Paul Armand: A boundedness property of the Jacobian matrix arising in regularized interior-point methods</td>
<td>[p. 164]</td>
<td>H 0107</td>
</tr>
<tr>
<td>Optimization in energy systems: Games, energy and investment</td>
<td>Vincent Leclère: The priority option: The value of being a leader in complete and incomplete markets</td>
<td>Imen Ben Tahar: Integration of an intermittent energy: A mean fields game approach</td>
<td>[p. 165]</td>
<td>MA 549</td>
</tr>
</tbody>
</table>
Wednesday 13:15–14:45

Sparse optimization and compressed sensing: Algorithms for sparse optimization II
Kimon Fountoulakis: Matrix-free interior point method for compressed sensing problems

| Organizer: Kimon Fountoulakis |
| [p. 166] |
| Sergey Voronin: Iteratively reweighted least squares methods for structured sparse regularization |

Stochastic optimization: Algorithms for stochastic optimization and approximation
Vaclav Kozmik: Risk-averse stochastic dual dynamic programming

| Organizer: Marc Steinbach |
| [p. 167] |
| Anthony Man-Cho So: Chance-constrained linear matrix inequalities with dependent perturbations: A safe tractable approximation approach |

Stochastic optimization: Scheduling, control and moment problems
Meggie von Haartman: Probabilistic realization resource scheduler with active learning

| [p. 167] |
| Regina Hildenbrandt: Partitions-requirements-matrices as optimal Markov kernels of special stochastic dynamic distance optimal partitioning problems |
| Mariya Naumova: Univariate discrete moment problem for new classes of objective function and its applications |

Stochastic optimization: Risk aversion in stochastic combinatorial optimization
Jian Li: Maximizing expected utility for stochastic combinatorial optimization problems

| Organizer: Evdokia Nikolova |
| [p. 167] |
| Abraham Othman: Inventory-based versus prior-based options trading agents |

Telecommunications and networks: Network flows and network design
Tue Christensen: Solving the piecewise linear network flow problem by branch-cut-and-price

| Organizer: Bernard Fortz |
| [p. 168] |
| Edvardo Amaldi: Network routing subject to max-min fair flow allocation |

Variational analysis: Nonsmooth variational inequalities: Theory and algorithms
Russell Luke: Constraint qualifications for nonconvex feasibility problems

| Organizer: Russell Luke |
| [p. 168] |
| Charitha Cherugondi: A descent method for solving an equilibrium problem based on generalized D-gap function |

Variational analysis: Quadratic and polynomial optimization
Gwi Soo Kim: On ε-saddle point theorems for robust convex optimization problems

| Organizer: Jeya Jeyakumar |
| [p. 169] |
| Guoyin Li: Error bound for classes of polynomial systems and its applications: A variational analysis approach |

Combinatorial optimization: Extended formulations in discrete optimization III
Hans Raj Tiwary: Extended formulations for polygon

| Organizer: Volker Kaibel and Samuel Fiorini |
| [p. 169] |
| Giacomo Zambelli: Mixed-integer bipartite vertex covers and mixing sets |

Combinatorial optimization: Geometric combinatorial optimization
Maurice Queyranne: Modeling convex subsets of points

| [p. 170] |
| Eranda Dragoti-Cela: On the x-and-y axes travelling salesman problem |
| Rafael Barbosa: Algorithms for the restricted strip cover problem |

Combinatorial optimization: Combinatorics and geometry of linear optimization IV
Bernd Gärtner: Abstract optimization problems revisited

| Organizer: Friedrich Eisenbrand |
| [p. 170] |
| Edward Kim: Subset partition graphs and an approach to the linear Hirsch conjecture |

Combinatorial optimization: Heuristics II
Salim Bouamama: A population-based iterated greedy algorithm for the minimum weight vertex cover problem

| [p. 170] |
| Abderezak Djadoun: Random synchronized prospecting: A new metaheuristic for combinatorial optimization |

Combinatorial optimization: Assignment problems
Geir Dahl: Generalized Birkhoff polytopes and majorization

| [p. 171] |
| Olga Heismann: The hypergraph assignment problem |
Combinatorial optimization: Graph partitioning and clustering
Renato Werneck: Exact combinatorial branch-and-bound for graph bisection
Christian Schultz: High quality graph partitioning
Henning Meyerhenke: Current trends in graph clustering

Complementarity and variational inequalities: Advances in the theory of complementarity and related problems II
Maria Lignola: Mathematical programs with quasi-variational inequality constraints
Fabio Raciti: On generalized Nash equilibrium problems: The Lagrange multipliers approach
Joachim Ovinner: On linear differential variational inequalities

Conic programming: Semidefinite programming and geometric representations of graphs
Susanna Reiss: Optimizing extremal eigenvalues of the weighted Laplacian of a graph
Marcel de Carli Silva: Optimization problems over unit-distance representations of graphs
Antonios Varvitsiotis: Two new graph parameters related to semidefinite programming with a rank constraint

Conic programming: Conic and convex programming in statistics and signal processing III
Deanna Needell: Randomized projection algorithms for overdetermined linear systems
Stephen Wright: Packing ellipsoids and chromosomes
James Saunderson: Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones

Constraint programming: Constraint solvers and implementations
Christian Schulte: Gecode: An open constraint solving library
Bruno De Backer: Constraint programming and optimization at Google
Charles Prud'homme: A DSL for programming propagation engine

Derivative-free and simulation-based optimization: Derivative-free applications and parallelization
Aurea Martinez: Design of river fishways: A derivative-free optimization perspective
A. Ismael Vaz: Vibration-based structural health monitoring based on a derivative-free global optimization approach
Per-Magnus Olsson: Parallelization of algorithms for derivative-free optimization

Finance and economics: Optimization methodologies in computational finance
Cristina Fulga: Higher moments and conditional value at risk optimization
Wei Xu: A new sampling strategy willow tree method with application to path-dependent option pricing

Game theory: Polynomial-time algorithms for mechanism design
Piotr Krysta: Combinatorial auctions with verification
Gergely Csápó: The private provision of a public good: Digging for gold
Angelina Vidali: Scheduling, auctions and truthfulness

Game theory: Analysis of auction mechanisms
Renato Paes Leme: Polyhedral clenching auctions and the AdWords polytope
Ioannis Caragiannis: Welfare and revenue guarantees in sponsored search auctions
Vasilis Syrgkanis: Efficiency in sequential auctions

Global optimization: Global optimization methods and applications
Panos Pardalos: Global optimality conditions in non-convex optimization
Erick Moreno-Centeno: Solving combinatorial optimization problems as implicit hitting set problems
Austin Buchanan: Maximum clique problem on very large scale sparse networks

Implementations and software: Exact MIP/LP solvers
Sebastian Hoffmann: Integration of an LP solver into interval constraint propagation
Kati Wolter: Computing certificates for integer programs

Implementations and software: Software for PDE-constrained optimization
Joseph Young: Software abstractions for matrix-free PDE optimization with cone constraints
Andreas Potzschka: MUSCOP: A multiple shooting code for time-periodic parabolic PDE constrained optimization
Drosos Kourounis: Gradient-based optimization using adjoint methods for optimization of compositional flow in porous media

Integer and mixed-integer programming: Scheduling II
Karin Thörnblad: A time-indexed formulation of a flexible job shop problem including preventive maintenance and availability of fixtures
Adam Wojciechowski: Opportunistic replacement scheduling with interval costs
Mahmut Gokce: Scheduling for disassembly systems

Integer and mixed-integer programming: Polyhedral theory
Carla Michini: A time-indexed formulation of a flexible job shop problem including preventive maintenance and availability of fixtures
Laurent Poirrier: The strength of multi-row models
Mahdi Doostmohammadi: Valid inequalities for the single arc design problem with set-ups

Integer and mixed-integer programming: Lattices and integer programming
Karen Aardal: The structure of LLL-reduced kernel lattice bases: Background and outline of the main result
Frederik von Heymann: The structure of LLL-reduced kernel lattice bases: Theoretical details
Andrea Lodi: On cutting planes and lattice reformulations
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life sciences and healthcare: Next generation sequences</td>
<td>Gunnar Klau and Alexander Schönhuth</td>
<td>p. 176</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Data, models and algorithms</td>
<td>Felix König: Crowd-sourcing in navigation – How selfish drivers help reduce congestion for all</td>
<td>p. 176</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: TomTom routing and traffic research</td>
<td>Organizers: Hamid Nazerzadeh</td>
<td>p. 177</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Robust assortment optimization</td>
<td>Maxime Cohen: Designing consumer subsidies with industry response for green technology adoption</td>
<td>p. 177</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Structured MINLP and applications</td>
<td>Organizers: Noam Goldberg</td>
<td>p. 177</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Topics in mixed-integer nonlinear programming</td>
<td>Michael Engelhart: A new test-scenario for analysis and training of human decision making with a tailored decomposition approach</td>
<td>p. 178</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Applications of optimization I</td>
<td>Michael Patriksson: Nonlinear continuous resource allocation – A numerical study</td>
<td>p. 179</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Applications of nonsmooth optimization</td>
<td>Amirhossein Sadoghi: Piecewise monotonic regression algorithm for problems comprising seasonal and monotonic trends</td>
<td>p. 179</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Decomposition methods for unit-commitment with coupling joint chance constraints</td>
<td>Raimund Kovacevic: A process distance approach for scenario tree generation with applications to energy models</td>
<td>p. 179</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Direct versus indirect solution methods in real-life applications: Load changes of fuel cells</td>
<td>Jean-Antoine Desideri: Multiple gradient descent algorithm (MGDA) for multi-objective optimization with application to compressible aerodynamics</td>
<td>p. 180</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Modeling of the optimal trajectory of industrial robots in the presence of obstacles</td>
<td>Chantal Landry: Modeling of the optimal trajectory of industrial robots in the presence of obstacles</td>
<td>p. 180</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Hilbert’s Nullstellensatz and the partition problem: An infeasibility algorithm via the partition matrix and the partition polynomial</td>
<td>Susan Margulies: Hilbert’s Nullstellensatz and the partition problem: An infeasibility algorithm via the partition matrix and the partition polynomial</td>
<td>p. 178</td>
</tr>
<tr>
<td>Event</td>
<td>Speaker(s)</td>
<td>Title</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Wednesday 15:15–16:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Florian Bruns: Robust load planning of trains in intermodal transportation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jorge Vera: Improving consistency of tactical and operational planning using robust optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zhaosong Lu: Sparse approximation via penalty decomposition methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shiqian Ma: An alternating direction method for latent variable Gaussian graphical model selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teemu Pennanen: Tractability of stochastic programs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jorge Vera: Improving consistency of tactical and operational planning using robust optimization</td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization: Large-scale stochastic programming</td>
<td>Werner Roemisch: Are quasi-Monte Carlo methods efficient for two-stage stochastic programs?</td>
<td>[Organizer: Andreas Grothey] [p. 182]</td>
</tr>
<tr>
<td></td>
<td>Miles Lubin: Parallel and distributed solution methods for two-stage stochastic IMILPs</td>
<td></td>
</tr>
<tr>
<td>Telecommunications and networks: Length bounded trees</td>
<td>Andreas Bley: Capacitated facility location with length bounded trees</td>
<td>[Organizer: Ivana Ljubic] [p. 182]</td>
</tr>
<tr>
<td></td>
<td>Markus Leitner: New models for the diameter constrained steiner tree problem</td>
<td></td>
</tr>
<tr>
<td>Variational analysis: Structural properties in variational analysis</td>
<td>Shu Lu: Confidence regions and confidence intervals for stochastic variational inequalities</td>
<td>[Organizer: Boris Mordukhovich] [p. 182]</td>
</tr>
<tr>
<td></td>
<td>Adrian Lewis: Active sets and nonsmooth geometry</td>
<td></td>
</tr>
<tr>
<td>Variational analysis: Equilibrium problems: Formulations and methodologies</td>
<td>Giovanni Crespi: Minty variational principle in set optimization</td>
<td>[Organizer: Patrizia Daniele] [p. 183]</td>
</tr>
<tr>
<td></td>
<td>Patrizia Daniele: General financial models: Methodologies and suggestions for the recovery</td>
<td></td>
</tr>
<tr>
<td>Approximation and online algorithms: Randomized rounding algorithms in mathematical programming</td>
<td>Maxim Sviridenko: Dependent rounding and its applications</td>
<td>[Organizer: Viswanath Nagarajan] [p. 183]</td>
</tr>
<tr>
<td></td>
<td>Aravind Srinivasan: Thresholded covering algorithms for robust and max-min optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baraa Saha: The constructive aspects of the Lovasz Local Lemma: finding needles in a haystack</td>
<td>[Organizer: Barna Saha] [p. 183]</td>
</tr>
<tr>
<td></td>
<td>Paolo Detti: The bounded sequential multiple knapsack problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noryoshi Sukegawa: Lagrangian relaxation and pegging test for clique partitioning problems</td>
<td>[Organizer: Jakub Marecek] [p. 184]</td>
</tr>
<tr>
<td></td>
<td>Vladimir Beresnev: Algorithms for discrete competitive facility location problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marta Pascoal: Path based method for multicriteria metro location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jakub Marecek: Semidefinite programming relaxations in timetabling and matrix-free implementations of augmented Lagrangian methods for solving them</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization: Graph coloring</td>
<td>Beyzanur Cayir: A genetic algorithm for truck to door assignment in warehouses</td>
<td>[Organizer: Noryoshi Sukegawa] [p. 184]</td>
</tr>
<tr>
<td></td>
<td>Vladimir Beresnev: Algorithms for discrete competitive facility location problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shanshan Wang: Path based method for multi-criteria metro location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aleksandr Maksimenko: The common face of some 0/1 polynomials with NP-complete nonadjacency relations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polina Kononova: Local search heuristic for the buffer-constrained two-stage multimedia scheduling problem</td>
<td>[Organizer: Vladimir Beresnev] [p. 184]</td>
</tr>
<tr>
<td></td>
<td>Martin Skutella: A genetic algorithm for truck to door assignment in warehouses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polina Kononova: Local search heuristic for the buffer-constrained two-stage multimedia scheduling problem</td>
<td>[Organizer: Polina Kononova] [p. 184]</td>
</tr>
<tr>
<td></td>
<td>Vasek Chvatal: A local search algorithm for the [r</td>
<td>p]-centroid problem on the plane</td>
</tr>
<tr>
<td></td>
<td>Vladimir Beresnev: Algorithms for discrete competitive facility location problem</td>
<td>[Organizer: Jakub Marecek] [p. 184]</td>
</tr>
<tr>
<td></td>
<td>Marta Pascoal: Path based method for multicriteria metro location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jakub Marecek: Semidefinite programming relaxations in timetabling and matrix-free implementations of augmented Lagrangian methods for solving them</td>
<td>[Organizer: Vladimir Beresnev] [p. 184]</td>
</tr>
<tr>
<td></td>
<td>Shanshan Wang: The polyhedral relationship between the capacitated facility location polytope and its knapsack and single-node flow relaxations</td>
<td>[Organizer: Vladimir Beresnev] [p. 185]</td>
</tr>
<tr>
<td></td>
<td>Martin Skutella: A genetic algorithm for truck to door assignment in warehouses</td>
<td></td>
</tr>
<tr>
<td>Session Name</td>
<td>Presenters</td>
<td>Authors/Themes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Combinatorial optimization: Routing in road networks</td>
<td>Peter Sanders: Advance route planning using contraction hierarchies</td>
<td>Andrew Goldberg: The hub labeling algorithm</td>
</tr>
<tr>
<td></td>
<td>Daniel Delling: Realistic route planning in road networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wen Chen: A power penalty method for fractional Black-Scholes equations governing American option pricing</td>
<td></td>
</tr>
<tr>
<td>Conic programming: First-derivative methods in convex optimization</td>
<td>Yoel Dori: Performance of first-order methods for smooth convex minimization: A novel approach</td>
<td>Clovis Gonzaga: On the complexity of steepest descent algorithms for minimizing quadratic functions</td>
</tr>
<tr>
<td></td>
<td>Sahar Karimi: CGSO for convex problems with polyhedral constraints</td>
<td></td>
</tr>
<tr>
<td>Conic programming: Conic and convex programming in statistics and signal processing IV</td>
<td>Defeng Sun: Finding the nearest correlation matrix of exact low rank via convex optimization</td>
<td>Sahand Negahban: Fast global convergence of composite gradient methods for high-dimensional statistical recovery</td>
</tr>
<tr>
<td></td>
<td>Maryam Fazel: Algorithms for Hankel matrix rank minimization for system identification and realization</td>
<td></td>
</tr>
<tr>
<td>Constraint programming: Computational sustainability</td>
<td>Alan Holland: Optimising the economic efficiency of monetary incentives for renewable energy investment</td>
<td>Rene Schönfelder: Stochastic routing for electric vehicles</td>
</tr>
<tr>
<td></td>
<td>Marco Gavalec: Simulation and optimization for sustainable policy-making</td>
<td></td>
</tr>
<tr>
<td>Derivative-free and simulation-based optimization: Stochastic zero-order methods</td>
<td>Joao Lauro Faco: A continuous GRASP for global optimization with general linear constraints</td>
<td>Sebastian Stich: Convergence of local search</td>
</tr>
<tr>
<td></td>
<td>Anne Auger: Convergence of adaptive evolution strategies on monotonic C^2-composite and scale-invariant functions</td>
<td></td>
</tr>
<tr>
<td>Finance and economics: Management of portfolios and liabilities</td>
<td>Alberto Martín-Utrera: Size matters: Calibrating shrinkage estimators for portfolio optimization</td>
<td>Nikos Trichakis: Fairness in multi-portfolio optimization</td>
</tr>
<tr>
<td>Game theory: Network sharing and congestion</td>
<td>AlexandreBlogowski: Access network sharing between two telecommunication operators</td>
<td>Cheng Wan: Coalitions in nonatomic network congestion games</td>
</tr>
<tr>
<td></td>
<td>Xavier Zeitoun: The complexity of approximate Nash equilibrium in congestion games with negative delays</td>
<td></td>
</tr>
<tr>
<td>Game theory: Solving cooperative games</td>
<td>Tri-Dung Nguyen: Finding solutions of large cooperative games</td>
<td>Ping Zhao: A mixed-integer programming approach to the determination of a core element for an n-person cooperative game with nontransferable utility</td>
</tr>
<tr>
<td></td>
<td>Kazutoshi Ando: Computation of the Shapley value of minimum cost spanning tree games: #P-hardness and polynomial cases</td>
<td></td>
</tr>
<tr>
<td>Global optimization: Nonconvex optimization: Theory and algorithms</td>
<td>Evrim Dalkiran: RLT-POS: Reformulation-linearization technique-based optimization software for polynomial programming problems</td>
<td>Hong Ryoo: 0-1 multilinear programming & LAD patterns</td>
</tr>
<tr>
<td></td>
<td>Spencer Schaberg: Convergence order of relaxations for global optimization of nonlinear dynamic systems</td>
<td></td>
</tr>
<tr>
<td>Implementations and software: Commercial mathematical programming solvers I</td>
<td>Thorsten Koch: Any progress one year after MIPLIB 2010?</td>
<td>Michael Perregaard: Recent advances in the Xpress MIP solver</td>
</tr>
<tr>
<td></td>
<td>Tobias Achterberg: Cover probing for mixed integer programs</td>
<td></td>
</tr>
<tr>
<td>Implementations and software: Software for large-scale optimization</td>
<td>Kevin Long: Sundance: High-level software for PDE-constrained optimization</td>
<td>Stefan Richter: F-OrdO's: A Matlab toolbox for C-code generation for first-order methods</td>
</tr>
<tr>
<td></td>
<td>Eric Phipps: Support embedded algorithms through template-based generic programming</td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Scheduling III</td>
<td>Nelson Hein: Mathematical model of hierarchical production planning</td>
<td>Diego Recalde: Scheduling the Ecuadorian professional football league by integer programming</td>
</tr>
<tr>
<td></td>
<td>Rüdiger Stephan: Smaller compact formulation for lot-sizing with constant batches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matthew Galati: The new decomposition solver in SAS/OR</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Organizer</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Some bridges between algebra and integer programming</td>
<td>[Organizer: Justo Puerto]</td>
<td>p. 190</td>
</tr>
<tr>
<td>Life sciences and healthcare: Radiation therapy treatment planning</td>
<td>[Organizer: Edwin Romeijn]</td>
<td>p. 190</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Vehicle and crew planning</td>
<td>[p. 190]</td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Public transportation</td>
<td>[p. 191]</td>
<td></td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming: Quadratic integer programming</td>
<td>[Organizer: Jeff Linderoth]</td>
<td>p. 191</td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming: Topics in mixed-integer nonlinear programming III</td>
<td>[p. 192]</td>
<td></td>
</tr>
<tr>
<td>Multi-objective optimization: Applications of vector and set optimization</td>
<td>[Organizer: Andreas Löhne]</td>
<td>p. 192</td>
</tr>
<tr>
<td>Nonlinear programming: Line-search strategies</td>
<td>[Organizer: José Martínez]</td>
<td>p. 192</td>
</tr>
<tr>
<td>Nonlinear programming: Applications of optimization II</td>
<td>[p. 193]</td>
<td></td>
</tr>
<tr>
<td>Robust optimization: Applications of robust optimization V</td>
<td>[p. 194]</td>
<td></td>
</tr>
</tbody>
</table>
Thursday: 10:30–12:00

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastic optimization: Network design, reliability, and PDE constraints</td>
<td>Rasool Tahmasbi: Network flow problems with random arc failures</td>
</tr>
<tr>
<td>Variational analysis: Nonsmooth analysis with applications in engineering [Organizer: Radek Cibulka]</td>
<td>Vladimir Shikhman: Implicit vs. inverse function theorem in nonsmooth analysis</td>
</tr>
<tr>
<td>Variational analysis: Some stability aspects in optimization theory</td>
<td>Vladimir Shikhman: Implicit vs. inverse function theorem in nonsmooth analysis</td>
</tr>
<tr>
<td>Approximation and online algorithms: Approximation algorithms [Organizer: John Duchi]</td>
<td>Naonori Kakimura: Computing knapsack solutions with cardinality robustness</td>
</tr>
<tr>
<td>Combinatorial optimization: Optimization and enumeration [Organizers: Jaroslav Nesetril and Martin Loebl]</td>
<td>Amin Coja-Oghlan: Catching the k-NAESAT threshold</td>
</tr>
<tr>
<td>Combinatorial optimization: Robust network design [Organizer: Michael Juenger]</td>
<td>Laura Sanità: Steiner tree approximation via iterative randomized rounding</td>
</tr>
<tr>
<td>Combinatorial optimization: Exact algorithms for hard problems [Organizer: Jaroslav Nesetril]</td>
<td>Torsten Klug: An approach for solving the freight train routing problem</td>
</tr>
<tr>
<td>Topic</td>
<td>Presenters</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Complementarity and variational inequalities: Bilevel programs and MPECs</td>
<td>Chao Ding: First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints, Stephan Dempe: Optimality conditions for bilevel programming problems, Jane Ye: On solving bilevel programs with a nonconvex lower level program</td>
</tr>
<tr>
<td>Conic programming: Linear programming: theory and algorithms</td>
<td>Andre Tits: The power of constraint reduction in interior-point methods, Barbara Abdessamad: Strict quasi-concavity and the differential barrier property of gauges in linear programming, Tomonari Kitahara: A proof by the simplex method for the diameter of a ([0,1]^n)-polytope</td>
</tr>
<tr>
<td>Conic programming: New results in copositive and semidefinite optimization</td>
<td>Luuk Gielen: Scaling relationship between the copositive cone and Parrilo’s first level approximation, Faizan Ahmed: On connections between copositive programming and semi-infinite programming, Bolor Jargalsaikhan: Conic programming: Genericity results and order of minimizers</td>
</tr>
<tr>
<td>Game theory: Mechanisms for resource allocation problems</td>
<td>Carmine Ventre: Using lotteries to approximate the optimal revenue, Vangelis Markakis: On worst-case allocations in the presence of indivisible goods, Annamaria Kovacs: Characterizing anonymous scheduling mechanisms for two tasks</td>
</tr>
<tr>
<td>Game theory: Mean-field approaches to large scale dynamic auctions and mechanisms</td>
<td>Krishnamurthy Iyer: Mean field equilibria of dynamic auctions with learning, Santiago Balseiro: Auctions for online display advertising exchanges: Approximations and design, Alexandre Proutiere: Optimal bidding strategies and equilibria in repeated auctions with budget constraints</td>
</tr>
<tr>
<td>Global optimization: Advances in global optimization I</td>
<td>Dmytro Leshchenko: Optimal deceleration of an asymmetric gyrostat in a resistive medium, Emilio Carriaza: Location on networks, Global optimization problems, Pál Burai: Necessary and sufficient condition on global optimality without convexity and second order differentiability</td>
</tr>
<tr>
<td>Implementations and software: Commercial mathematical programming solvers II</td>
<td>Hans Mittelmann: Selected benchmarks in continuous and discrete optimization, Joachim Dahl: Extending the conic optimizer in MOSEK with semidefinite cones, Robert Bixby: Presolve for linear and mixed-integer programming</td>
</tr>
<tr>
<td>Implementations and software: Modeling languages and software I</td>
<td>John Sirola: Modeling and optimizing block-composable mathematical programs in Pyomo, Guillaume Sagnot: PICOS: A python interface to conic optimization solvers, Robert Fourer: Strategies for using algebraic modeling languages to formulate second-order cone programs</td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Polyhedral combinatorics</td>
<td>Diego Delle Donne: Vertex coloring polytopes over trees and block graphs, Vinicius Forte: Formulations and exact solution algorithms for the minimum two-connected dominating set problem, Mónica Braga: The acyclic coloring polytope</td>
</tr>
<tr>
<td>Integer and mixed-integer programming: New developments in integer programming</td>
<td>Daniel Dadush: Convex minimization over the integers, Guus Regts: Polyhedra with the integer Carathéodory property, Julian Dunkel: A refined Gomory-Chvátal closure for polytopes in the unit cube</td>
</tr>
<tr>
<td>Life sciences and healthcare: Life sciences and healthcare "à la Clermontoise"</td>
<td>Vincent Barra: Assessing functional bra in connectivity changes in cognitive aging using RS-fMRI and graph theory, Engelbert Mephu Nguifo: Stability measurement of motif extraction methods from protein sequences in classification tasks, Romain Pogorelnik: Clique separator decomposition and applications to biological data</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Analysis of decentralized network systems</td>
<td>Daniela Saban: The competitive facility location game: Equilibria and relations to the 1-median problem, Lulu Gui: A robustness analysis of a capacity exchange mechanism in multi-commodity networks under demand uncertainty, Douglas Fearing: Managing air traffic disruptions through strategic prioritization</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>MA 041</td>
<td>Mixed-integer nonlinear programming: Techniques for convex MINLPs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 042</td>
<td>Mixed-integer nonlinear programming: MINLP theory and algorithms</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1029</td>
<td>Multi-objective optimization: Vector optimization</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 0107</td>
<td>Nonlinear programming: Linear algebra for optimization</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 0112</td>
<td>Nonlinear programming: Convex nonlinear optimization I</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1012</td>
<td>Nonlinear programming: Nonsmooth optimization theory</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 0111</td>
<td>Optimization in energy systems: Capacity of gas transport networks</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 012</td>
<td>Optimization in energy systems: Gas and electricity networks</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 549</td>
<td>PDE-constrained optimization and multi-level/multi-grid methods:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 550</td>
<td>Optimization in energy systems: Gas and electricity networks</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 004</td>
<td>Sparse optimization and compressed sensing: Computable bounds for</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1028</td>
<td>Stochastic optimization: High dimensional statistics: Techniques</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 141</td>
<td>Stochastic optimization: Decomposition methods for multistage</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 144</td>
<td>Stochastic optimization: Decomposition methods for multistage</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Title</td>
<td>Session Title</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Finance and economics: Optimization and economic applications</td>
<td>[p. 214]</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Traffic assignment</td>
<td>[p. 217]</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Multi-objective optimization: Vector optimization II</td>
<td>p. 218</td>
</tr>
<tr>
<td>Nonlinear programming: Algorithms and applications I</td>
<td>p. 218</td>
</tr>
<tr>
<td>Nonlinear programming: Semidefinite and DC programming</td>
<td>p. 219</td>
</tr>
<tr>
<td>Nonsmooth optimization: Policy iteration algorithms and some</td>
<td></td>
</tr>
<tr>
<td>Optimization in energy systems: Optimization in the natural gas</td>
<td></td>
</tr>
<tr>
<td>Optimization in energy systems: Bilevel programming and housing</td>
<td>p. 220</td>
</tr>
<tr>
<td>Optimization in energy systems: Bilevel programming and housing</td>
<td></td>
</tr>
<tr>
<td>PDE-constrained optimization and multi-level/multi-grid methods</td>
<td></td>
</tr>
<tr>
<td>Robust optimization: Multistage robustness</td>
<td></td>
</tr>
<tr>
<td>Sparse optimization and compressed sensing</td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization: Two-stage stochastic programming and beyond</td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization: Large-scale and multi-stage stochastic</td>
<td></td>
</tr>
<tr>
<td>Telecommunications and networks: Network clustering</td>
<td></td>
</tr>
</tbody>
</table>
Thursday 15:15–16:45

Approximation and online algorithms: Online algorithms
- **Organizer:** Lisa Fleischer
- **[p. 224]**
- **Umang Bhaskar:** Online mixed packing and covering
- **Vahab Mirrokni:** Simultaneous adversarial and stochastic approximations for budgeted allocation problems

Combinatorial optimization: Optimization methods for geometric planning: From the particular to the general
- **Organizers:** Sándor Fekete and Alexander Kröller
- **[p. 225]**
- **Olga de Souza:** Towards solving to optimality the art gallery with point-guards problem
- **Alexander Kröller:** Practical solutions and bounds for art gallery problems

Combinatorial optimization: Recent advances in matching algorithms
- **Manoj Gupta:** Fully dynamic maximal matching in $O(\log n)$ update time
- **Chien-Chung Huang:** Efficient algorithms for maximum weight matchings in general graphs with small edge weights
- **Mohammad Mahdian:** Online bipartite matching with random arrivals: An approach based on strongly factor-revealing LPs

Combinatorial optimization: Discrete structures and algorithms III
- **Organizer:** Satoru Fujishige
- **Shin-Ichi Tanigawa:** Rooted-tree decompositions with matroid constraints and the infinitesimal rigidity of frameworks with boundary constraints
- **Kiyohito Nagano:** Size-constrained submodular minimization through minimum norm base

Combinatorial optimization: Arborescences
- **Attila Bernáth:** Covering minimum cost arborescences
- **Mario Leston-Rey:** Packing entering sets in kernel systems
- **Mikael Call:** A polyhedral analysis of a unique shortest path routing polytope

Combinatorial optimization: Scheduling and network flows over time
- **Alberto Marchetti-Spaccamela:** Universal sequencing on an unreliable machine
- **Martin Groß:** Flows over time with negative transit times and arc release dates

Complementarity and variational inequalities: Algorithms for complementarity and related problems I
- **Artur Pogosyan:** Semismooth Newton-type methods for lifted mathematical programs with complementarity constraints
- **Evgeny Uskov:** Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints
- **Walter Morris:** Efficient computation of a canonical form for a generalized P-matrix

Conic programming: Conic optimization and signal processing applications
- **Senshan Ji:** Approximating a KKT point of Schatten p-quasi-norm minimization in polynomial time, with applications to sensor network localization
- **Wing-Kin Ma:** Semidefinite relaxation in wireless communications: Frontend developments, advances and challenges
- **Yang Yang:** Multi-portfolio optimization: A variational inequality approach

Conic programming: Recent developments of theory and applications in conic optimization part I
- **Organizers:** Hayato Waki and Masakazu Muramatsu
- **Masakazu Muramatsu:** A perturbed sums of squares theorem for polynomial optimization and its applications
- **Fard AliZadeh:** Some geometric applications of a brachet algebraic sum-of-squares cones

Telecommunications and networks: Paths, trees and flows

[p. 223]

- **Álvaro Franco:** A new linear time algorithm to construct dominator trees of reducible flow graphs
- **Elena Fernandez:** A compact formulation for the optimum communication spanning tree problem
- **Per Olov Lindberg:** Updating shortest path subproblem solutions in large scale optimization

Variational analysis: Stability of constraint systems

[Organizer: René Henrion]

- **Henri Hervé:** On (co-)derivatives of the solution map to a class of generalized equations
- **Marco A. Lopez:** Lower semicontinuity of the feasible set mapping of linear systems relative to their domains

Variational analysis: Variational methods in inverse problems

[Organizer: Elena Resmerita]

- **Esther Klann:** A Mumford-Shah type approach for tomography
- **Mihaela Pricop-Jeckstadt:** Genomic selection and iterative regularization methods
- **Christiane Pöschl:** TV-denoising and evolution of sets
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative-free and simulation-based optimization: Recent progress in direct search methods</td>
<td>Sébastien Le Digabel: The mesh adaptive direct search algorithm with reduced number of directions José Mario Martínez: Inexact restoration method for derivative-free optimization with smooth constraints Rohollah Garmanjani: Smoothing and worst case complexity for direct-search methods in non-smooth optimization</td>
<td>H 3003A</td>
</tr>
<tr>
<td>Finance and economics: Modern portfolio optimization</td>
<td>S jailed Özekici: Portfolio selection with hyperexponential utility functions</td>
<td>H 3021</td>
</tr>
<tr>
<td>Finance and economics: Applications in finance</td>
<td>Jonas Ekblom: Optimal hedging of foreign exchange risk in uncertain cash flows using stochastic programming Mathias Barkhagen: An optimization based method for arbitrage-free estimation of the implied risk neutral density surface Janos Mayer: Portfolio optimization with objective functions from cumulative prospect theory</td>
<td>H 3027</td>
</tr>
<tr>
<td>Game theory: New models and solution concepts I</td>
<td>Leqin Wu: A new solution concept for cooperative games</td>
<td>MA 005</td>
</tr>
<tr>
<td>Game theory: Software piracy and mastermind</td>
<td>Yael Perlman: Software piracy prevention and price determination</td>
<td>MA 043</td>
</tr>
<tr>
<td>Global optimization: Advances in global optimization III</td>
<td>Chu Nguyen: The interior exterior approach for linear programming problem</td>
<td>H 2053</td>
</tr>
<tr>
<td>Implementations and software: Modeling languages and software III</td>
<td>[p. 229] Christian Valente: Optimisation under uncertainty: Software tools for modelling and solver support Vincent Beraudi: Modeling best practices: How to write good optimization models efficiently thanks to IBM ILOG CPLEX Optimization Studio’s Integrated Development Environment (IDE) and its debugging support.</td>
<td>H 1058</td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Topology, clustering and separation</td>
<td>[p. 230] Pedro Guillén: Natural languages with the morphosyntactic distance as a topological space</td>
<td>H 2013</td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Mixed-integer linear and semidefinite programs</td>
<td>[Organizer: Marc Pfetsch] [p. 230] Sonja Mars: Approaches to solve mixed integer semidefinite programs Nam Dung Hoang: Steiner tree packing revisited Matthias Miltenberger: Advances in linear programming</td>
<td>H 2033</td>
</tr>
<tr>
<td>Life sciences and healthcare: Mathematical modeling of disease</td>
<td>Ivan Savic: Mathematical modeling of amygdalin isolation from plum kernel using response surface methodology Rujira Ouncharoen: Stability of HIV aphaeresis model</td>
<td>MA 376</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Logistics and transportation</td>
<td>[Organizer: Arash Asadpour] [p. 231] Arash Asadpour: Rounding by sampling and an (O(\log n / \log \log n)) approximation algorithm for ATSP Nitish Korula: Prize-collecting Steiner network problems on planar graphs Mohammadhossein Bateni: PTAS for planar multiway cut</td>
<td>H 0106</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Real-world applications</td>
<td>[p. 231] Kaj Holmberg: Planning and routing in networks: Urban snow removal Rodrigo Branchini: Fleet deployment optimization model for tramp and liner shipping</td>
<td>MA 042</td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming: Mixed-integer nonlinear programming</td>
<td>[Organizer: Jon Leel] [p. 232] Shmuel Onn: Integer programming in polynomial time via Graver bases Renata Sotirov: SDP relaxations for the graph partition problem Raymond Hemmecke: N-fold integer programming in cubic time</td>
<td>MA 001</td>
</tr>
<tr>
<td>Event</td>
<td>Title</td>
<td>Organizer</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Multi-objective optimization: Preference structures in multi-objective optimization</td>
<td>Preference structures in multi-objective optimization with a variable ordering structure</td>
<td>Gabriele Eichfelder</td>
</tr>
<tr>
<td>Nonlinear programming: Algorithms and applications II</td>
<td>Approximate solutions of vector optimization with variable order structure</td>
<td>Behnam Soleimani</td>
</tr>
<tr>
<td>Nonlinear programming: Polynomial optimization and semidefinite programming</td>
<td>Characterization of properly non-dominated elements in vector optimization with variable ordering structure</td>
<td>Refail Kasimbeyli</td>
</tr>
<tr>
<td>Nonlinear programming: Nonlinear multilevel and domain decomposition methods in optimization</td>
<td>Symmetry in polynomial optimization</td>
<td>Cordian Riener</td>
</tr>
<tr>
<td>Nonsmooth optimization: Algorithms for nonsmooth optimization</td>
<td>Exploring accuracy and geometry in level bundle methods</td>
<td>Jinyan Fan</td>
</tr>
<tr>
<td>Optimization in energy systems: Equilibrium models for electricity markets</td>
<td>When do supply function equilibria exist?</td>
<td>Andy Philpott</td>
</tr>
<tr>
<td>PDE-constrained optimization and multi-level/multi-grid methods</td>
<td>Variational methods in image processing and compressed sensing</td>
<td>Frédéric Boulanger</td>
</tr>
<tr>
<td>PDE-constrained optimization and multi-level/multi-grid methods</td>
<td>Variational models for restoring blurred images with multiplicative noise</td>
<td>Ömer Özkaya</td>
</tr>
<tr>
<td>Robust optimization: Regret with robustness: Models, algorithms and applications</td>
<td>Robust portfolio selection with learning in the framework of relative regret</td>
<td>Joline Uichanco</td>
</tr>
<tr>
<td>Sparse optimization and compressed sensing: Variational signal processing – algorithms and applications</td>
<td>Convergence of a class of stationary iterative methods for saddle point problems</td>
<td>Stefanie Krämer</td>
</tr>
<tr>
<td>Stochastic optimization: Measures of uncertainty</td>
<td>The risk of empirical costs in randomized min-max stochastic optimization</td>
<td>Alexei Gaivoronski</td>
</tr>
<tr>
<td>Stochastic optimization: Chance constrained stochastic optimization</td>
<td>Overall aircraft design based on chance-constrained programming</td>
<td>Jianqiang Cheng</td>
</tr>
<tr>
<td>Telecommunications and networks: Network design</td>
<td>On the optical multi-band network design problem</td>
<td>Raouia Taktak</td>
</tr>
<tr>
<td>Topic</td>
<td>Speaker(s)</td>
<td>Venue</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Telecommunications and networks</td>
<td>Grit Claßen: A branch-and-price approach for the robust wireless network planning</td>
<td>H 3503</td>
</tr>
<tr>
<td>Variational analysis</td>
<td>Peter Hoffmann: Robust and chance constraint models of failure scenarios in the design of telecommunication networks</td>
<td>H 2035</td>
</tr>
<tr>
<td>Variational analysis</td>
<td>Daniel Karch: Fiber replacement scheduling</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Wilfredo Sosa]</td>
<td>H 2051</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Guochuan Zhang]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Erwin Pesch]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Guoqiang Zhang]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Lek-Heng Lim and Cordian Riener]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Hayato Waki and Masakazu Muramatsu]</td>
<td></td>
</tr>
<tr>
<td>Complementarity and variational inequalities</td>
<td>Mauro Passacantando: Gap functions and penalization for solving equilibrium problems with nonlinear constraints</td>
<td>MA 313</td>
</tr>
<tr>
<td>Complementarity and variational inequalities</td>
<td>Goran Lesaja: Infeasible full-Newton step interior-point method for linear complementarity problems</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Lek-Heng Lim and Cordian Rieners]</td>
<td>H 2036</td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Hayato Waki and Masakazu Muramatsu]</td>
<td>H 2038</td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td>H 3003A</td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td>H 3003A</td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Wilfredo Sosa]</td>
<td>H 2051</td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Guochuan Zhang]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Erwin Pesch]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Guoqiang Zhang]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Lek-Heng Lim and Cordian Riener]</td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization</td>
<td>[Organizer: Hayato Waki and Masakazu Muramatsu]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Lek-Heng Lim and Cordian Rieners]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Hayato Waki and Masakazu Muramatsu]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Conic programming</td>
<td>[Organizers: Stefan Wild and Luis Nunes Vicente]</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Finance and economics: Portfolio selection problems</td>
<td>Constanta Radulescu: Portfolio selection models with complementarity constraints</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Marius Radulescu: The efficient frontiers of mean-variance portfolio selection problems</td>
<td></td>
</tr>
<tr>
<td>Finance and economics: Optimal control</td>
<td>Arindum Mukhopadhyay: A socio-economic production quantity [SEPQ] model for imperfect items with pollution control and varying setup costs</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Yuchi Takano: Control policy optimization for dynamic asset allocation by using kernel principal component analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vasily Dikusar: An optimal control problem in estimation of parameters for economic models</td>
<td></td>
</tr>
<tr>
<td>Game theory: New models and solution concepts II</td>
<td>Ming Hu: Existence, uniqueness, and computation of robust Nash equilibrium in a class of multi-leader-follower games</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Silvia Schwarze: Equilibria in generalized Nash games with applications to games on polyhedra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yin Chen: Computing perfect equilibria of finite n-person games in normal form with an interior-point path-following method</td>
<td></td>
</tr>
<tr>
<td>Game theory: Algorithmic game theory</td>
<td>Brendan Lucier: Strategicproof mechanisms for competitive influence in social networks</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Nicole Immortica: Social networks and segregation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Markus Mobius: Treasure hunt</td>
<td></td>
</tr>
<tr>
<td>Global optimization: Recent advances in nonconvex quadratic programming with random data</td>
<td>Nicolas Gillis: Fast and robust recursive algorithm for separable nonnegative matrix factorization</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Jiming Peng: Quadratic optimization with separable objective and a single quadratic and box constraint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paul Krokhmal: Asymptotic properties of random multidimensional assignment problems</td>
<td></td>
</tr>
<tr>
<td>Global optimization: Advances in global optimization IV</td>
<td>Syuji Yamada: Global optimization methods utilizing partial separating hyperplanes for a canonical dc programming problem</td>
<td>243</td>
</tr>
<tr>
<td>Implementations and software: Open source software for modeling and optimization</td>
<td>Gus Gassmann: Optimization services: Connecting algebraic modelling languages to several solvers using a web-aware framework</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>John Forrest: A bit of CLP (accelerated?)</td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Integer programming in data mining</td>
<td>Yufeng Liu: Optimization issues on some margin-based classifiers</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>James Brooks: Counting misclassifications: Robust support vector machines via integer programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amaya Nogales Gómez: Matheuristics for Ψ-learning</td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Matheuristics</td>
<td>José Valério de Carvalho: SearchCol algorithms for the level bin packing problem</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Patrick Schittekat: A matheuristic for competence building with the use of nurse re-rostering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marco Boschetti: A Lagrangian heuristic for the sprint planning in agile methods</td>
<td></td>
</tr>
<tr>
<td>Integer and mixed-integer programming: Integer programming approaches to job scheduling</td>
<td>Valentina Cacchianì: Fixed job scheduling with resource constraints</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Riley Clement: A big-bucket time-indexed formulation for nonpreemptive single machine scheduling problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hamish Waterer: Maintenance Scheduling in Critical Infrastructure Networks</td>
<td></td>
</tr>
<tr>
<td>Life sciences and healthcare: Model discrimination and experimental design</td>
<td>Max Nattermann: A quadratic approximation of confidence regions</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Tanja Binder: Numerical optimization methods for significance analysis of parameters and subsets of metabolic networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexandra Herzog: Discrimination of competitive model candidates for reversals in bacterium Myxococcus xanthus</td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Optimizing robot welding cells</td>
<td>Jürgen Pannek: Collision avoidance via distributed feedback design</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Jürgen Pannek: Collision avoidance via distributed feedback design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wolfgang Weit: Conflict-free job assignment and tour planning of welding robots</td>
<td></td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Disruption management</td>
<td>Stephen Maher: Integrated airline recovery problem on a minimal disruption neighbourhood</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Kazuhiro Kobayashi: Alternative objective functions in ship scheduling for managing supply chain disruption risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lucian Ionescu: Stochastic optimization models for airline resource schedules under disruptions</td>
<td></td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming: Applications of MINLP I</td>
<td>Claudia Stangl: Feasibility testing for transportation orders in real-life gas networks</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Francois Margot: The traveling salesman problem with neighborhoods: MINLP solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jakob Schelbert: How to route a pipe – Discrete approaches for physically correct routing</td>
<td></td>
</tr>
</tbody>
</table>

Friday, 10:30–12:00
<table>
<thead>
<tr>
<th>Multi-objective optimization: Bilevel optimization and risk management</th>
<th>Johannes Jahn: GPU implementation of a multiobjective search algorithm</th>
<th>Joerg Fliege: Reformulations of multiobjective bilevel problems</th>
<th>Frank Heyde: Set-valued average value at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear programming: Optimality conditions and constraint qualifications</td>
<td>Maria Maciel: A trust region algorithm for the nonconvex unconstrained vector optimization problem</td>
<td>Paulo Silva: Constant positive generators: A new weak constraint qualification with algorithmic applications</td>
<td>Santosh Srivastav: Fritz John duality in the presence of equality and inequality constraints</td>
</tr>
<tr>
<td>Nonlinear programming: Complexity issues in optimization</td>
<td>Stefan König: Optimality conditions and constraint qualifications</td>
<td>Claudio Santiago: An efficient algorithm for the projection of a point on the intersection of two hyperplanes and a box in R^n</td>
<td>Jianming Shi: A computational geometric approach for solving linear programming: Toward strong polynomial</td>
</tr>
<tr>
<td>Non-smooth optimization: Topics in non-smooth non-convex optimization</td>
<td>Wilhelm Freire: Interior epigraph directions method for non-smooth and nonconvex optimization via generalized augmented Lagrangian duality</td>
<td>Izhar Ahmad: Optimality conditions in nondifferentiable multiobjective fractional programming</td>
<td>Jean-Louis Goffin: Solving unconstrained nonconvex programs with ACCPM</td>
</tr>
<tr>
<td>Optimization in energy systems: Power flow modeling and mechanism design</td>
<td>Stephan Lemkens: Structural properties of power grid design</td>
<td>Waqquas Bukhsh: Local solutions of optimal power flow problem</td>
<td>Deepak Bagchi: Optimal combinatorial auction for smart grids with renewable energy resources</td>
</tr>
<tr>
<td>PDE-constrained optimization and multi-level/multi-grid methods: Reduced order model based optimization</td>
<td>Andreas Schmidt: POD reduced-order modeling in the context of direct-approach optimization</td>
<td>Jane Ghiglieri: Optimal flow control based on POD and MPC for the cancellation of Tollmien-Schlichting waves by plasma actuators</td>
<td>Daniela Koller: Optimal control of hydroforming processes based on POD</td>
</tr>
<tr>
<td>Sparse optimization and compressed sensing: Greedy algorithms for sparse optimization</td>
<td>Pradeep Ravikumar: Nearest neighbor based greedy coordinate descent</td>
<td>Prateek Jain: Orthogonal matching pursuit with replacement</td>
<td></td>
</tr>
<tr>
<td>Telecommunications and networks: Optimization modeling of communication networks</td>
<td>Michail Pioro: On a survivable network design problem with one or two failing links and elementary path-flows</td>
<td>Giulianna Carello: A network loading problem with shared protection and SRG: Formulations and ILP based hybrid heuristics</td>
<td>Uwe Stiegler: Robust multi-layer network design under traffic demand uncertainty</td>
</tr>
<tr>
<td>Telecommunications and networks: Robust and survivable network design</td>
<td>Christian Raack: Cutset inequalities for robust network design</td>
<td>Agustín Pécorari: Models for p-cycle networks design without cycle enumeration</td>
<td>Di Yuan: Cell load coupling in planning and optimization of LTE networks</td>
</tr>
</tbody>
</table>
Variational analysis: Variational-analytic foundations of sensitivity analysis
Shanshan Zhang: Partial smoothness, tilt stability, and generalized Hessians

Variational analysis: Generalized differentiation and applications
Diethard Pallaschke: Quasidifferentiable calculus and minimal pairs of compact convex sets

Friday 13:15–14:45
Approximation and online algorithms: Scheduling and online algorithms
Liliana Grigoriu: Scheduling on uniform processors with at most one downtime on each machine
Truls Flatberg: Online bin covering with lookahead and bounded space

Combinatorial optimization: Packing, covering and domination I
Annergret Wagler: Generalized row family inequalities for the set covering polyhedron
Gabriela Angiullo: The identifying code polyhedron of cycles

Combinatorial optimization: Nonlinear combinatorial optimisation problems I
Frank Baumann: Exact algorithms for combinatorial optimization problems with submodular objective functions
Frauke Liers: A polyhedral approach to the quadratic matching problem

Combinatorial optimization: Vehicle routing
Enrico Bartolini: The single-vehicle dial-a-ride problem
Rafael Martinelli: Efficient restricted non-elementary route pricing for routing problems

Combinatorial optimization: Facility location
Bartosz Rybicki: Improved LP-rounding approximation algorithm for k-level uncapacitated facility location
Sara Ahmadian: Improved approximation guarantees for lower-bounded facility location

Complementarity and variational inequalities: Variational inequality problems
Vinayak Shanbhag: On the analysis and solution of stochastic variational inequalities
Che-Lin Su: Estimation of pure characteristics demand models with pricing
Huifu Xu: Quantitative stability analysis of stochastic generalized equations and applications

Conic programming: Algebraic geometry and conic programming, part II
Jiawang Nie: Certifying convergence of Lasserre’s hierarchy via flat truncation
Jordan Ninim: Abstract cones of positive polynomials and sums of squares

Conic programming: Warmstarting interior point methods
Anders Skajaa: Warmstarting the homogeneous and self-dual interior point method for linear and conic quadratic problems
E. Alper Yildirim: Warm-start strategies: What matters more?

Derivative-free and simulation-based optimization: Multiple objectives in derivative-free optimization
Francesco Rinaldi: Using an exact penalty function for multiobjective Lipschitz programs
Luis Nunes Vicente: Efficient cardinality/mean-variance portfolios
Ana Luisa Custódio: Direct MultiSearch: A robust and efficient approach to multiobjective derivative-free optimization

Finance and economics: Risk management under probability model misspecification
David Wozabal: Robustifying convex risk measures: A non-parametric approach
Victor Demiguel: Stock return serial dependence and out-of-sample portfolio performance

Finance and economics: Generalized Nash equilibrium problems
Philipp Renner: Computing generalized Nash equilibria by polynomial programming
Eleftherios Couzoudis: Finding all generalized Nash equilibria

Game theory: Competition on networks
Evdokia Nikolaou: A mean-risk model for the stochastic traffic assignment problem
Nicolas Stier-Moses: The competitive facility location problem in a duopoly: Advances beyond trees

Game theory: Combinatorial optimization
Francesco Rinaldi: Using an exact penalty function for multiobjective Lipschitz programs
Luis Nunes Vicente: Efficient cardinality/mean-variance portfolios

Game theory: Competition on networks
Nicolas Stier-Moses and Jose Correal: The competitive facility location problem in a duopoly: Advances beyond trees
Fernando Ordóñez: Stackelberg security games on networks
<table>
<thead>
<tr>
<th>Topic</th>
<th>Speakers</th>
<th>Organizers/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game theory</td>
<td>Equilibria in congestion games</td>
<td>Philipp von Falkenhausen: Optimal cost sharing protocols for matroid congestion games</td>
</tr>
<tr>
<td></td>
<td>Thomas Pradeau: Uniqueness of equilibrium on rings</td>
<td>Max Klimm: Existence and computation of equilibria in bottleneck congestion games</td>
</tr>
<tr>
<td>Global optimization</td>
<td>Advances in global optimization V</td>
<td>Leandro Prudente: An augmented Lagrangian method with finite termination</td>
</tr>
<tr>
<td></td>
<td>Luis Felipe Bueno: Low order-value approach for solving V-related problems</td>
<td>Marina Andretta: Deterministic and stochastic global optimization techniques for planar covering with ellipses problems</td>
</tr>
<tr>
<td></td>
<td>Simon Konetz: Numerical enclosures of solution manifolds at near singular points</td>
<td>Zulfiya Gabidullina: Universal measure of the thickness of separator or pseudo-separator for sets of euclidean space</td>
</tr>
<tr>
<td>Implementations and software</td>
<td>Conic linear programming</td>
<td>Christoph Helmberg: Speeding up the spectral bundle method by solving the quadratic semidefinite subproblems with a PSMOR approach</td>
</tr>
<tr>
<td></td>
<td>Florian Jarre: Solving large scale problems over the doubly nonnegative cone</td>
<td>Kim-Chuan Toh: An inexact accelerated proximal gradient method for large scale convex quadratic SDP</td>
</tr>
<tr>
<td>Integer and mixed-integer programming</td>
<td>Trends in integer programming</td>
<td>Christopher Ryan: Computing pure Nash equilibria in symmetric games</td>
</tr>
<tr>
<td></td>
<td>Integer points in polytopes</td>
<td>Gennady Averkov: Lattice-free integer polyhedra and their application in cutting-plane theory</td>
</tr>
<tr>
<td></td>
<td>Jesus De Loera: Top Ehrrath coefficients of knapsack problems</td>
<td></td>
</tr>
<tr>
<td>Life sciences and healthcare</td>
<td>Cell biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xin Gao: Towards automatic NMR protein structure determination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Julia Mestre: Tree-constrained matching</td>
<td>Sandro Andreotti: De novo peptide sequencing with mathematical programming</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation</td>
<td>Revenue management applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Srikant Jagabathula: Assignment optimization under general choice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arnoud den Boer: Simultaneously learning and optimizing in dynamic pricing and revenue management</td>
<td>James Davis: Assortment optimization under variants of the nested logit model</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation</td>
<td>Optimization in logistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Markus Frey: Column generation for planning the outbound baggage handling at airports</td>
<td>Julia Funke: A mixed integer program for a variant of the truck and trailer routing problem with time windows</td>
</tr>
<tr>
<td>Mixed-integer nonlinear programming</td>
<td>Applications of MINLP II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wei Huang: Primal heuristics for nonconvex MINLPS modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harald Held: Challenges and requirements for MINLPS in industrial applications</td>
<td></td>
</tr>
<tr>
<td>Multi-objective optimization</td>
<td>Portfolio selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carlos Abad: Portfolio selection with multiple spectral risk constraints</td>
<td></td>
</tr>
<tr>
<td>Nonlinear programming</td>
<td>Stability and solution methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dietrich Klatte: Metric regularity versus strong regularity for critical points of nonlinear programs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephan Butikof: Influence of inexact solutions in a lower level problem on the convergence behavior of a nonsmooth newton method</td>
<td>Bernd Kummer: Newton schemes for functions and multifunctions</td>
</tr>
<tr>
<td>Nonlinear programming</td>
<td>Optimality conditions I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feyzullah Ahmetoğlu: Necessary conditions for a convex programming problem in Banach spaces partially ordered by a cone with empty interior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalpana Shukla: Global parametric sufficient optimality conditions for semi-infinite discrete minimax fractional programming involving generalized V-\rho-invex functions</td>
<td>Andrei Dmitruk: Conditions for a weak minimality in optimal control problems with integral equations of Volterra type</td>
</tr>
</tbody>
</table>
Nonlinear programming: Fast gradient methods for nonlinear optimization and applications

Zhang Hongchao: An adaptive preconditioned nonlinear conjugate gradient method with limited memory

Rui Diao: A sequential quadratic programming method without a penalty function or a filter for general nonlinear constrained optimization

Gerardo Toraldo: On the use of spectral properties of the steepest descent method

Organizer: William Hager

Nonlinear optimization: Nonsmooth optimization and applications

Dominikus Noll: Non-convex bundle algorithm with inexact sub-gradient and function values

Frank Fischer: An asynchronous parallel bundle method for Lagrangian relaxation

Organizer: Dominikus Noll

Optimization in energy systems: Congestion management and pricing

Endre Bjørndal: Congestion management in the Nordic electricity market

Linda Rud: Nodal versus zonal pricing: Market power in day-ahead versus in balancing services

Yves Smeers: Stochastic equilibrium in investment models: capacity expansion in the power

Organizer: Mette Bjørndal

Optimization in energy systems: Generation and expansion problems

Michael Lindahl: Discrete optimization support system for the collection grid in large offshore wind parks

Stefano Zigrino: A multistage stochastic model for the electric power generation capacity expansion problem of a price-taker power producer in a multi-year horizon

Roman Cada: Optimizing nuclear fuel reload patterns

Dominikus Noll: Non-convex bundle algorithm with inexact sub-gradient and function values

Frank Fischer: An asynchronous parallel bundle method for Lagrangian relaxation

Optimization in energy systems: Generation and expansion problems

Michael Lindahl: Discrete optimization support system for the collection grid in large offshore wind parks

Stefano Zigrino: A multistage stochastic model for the electric power generation capacity expansion problem of a price-taker power producer in a multi-year horizon

Roman Cada: Optimizing nuclear fuel reload patterns

Organizer: Mette Bjørndal

PDE-constrained optimization and multi-level/multi-grid methods: PDE-constrained optimization problems with non-smooth structures

Duy Luong: A multiresolution algorithm for large scale non-smooth convex optimization problems

Michelle Vallejos: Multigrid methods for elliptic optimal control problems with pointwise mixed control-state constraints

Caroline Löbhard: Optimal control of elliptic variational inequalities: A mesh-adaptive finite element solver

Organizer: Robert Lewis

PDE-constrained optimization and multi-level/multi-grid methods: PDE-constrained optimization problems with non-smooth structures

Paul Boggs: Combining multi-grid and domain decomposition as preconditioners for a class of multi-level PDE-constrained optimization problems

David Gay: Optimization algorithms for hierarchical problems, with application to nanoporous materials

Robert Lewis: Using inexact gradients in a multilevel optimization algorithm

Organizer: Robert Lewis

Sparse optimization and compressed sensing: Structured matrix optimization

Ewout van den Berg: Phase-retrieval using explicit low-rank matrix factorization

Zaid Harchaoui: Lifted coordinate descent for learning with Gaussian regularization

Inderjit Dhillon: Sparse inverse covariance matrix estimation using quadratic approximation

Organizer: Inderjit Dhillon

Stochastic optimization: Target oriented optimization under uncertainty

Zhuoyu Long: Managing operational and financing decisions to meet consumption targets

Melvyn Sim: Multiple objective satisficing under uncertainty

Jin Qi: Routing optimization with deadlines under uncertainty

Organizer: Melvyn Sim

Stochastic optimization: Stochastic algorithms

Song Luo: A non-adaptive probabilistic group testing algorithm for detecting consecutive positives of linear DNA library

Nikolaus Hansen: Information-geometric optimization

Madeleine Theile: How crossover helps in pseudo-boolean optimization

Telecommunications and networks: Game theoretic concepts in telecommunications

Fabian Medel: Optimal regulation with non discriminatory prices in mobile two way access, with call externalities and heterogeneous customers

Jonatan Krölkowski: Game theoretic model for the downlink in cellular mobile networks: Nash equilibria and algorithmic convergence

Cristobal Guzman: Network congestion control with Markovian multipath routing

Organizer: Inderjit Dhillon

Telecommunications and networks: Markovian and randomized techniques for network optimization

Olivier Fercoq: Polychromatic ergodic control approaches to PageRank optimization and spam detection

Arthur Gómez: Development of a hybrid algorithm based on the application of metaheuristics on an Internet Protocol Television platform using Tabu Search (TS) and Genetic Algorithm (GA)

Cristobal Guzman: Network congestion control with Markovian multipath routing

Organizer: Inderjit Dhillon

Variational analysis: Optimization in infinite dimensional spaces

Joël Blot: Discrete-time Pontryagin principles and ordered Banach spaces

Tzanko Donchev: Runge-Kutta methods for differential equations with variable time of impulses

Elena Resmerita: A discrepancy principle for the Augmented Lagrangian Method

Organizer: Alexander Zaslavski

Variational analysis: Duality in convex optimization

Ernő Csetnek: Conjugate duality and the control of linear discrete systems

Andre Heinrich: The support vector machines approach via Fenchel-type duality

Sofin-Mihai Grad: Classical linear vector optimization duality revisited

Organizer: Radu Ioan Bot

Friday: 13:15–14:45
Friday 15:15–16:45

Approximation and online algorithms: Routing and shortest paths
- **Vincenzo Bonifaci**: Physarum can compute shortest paths
- **Jannik Matuschke**: Approximation algorithms for capacitated location routing
- **Rene Sitters**: Metrical service systems and the generalized work function algorithm.

Combinatorial optimization: Packing, covering and domination II
- **Arnaud Pecher**: On the theta number of powers of cycle graphs
- **Silvia Bianchi**: The disjunctive rank of the stable set polytope of web graphs
- **Luis Torres**: On the Chvátal-closure of the fractional set covering polyhedron of circulant matrices.

Combinatorial optimization: Nonlinear combinatorial optimization problems II
- **Rene Sitters**: Metrical service systems and the generalized work function algorithm.
- **Laszlo Vegh**: Concave generalized flows with applications to market equilibria.

Combinatorial optimization: Combinatorial optimization: Flows, cuts, and sparsifiers
- **James Orlin**: Max flows in $O(nm)$ time and sometimes less
- **Lasse Kliemann**: $(1 + 1/k)$-Approximate maximum matching in bipartite graph streams in $O(k^2)$ passes and improvements
- **Mariano Zeleke**: Algorithmic techniques for data stream computations

Combinatorial optimization: Graph optimization problems in the streaming model
- **Christian Konrad**: On the order of graph streams
- **Nicholas Harvey**: Graph sparsifiers
- **Jonathan Kelner**: Electrical flows, linear systems, and faster approximations of maximum flows, minimum s-t cuts, and multicommodity flows in undirected graphs
- **Kristof Berczi**: Approximation algorithms for capacitated location routing
- **Annick Sartenaer**: Derivative-free optimization for large-scale nonlinear data assimilation problems

Combinatorial optimization: Faster algorithms for network flow problems
- **Franklin Djeumou Fomeni**: A dynamic programming heuristic for the quadratic knapsack problem
- **Yahav Nussbaum**: Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time
- **Laszlo Vegh**: Concave generalized flows with applications to market equilibria.

Combinatorial optimization: Approximation and online algorithms: Routing and shortest paths
- **Rene Sitters**: Metrical service systems and the generalized work function algorithm.
- **Luis Torres**: On the Chvátal-closure of the fractional set covering polyhedron of circulant matrices.

Combinatorial optimization: Faster algorithms for network flow problems
- **Rene Sitters**: Metrical service systems and the generalized work function algorithm.
- **Laszlo Vegh**: Concave generalized flows with applications to market equilibria.

Combinatorial optimization: Combinatorial optimization: Flows, cuts, and sparsifiers
- **James Orlin**: Max flows in $O(nm)$ time and sometimes less
- **Lasse Kliemann**: $(1 + 1/k)$-Approximate maximum matching in bipartite graph streams in $O(k^2)$ passes and improvements
- **Mariano Zeleke**: Algorithmic techniques for data stream computations

Combinatorial optimization: Graph optimization problems in the streaming model
- **Christian Konrad**: On the order of graph streams
- **Nicholas Harvey**: Graph sparsifiers
- **Jonathan Kelner**: Electrical flows, linear systems, and faster approximations of maximum flows, minimum s-t cuts, and multicommodity flows in undirected graphs
- **Kristof Berczi**: Approximation algorithms for capacitated location routing
- **Annick Sartenaer**: Derivative-free optimization for large-scale nonlinear data assimilation problems

Conic programming: Algebraic geometry and conic programming, part III
- **Caroline Uhler**: Maximum likelihood estimation in Gaussian graphical models from the perspective of convex algebraic geometry
- **Thorsten Theobald**: Containment problems for polytopes and spectrahedra
- **Thorsten Theobald**: Containment problems for polytopes and spectrahedra

Conic programming: Algebraic symmetry in semidefinite programming
- **Etienne De Klerk**: Improved lower bounds on crossing numbers of graphs via semidefinite programming
- **Dion Gijswijt**: Symmetric semidefinite programs based on tuples
- **Dion Gijswijt**: Symmetric semidefinite programs based on tuples

Derivative-free and simulation-based optimization: Novel applications of derivative-free and simulation-based optimization
- **Juan Meza**: Derivative-free optimization methods for determining the surface structure of nanosystems
- **Andrew Conn**: Simulation-based optimization: Integrating seismic and production data in history matching
- **Annick Sartenaer**: Derivative-free optimization for large-scale nonlinear data assimilation problems

Finance and economics: Optimization in financial markets
- **John Schoenmakers**: Multilevel primal and dual approaches for pricing American options
- **Dirk Becherer**: Optimal sparse portfolios in continuous time
- **Dirk Becherer**: Optimal sparse portfolios in continuous time

Finance and economics: Decision making
- **Marta Villamil**: Modeling and simulation of social segmentation with individual and competitive parameters
- **Deepak Kumar**: Simultaneous optimization problems in gambling strategies
- **José Gilberto Hernández Ramírez**: The amplitude model and regret model in decision making under uncertainty

Game theory: Learning and computation for game-theoretic problems
- **W. Ross Morrow**: Computing equilibria in regulated differentiated product market models
- **Angela Neidich**: A gossip algorithm for aggregative games on graphs
- **José Gilberto Hernández Ramírez**: The amplitude model and regret model in decision making under uncertainty
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics, traffic, and transportation: Inventory routing</td>
<td>[Organizer: Abolfazl Mirzazadeh]</td>
<td>[p. 271]</td>
<td>Samira Mirzaei: Inventory routing problem for distribution of perishable goods</td>
<td>Takayuki Shina: Inventory distribution problem under uncertainty</td>
</tr>
<tr>
<td>Logistics, traffic, and transportation: Applications of supply chain</td>
<td>[Organizer: Yuri Shitani]</td>
<td>[p. 271]</td>
<td>Stefan Waldherr: Two-stage order sequence planning in shelf-board production</td>
<td>Yehua Wei: Understanding the performance of the long chain and sparse designs in process flexibility</td>
</tr>
</tbody>
</table>
Optimization in energy systems

Mathematical programming and market coupling

- **Juan Pablo Luna:** Finding equilibrium prices for energy markets with clearing conditions
- **Ozge Ozdemir:** Generation capacity investments in electricity markets: Perfect competition and price setting
- **Daniel Ralph:** Risk-averse long term capacity investments in electricity markets: Perfect competition and price setting

European day-ahead electricity markets

- **Bertrand Cornélusse:** Coupling European day-ahead electricity markets with COSMOS
- **Johannes Müller:** Linear clearing prices in non-convex European day-ahead electricity markets
- **Daniel Ralph:** Risk-averse long term capacity investments in electricity markets: Perfect competition and price setting

Stochastic equilibria in energy markets II

- **Daniel Huppmann:** Approximating unit commitment using mathematical programming under equilibrium constraints
- **Ekaterina Schäfer:** Reduced order models in preconditions techniques

MPEC problems and market coupling

- **Marc Huisman:** Stochastic equilibria in energy markets II: MPEC problems and market coupling
- **Volker Schulz:** Stochastic equilibria in energy markets II: MPEC problems and market coupling

Perfect competition and price setting

- **Tito Homem-De-Mello:** On scenario generation methods for a hydroelectric power system
- **Daniel Huppmann:** Approximating unit commitment using mathematical programming under equilibrium constraints

Perfect competition and price setting

- **Markus Kollmann:** Robust iterative solvers for a class of PDE-constrained optimization problems
- **John Pearson:** Iterative solution techniques for Stokes and Navier-Stokes control problems
- **Ekkehard Sachs:** Reduced order models in preconditioning techniques

PDE-constrained optimization and multi-level/multi-grid methods

- **Markus Kollmann:** Robust iterative solvers for a class of PDE-constrained optimization problems
- **John Pearson:** Iterative solution techniques for Stokes and Navier-Stokes control problems
- **Ekkehard Sachs:** Reduced order models in preconditioning techniques

Preconditioning in PDE constrained optimization

- **Markus Kollmann:** Robust iterative solvers for a class of PDE-constrained optimization problems
- **John Pearson:** Iterative solution techniques for Stokes and Navier-Stokes control problems
- **Ekkehard Sachs:** Reduced order models in preconditioning techniques

Scenario generation in stochastic programming

- **Sanjay Mehrotra:** New results in scenario generation for stochastic optimization problems via the sparse grid method
- **John Birge:** Cut generation for serially dependent multistage stochastic optimization models
- **Tito Homem-De-Mello:** On scenario generation methods for a hydroelectric power system

Stochastic optimal control problems

- **Rüdiger Schultz:** Shape optimization under uncertainty via stochastic optimization
- **Benedict Geihe:** A two-scale approach for risk averse shape optimization
- **Tony Huschto:** Solving stochastic optimal control problems by a polynomial chaos approach

Robust network design and applications

- **Agastha Agra:** The robust vehicle routing problem with time windows
- **Benedict Geihe:** A two-scale approach for risk averse shape optimization
- **Sara Mattia:** The robust network loading problem

Variational analysis

- **Radu Ioan Bot:** Approximating the maximal monotonicity of bifunctions via representative functions
- **Marco Rocco:** On the adoption of multi-band uncertainty in robust network design
- **Szilárd László:** Regularity conditions for the maximal monotonicity of the generalized parallel sum
ABSTRACTS

The session codes

<table>
<thead>
<tr>
<th>Mon.1.H 3004</th>
<th>Combinatorial optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial optimization in chip design I</td>
<td>Organizer/Chair Stephan Held, University of Bonn - Invited Session</td>
</tr>
<tr>
<td>Igor Markov, University of Michigan (with Myung-Chul Kim)</td>
<td>A primal-dual Lagrange optimization for VLSI global placement</td>
</tr>
<tr>
<td>We propose a projected subgradient primal-dual Lagrange optimization for global placement that can be instantiated with a variety of interconnect models. It decomposes the original non-convex problem into 'more convex' sub-problems. It generalizes the recent SimPL, SimPLR and Ripple algorithms and extends them. Empirical results on the ISPD 2005 and 2006 benchmark suites confirm the superiority of this technique compared to prior art.</td>
<td></td>
</tr>
</tbody>
</table>

Markus Zang, Research Institute for Discrete Mathematics, Bonn University

Quadratic and constrained placement in chip design: Global flows and local realizations

The classical large scale placement problem is a key step in chip design. Given a finite set of modules connected by nets, the task is to find overlap-free positions to the modules in such a way that the overall net length is minimized. This talk presents a quadratic, partitioning-based placement algorithm which is able to handle non-convex and overlapping position constraints to subsets of modules, the move bounds. The key routine of our algorithm is the flow-based partitioning which combines a global MinCostFlow model for computing directions with extremely fast and highly parallelizable local realization steps. Despite its global view, the size of the MinCostFlow instance is only linear in the number of partitioning regions and does not depend on the number of cells. We prove that our partitioning scheme finds a fractional solution for any given placement or decides in polynomial time that none exists.

Ulf Bremner, University of Bonn

Fractional versus integral flows: A new approach to VLSI legalization

In VLSI placement legalization, a large set of rectangular cells with the same height is given. The cells are spread over a rectangular area but may still overlap, and the task is to arrange them overlap-free into rows such that the cells' movement is minimized. If we relax the problem by allowing to move fractions of cells, this leads to a minimum-cost flow formulation. Several legalization algorithms are based on that idea. However, in the end we have to get rid of the relaxation since cells cannot be split. Most approaches just round the flow solution and then iterate the whole process.

Our algorithm is based on the Successive-Shortest Path Algorithm which iteratively augments flow along paths, but we ensure that only augmentations are considered that can be realized exactly by cell movements. Hence, the method avoids realization problems which are inherent to previous flow-based legalization algorithms.

We compare our approach to legalization tools from industry and academia by experiments on recent real-world designs and public benchmarks. The results show that we are faster and produce significantly smaller placements than any other tool.

Mon.1.MA 041

Tucker session

Organizer/Chair Daniel Ralph, University of Cambridge - Invited Session

Daniel Ralph, University of Cambridge

Tucker awards ceremony

In this session, the Tucker Prize for an outstanding doctoral thesis will be awarded, followed by presentations by the three finalists.

approximation algorithm for the s-t path TSP

We present a deterministic \(\frac{4}{3} \)-approximation algorithm for the s-t path TSP for an arbitrary metric. Given a symmetric metric cost on \(n \) vertices including two specified endpoints, the problem is to find a shortest Hamiltonian path between the two endpoints; Hoogeveen showed that the natural variant of Christofides' algorithm is a \(\frac{5}{3} \)-approximation algorithm for this problem, and this asymptotically tight bound in fact had been the best approximation ratio known until now. We modify this algorithm so that it chooses the initial spanning tree based on an optimal solution to the Held-Karp relaxation rather than a minimum spanning tree; we prove this simple but crucial modification leads to an improved approximation ratio, surpassing the 20-year-old barrier set by the natural Christofides' algorithm variant. Our algorithm also proves an upper bound of \(\frac{2}{3} + \varepsilon \) on the integrality gap of the path-variant Held-Karp relaxation. The techniques devised in this paper can be applied to other optimization problems as well, including the prize-collecting s-t path problem and the unit-weight graphical metric s-t path TSP.

Frans Schalekamp, The College of William and Mary (with Jiawei Qian, Anke van Zuylen, David Williamson)

On the integrality gap of the subtour LP for the 1,2-TSP

We study the integrality gap of the subtour LP relaxation for the traveling salesmen problem in the special case when all edge costs are either 1 or 2. For the general case of symmetric costs that obey triangle inequality, a famous conjecture is that the integrality gap is \(\frac{4}{3} \). Little progress towards resolving this conjecture has been made in thirty years, even though there has very recently been exciting progress with new approximation algorithms for special cases of the TSP, as well as for some relaxed relaxations that are related to the general conjecture.

We conjecture that for all edge costs \(c_{ij} \in \{1,2\} \), the integrality gap is \(\frac{4}{3} \). We show that this conjecture is true when the optimal subtour LP solution has a certain structure: Under a weaker assumption, which is an analog of a recent conjecture by Schalekamp, Williamson and van Zuylen, we show that the integrality gap is at most \(\frac{4}{3} \). When we do not make any assumptions on the structure of the optimal subtour LP solution, we can show that integrality gap is at most \(\frac{4}{3} \approx 1.267 < 4/3 \), this is the first bound on the integrality gap of the subtour LP strictly less than 4/3 known for an interesting special case of the TSP.

David Shmoys, Cornell University (with Maurice Chang)

A primal-dual approximation algorithm for min-sum single-machine scheduling problems

We consider the following single-machine scheduling problem, which is often denoted 1\(| \sum f_j | \) : we are given \(n \) jobs to be scheduled on a single machine, where each job \(j \) has an integral processing time \(p_j \) and there is a nondecreasing, nonnegative cost function \(f_j(C_j) \) that specifies the cost of finishing \(j \) at time \(C_j \); the objective is to minimize \(\sum_{j=1}^{n} f_j(C_j) \). Bansal & Pruhs recently gave the first constant approximation algorithm and we improve on their 16-approximation algorithm, by giving a primal-dual pseudo-polynomial-time algorithm that finds a solution of cost at most twice the optimal cost, and then show how this can be extended to yield, for any \(\varepsilon > 0, \), a \((2 + \varepsilon) \)-approximation algorithm for this problem. Furthermore, we generalize this result to allow the machine's speed to vary over time arbitrarily, for which no previous constant-factor approximation algorithm was known.
Gromov-Hausdorff distance of finite metric spaces

The Gromov-Hausdorff distance of two compact metric spaces is a measure for how far the two spaces are from being isometric. It is a pseudometric on the space of compact metric spaces and has been extensively studied in the field of metric geometry.

In recent years, a lot of attention has been devoted to computational aspects of the Gromov-Hausdorff distance. One of the most active topics is the problem of shape recognition, where the goal is to decide whether two shapes given as polygonal meshes are equivalent under certain invariances.

In this talk, we will investigate the computational complexity of several decision versions of the problem. By relating it to other well-known combinatorial optimization problems like the clique and the graph isomorphism problem, we prove that determining the largest subspaces of two finite metric spaces with a fixed upper bound on the Gromov-Hausdorff distance is not in \(\mathcal{APX} \). Furthermore novel algorithms for the problem will be derived from these results.

Wedefineanewclassofmarkets, the Eisenberg-Gale markets. This class contains Fisher’s linear market, markets from the resource allocation framework of Kelly [1997], as well as numerous interesting new markets. We obtain combinatorial, strongly polynomial algorithms for several markets in this class. Our algorithms have a simple description as ascending price auctions. Our algorithms lead to insights into game-theoretic properties of these markets, such as efficiency, fairness, and competition monotonicity. They also help determine if these markets always have rational equilibria. A classification of Eisenberg-Gale markets w.r.t. these properties reveals a surprisingly rich set of possibilities.

Eisenberg-Gale markets: Algorithms and game theoretic properties

We define a new class of markets, the Eisenberg-Gale markets. This class contains Fisher’s linear market, markets from the resource allocation framework of Kelly [1997], as well as numerous interesting new markets. We obtain combinatorial, strongly polynomial algorithms for several markets in this class. Our algorithms have a simple description as ascending price auctions. Our algorithms lead to insights into game-theoretic properties of these markets, such as efficiency, fairness, and competition monotonicity. They also help determine if these markets always have rational equilibria. A classification of Eisenberg-Gale markets w.r.t. these properties reveals a surprisingly rich set of possibilities.

A perfect price discrimination market model, and a rational convex program for it

Motivated by the current market ecosystem of online display advertising, where buyers buy goods through intermediaries, we study a natural setting where intermediaries are allowed to price discriminate buyers based on their willingness to pay. We show that introducing perfect price discrimination via an intermediary into the Fisher model with piecewise-linear, concave (PLC) utilities renders its equilibrium polynomial time computable. Moreover, and surprisingly, its set of equilibria are captured by a convex program that generalizes the classical Eisenberg-Gale program, and always admits a rational solution. We also give a combinatorial, polynomial time algorithm for computing an equilibrium. We note that the problem of computing an equilibrium for the traditional Fisher market with PLC utilities is unlikely to be in \(\mathcal{P} \), since it is PPAD-complete.

Gromov-Hausdorff distance of finite metric spaces

The Gromov-Hausdorff distance of two compact metric spaces is a measure for how far the two spaces are from being isometric. It is a pseudometric on the space of compact metric spaces and has been extensively studied in the field of metric geometry.

In recent years, a lot of attention has been devoted to computational aspects of the Gromov-Hausdorff distance. One of the most active topics is the problem of shape recognition, where the goal is to decide whether two shapes given as polygonal meshes are equivalent under certain invariances.

In this talk, we will investigate the computational complexity of several decision versions of the problem. By relating it to other well-known combinatorial optimization problems like the clique and the graph isomorphism problem, we prove that determining the largest subspaces of two finite metric spaces with a fixed upper bound on the Gromov-Hausdorff distance is not in \(\mathcal{APX} \). Furthermore novel algorithms for the problem will be derived from these results.

Eisenberg-Gale markets: Algorithms and game theoretic properties

We define a new class of markets, the Eisenberg-Gale markets. This class contains Fisher’s linear market, markets from the resource allocation framework of Kelly [1997], as well as numerous interesting new markets. We obtain combinatorial, strongly polynomial algorithms for several markets in this class. Our algorithms have a simple description as ascending price auctions. Our algorithms lead to insights into game-theoretic properties of these markets, such as efficiency, fairness, and competition monotonicity. They also help determine if these markets always have rational equilibria. A classification of Eisenberg-Gale markets w.r.t. these properties reveals a surprisingly rich set of possibilities.

A perfect price discrimination market model, and a rational convex program for it

Motivated by the current market ecosystem of online display advertising, where buyers buy goods through intermediaries, we study a natural setting where intermediaries are allowed to price discriminate buyers based on their willingness to pay. We show that introducing perfect price discrimination via an intermediary into the Fisher model with piecewise-linear, concave (PLC) utilities renders its equilibrium polynomial time computable. Moreover, and surprisingly, its set of equilibria are captured by a convex program that generalizes the classical Eisenberg-Gale program, and always admits a rational solution. We also give a combinatorial, polynomial time algorithm for computing an equilibrium. We note that the problem of computing an equilibrium for the traditional Fisher market with PLC utilities is unlikely to be in \(\mathcal{P} \), since it is PPAD-complete.

Rational convex programs and combinatorial algorithms for solving them

Organizer/Chair Vijay Vazirani, Georgia Tech - Invited Session

Vijay Vazirani, Georgia Tech

Rational convex programs

A nonlinear convex program that always has a rational optimal solution will be called a rational convex program (RCP). The notion is analogous to that of an integral linear program (ILP), i.e., an LP that always has integral optimal solutions. The field of combinatorial optimization is built around problems whose LP-relaxations are ILPs.

Our contention is that in many ways, the situation with RCPs is similar to that of ILPs. In both cases, the existence of much higher quality solution is indicative of combinatorial structure that can not only lead to efficient algorithms but also deep insights that yield unexpected gains. This was certainly the case with ILPs, which led to a very rich theory that underlies not only combinatorics but also the theory of algorithms.

Kamal Jain, eBay Research (with Vijay Vazirani)

Eisenberg-Gale markets: Algorithms and game theoretic properties

We define a new class of markets, the Eisenberg-Gale markets. This class contains Fisher’s linear market, markets from the resource allocation framework of Kelly [1997], as well as numerous interesting new markets. We obtain combinatorial, strongly polynomial algorithms for several markets in this class. Our algorithms have a simple description as ascending price auctions. Our algorithms lead to insights into game-theoretic properties of these markets, such as efficiency, fairness, and competition monotonicity. They also help determine if these markets always have rational equilibria. A classification of Eisenberg-Gale markets w.r.t. these properties reveals a surprisingly rich set of possibilities.

Gagan Goel, Google Research (with Vijay Vazirani)

A perfect price discrimination market model, and a rational convex program for it

Motivated by the current market ecosystem of online display advertising, where buyers buy goods through intermediaries, we study a natural setting where intermediaries are allowed to price discriminate buyers based on their willingness to pay. We show that introducing perfect price discrimination via an intermediary into the Fisher model with piecewise-linear, concave (PLC) utilities renders its equilibrium polynomial time computable. Moreover, and surprisingly, its set of equilibria are captured by a convex program that generalizes the classical Eisenberg-Gale program, and always admits a rational solution. We also give a combinatorial, polynomial time algorithm for computing an equilibrium. We note that the problem of computing an equilibrium for the traditional Fisher market with PLC utilities is unlikely to be in \(\mathcal{P} \), since it is PPAD-complete.
tive approach consisting of four steps. We show results of numerical experiments for instances based on the timetable.

Thomas Schlechte, Zuse Institute Berlin (with Ralf Berndt, Steven Harrod)
Recent developments in railway track allocation
This talk is about mathematical optimization for the efficient use of railway infrastructure. We address the optimal allocation of the available railway track capacity. This track allocation problem is a major challenge for any railway company. Planning and operating railway transport systems is extremely hard due to the complexity of the underlying discrete optimization problems, the technical intricacies, and the immense sizes of the problem instances. We tackle this challenge by developing novel mathematical models and associated innovative algorithmic solution methods for large-scale instances. We present two main features—a novel modeling approach for the macroscopic schedule allocation problem and algorithmic improvements. Finally, we provide computational studies for real-world instances, i.e., the Simplon corridor in Switzerland, and various instances from the literature.

Steffen Weider, Zuse Institute Berlin (with Ralf Berndt, Markus Reuther, Thomas Schlechte)
A rapid branching method for the vehicle rotation planning problem
The Vehicle Rotation Planning Problem is to schedule rail vehicles in order to cover the trips of a given timetable by a cost optimal set of vehicle rotations. The Problem integrates several facets of railway optimization: train composition, fleet management, maintenance planning, and regularity aspects. We model this problem as a multi-commodity min-cost-flow hypergraph problem and solve it by integer programming based heuristics.

The core of our algorithm is the Rapid Branching method which was also successfully used to solve track allocation problems and integrated vehicle and duty scheduling problems. The Rapid Branching method can be seen as a very fast heuristic traversal of a branch-and-bound search tree. We also present computational results on very large instances of the vehicle rotation planning problem given by our industrial partner DB Fernverkehr AG, which is the largest intercity railway operator in Germany.

Kirk Pruhs, University of Pittsburgh (with Anupam Gupta, Ravishankar Krishnaswamy)
Online primal-dual for non-linear optimization with applications to speed scaling
We give a principled method to design online algorithms (for potentially non-linear problems) using a mathematical programming formulation of the problem, and also to analyze the competitiveness of the resulting algorithm using the dual program. This method can be viewed as an extension of the online primal-dual method for linear programming problems, to nonlinear programs. We show the application of this method to two online speed scaling problems: one involving scheduling jobs on a speed scalable processor so as to minimize energy plus an arbitrary sum scheduling objective, and one involving routing virtual circuit connection requests in a network of speed scalable routers so as to minimize the aggregate power or energy used by the routers. This analysis shows that competitive algorithms exist for problems that had resisted analysis using the dominant potential function approach in the speed scaling literature, and provides alternate cleaner analysis for other known results. This represents another step towards a principled design and analysis of primal-dual algorithms for online problems.

Ola Svensson, EPFL
On the hardness of the k-partite ordering problem
We will talk about the recently established reductions from a bipartite (and k-partite) ordering problem to two classical scheduling problems with precedence constraints on identical machines to minimize makespan (\(\|\text{pre}\|_{\text{Cmax}}\)) and to scheduling with precedence constraints on related machines to minimize makespan (\(\|\text{pre}\|_{\text{Cmax}}\)).

Combining our reduction from the bipartite ordering problem with a recent result by Bansal & Khot shows that it is NP-hard to improve upon the classical 2-approximation by Graham & for identical machines, assuming a variant of the unique games conjecture.

For related machines, we show that if a generalized version of the bipartite (namely k-partite) ordering problem is hard then (\(\|\text{pre}\|_{\text{Cmax}}\)) does not admit a constant factor approximation algorithm. However, the hardness of the k-partite ordering problem remains open even if we assume the unique games conjecture.

Cliff Stein, Columbia University (with Kirk Pruhs)
How to schedule when you have to buy your energy
We consider a situation where jobs arrive over time at a data center, consisting of identical speed-scalable processors. For each job, the scheduler knows how much income is lost as a function of how long the job is delayed. The scheduler also knows the fixed cost of a unit of energy. The online scheduler determines which jobs to run on which processors, and at what speed to run the processors. The scheduler’s objective is to maximize profit, which is the income obtained from jobs minus the energy costs. We give a \((1 + \epsilon)\)-speed \(O(1)\)-competitive algorithm, and show that resource augmentation is necessary to achieve \(O(1)\)-competitiveness.

Complementarity & variational inequalities
Mon.1.MA 313
Optimization and equilibrium models in energy systems
Organizer/Chair: Jong-Shi Pang, University of Illinois at Urbana-Champaign - Invited Session
Steven Gabriel, University of Maryland (with Salah Siddiqui)
A new method for MPECs with a natural gas application
We present a new method for solving MPECs based on SOS1 variables and a reformulation of the complementarity terms. We show two forms of the transformed problem: one using SOS1 variables and the other a penalty term. We present some theoretical results as well as numerical tests on a small energy production problem and a large-scale one for natural gas.

Yueyue Fan, University of California, Davis (with Roger Wets)
A stochastic variational inequality model for estimating traffic demand based on random link flow observations
In this talk, we will discuss a problem of estimating travel demand of a network based on observations of link flow. First, we will show how the estimation problem can be formulated as a stochastic programming problem. The objective is to minimize the expected estimation error, subjected to physical and behavior assumptions of network flow. Next, we will extend the estimation problem to a sensor resource allocation problem, in which the goal is to identify the best sensor deployment strategy to maximize the benefit of information gained from the sensors. The design of numerical solution algorithms will be also discussed. The proposed modeling framework demonstrates a clear linkage between statistical estimation and optimization. From the engineering perspective, this work has the potential to improve the utilization of information technologies.

Xinyang Qian, University of Illinois at Urbana-Champaign (with Yun Bai, Jong-Shi Pang)
Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium
The rapid expansion of the U.S. biofuel industry diverts a large amount of agricultural crops as energy feedstocks, and in turn affects farm land allocation, food market equilibrium, and agricultural economy. We present game-theoretic models that incorporate farmers’ decisions on land use and market choice into the biofuel manufacturers’ supply chain design problem (i.e., number and locations of biofineries, resource procurement prices). A noncooperative bi-level Stackelberg game model and a cooperative game model are developed respectively to address possible business partnership scenarios between feedstock suppliers and biofuel manufacturers. Spatial market equilibrium is utilized to model crop supply and demand and the associated market price variations. We transform the bilevel model into a mixed integer quadratic program, and explore adaptive implementation of linear program relaxation and Lagrangian relaxation. The proposed methodology is illustrated using an empirical case study of the Illinois State, and the computation results reveal interesting insights into optimal land use strategies and supply chain design for the emerging “biofuel economy.”

Organizer/Chair: Jong-Shi Pang, University of Illinois at Urbana-Champaign - Invited Session
Hamid Nemati, ETH Zurich (with Irina Savchuk, Dominik Neumann)
Algorithmic aspects of electric vehicle charging
We address the problem of scheduling electric vehicle charging and propose a framework that captures the interaction between electric vehicles and the grid. We present an efficient algorithm that is competitive with respect to the optimal offline solution, and further, our algorithm provides a framework for including the uncertainties of the grid as well.

Combinatorial optimization
Mon.1.H 3021
Scheduling algorithms I
Organizer/Chair: Nikhil Bansal, Eindhoven University of Technology - Invited Session
Kirk Pruhs, University of Pittsburgh (with Anupam Gupta, Ravishankar Krishnaswamy)
Online primal-dual for non-linear optimization with applications to speed scaling
We give a principled method to design online algorithms (for potentially non-linear problems) using a mathematical programming formulation of the problem, and also to analyze the competitiveness of the resulting algorithm using the dual program. This method can be viewed as an extension of the online primal-dual method for linear programming problems, to nonlinear programs. We show the application of this method to two online speed scaling problems: one involving scheduling jobs on a speed scalable processor so as to minimize energy plus an arbitrary sum scheduling objective, and one involving routing virtual circuit connection requests in a network of speed scalable routers so as to minimize the aggregate power or energy used by the routers. This analysis shows that competitive algorithms exist for problems that had resisted analysis using the dominant potential function approach in the speed scaling literature, and provides alternate cleaner analysis for other known results. This represents another step towards a principled design and analysis of primal-dual algorithms for online problems.

Ola Svensson, EPFL
On the hardness of scheduling with precedence constraints to minimize makespan
We will talk about the recently established reductions from a bipartite (and k-partite) ordering problem to two classical scheduling problems with precedence constraints on identical machines to minimize makespan (\(\|\text{pre}\|_{\text{Cmax}}\)) and to scheduling with precedence constraints on related machines to minimize makespan (\(\|\text{pre}\|_{\text{Cmax}}\)).

Combining our reduction from the bipartite ordering problem with a recent result by Bansal & Khot shows that it is NP-hard to improve upon the classical 2-approximation by Graham & for identical machines, assuming a variant of the unique games conjecture.

For related machines, we show that if a generalized version of the bipartite (namely k-partite) ordering problem is hard then (\(\|\text{pre}\|_{\text{Cmax}}\)) does not admit a constant factor approximation algorithm. However, the hardness of the k-partite ordering problem remains open even if we assume the unique games conjecture.
the original problem. In addition, the resulting problem may lose the sparsity. In this talk, we show that one can apply FRA effectively by using structure in the original problem. For this, we present some examples, such as SDP relaxation for polynomial optimization and graph partitioning. In particular, we prove that in SDP relaxation for polynomial optimization, some methods for reducing the size of the SDP relaxation problems are partial applications of FRA. This is joint work with Professor Masakazu Muramatsu (UEC).

Vera Roschchina, University of Ballard (with Javier Peña)

Partition and complementarity in multifold conic systems

We consider a homogeneous multifold convex conic system and its dual and show that there is canonical partition of the multifold structure determined by certain complementarity sets associated to the most interior solution systems. Our results are inspired by and extend the Goldman-Tucker Theorem for linear programming.

Roman Sais, University of Maryland (UMBC)

Efficient first-order methods for convex programming

First-order methods for convex programming use only information about gradients (or subgradients). They are especially useful for large-scale problems since each iteration is cheap, memory requirements are low, and the convergence rates do not depend on the dimension of the problem. After the pioneering work by Polyak and later on by Yudin-Nemirovskii, and especially after Nesterov’s work on optimal first-order method which emulates the conjugate gradient method, there has been a lot of recent interest in such methods. These algorithms can be extended to optimization problems with constraints, minmax problems, and have connections with the proximal-point methods. However, certain aspects of the algorithms are somewhat mysterious and not well understood. In our talk, we will explore the theoretical underpinnings of these methods and find new applications for them.

André Cire, Carnegie Mellon University (with William Hare)

MDD propagation for disjunctive scheduling

Disjunctive scheduling refers to a wide range of problems in which activities must be scheduled on a resource capable of processing only one operation at a time. Constraint-based techniques, such as edge finding and not-first/not-last rules, have been a key element in successfully tackling large and complex disjunctive scheduling problems in recent years. In this work we investigate new constraint propagation methods based on limited-width Multivalued Decision Diagrams (MDDs), which represent a relaxation of the feasible sequences of activities that must be scheduled on the resource. We present theoretical properties of the MDD encoding and describe filtering and refinement operations that strengthen the relaxation it provides. Furthermore, we provide an efficient way to integrate the MDD-based reasoning with state-of-the-art propagation techniques for scheduling. Experimental results indicate that the MDD propagation can outperform existing domain filters especially when minimizing sequence-dependent setup times, in certain cases by several orders of magnitude.

Philippe Laborie, IBM

Conditional interval variables: A powerful concept for modeling and solving complex scheduling problems

Scheduling is not only about deciding when to schedule a predefined set of activities. Most of real-world scheduling problems also involve selecting a subset of activities (oversubscribed problems) and a particular way to execute them (resource or mode allocation, alternative recipes, pre-emptive activity splitting, etc.). We introduce the notion of a conditional interval variable in the context of Constraint Programming (CP) and show how this new concept can be leveraged to model and solve complex scheduling problems involving both temporal and non-temporal decisions. The presentation will be illustrated with IBM ILOG CPLEX CP Optimizer, a CP based optimization engine implementing this concept.

Nalan Gulpinar, Warwick Business School (with Ethem Canakoglu, Dessislava Pachamanova)

Convex lower bounding to generate multi-asset, arbitrage-free, scenario trees

Simulation models of economic and financial factors are nowadays widely used to support decisions or to assess risk exposures. An extensive literature on scenarios generation is available whose main aim is to build trees with the least number of nodes, while ensuring a given level of accuracy in describing the joint probability distribution of the process. There is, however, another important issue that is usually overlooked or, worse, ignored: the no-arbitrage restriction.

A possible solution, relatively to the moment matching approach, is to add the no-arbitrage restriction to the set of equations describing the moments of the multivariate distributions, with the shortcoming, however, of worsening the numerical stability and precision of the solution.

The aim of our analysis is to provide a new solution method for the moment matching model to overcome the limitation raised above. We re-formulate the problem of finding all the solutions of a set of non-linear equations as a global optimization problem. We then focus on convex lower bounding techniques to provide a more stable and reliable approach to stochastic tree generation.

Noel Gajmovic, Warwick Business School (with Ethen Canakoglu, Dessislava Pachamanova)

Robust investment decisions for asset liability management

In this paper, we present stochastic and robust models for multi-period Asset Liability Management (ALM) problem. ALM involves the management of risks that arise due to mismatches between the assets and liabilities. Stochastic optimization models focus on finding the optimal investment decisions over a set of scenarios for the future returns on the assets and the liabilities of the company. Robust approach is introduced to minimize the risks that arise due to the estimation errors of uncertainty on asset returns and liabilities. Computational experiments
using real data are presented to compare the performance of different formalizations of the problem.

Giorgio Consigli, University of Bergamo (with Massimo di Tria, Vittorio Montigia, Davide Mustelleti, Angelo Uristani)

Institutional asset-liability management for a large P&C insurance company

We present an asset-liability management problem for a large insurance company based on a real world development. A 10 year problem is formulated as a stochastic quadratic program with a multi-criteria objective function based on short, medium and long term targets. The investment universe includes fixed-income, real estate and equity investment plus alternative investments such as private equity, renewable energy, infrastructures and commodities with dedicated stochastic models. Liabilities and insurance reserves are inflation adjusted and the management aims at controlling the risk exposure while achieving short and medium term goals without jeopardising the long term business sustainability.

Konstantinos Bimpikis, Stanford University (with Asuman Ozdaglar, Ercan Yildiz)

Game theory

We provide a sharp characterization of the optimal targeted marketing strategy and highlight their dependence on the consumers’ preferences and the structure and intensity of their social interactions. This paper examines a game-theoretic model of competition between firms, which can target their marketing budgets to individuals embedded in a social network.

Matthew Elliott, Microsoft Research (with Ben Golub)

Network games under strategic complementarities

In this paper we study network games with strategic complementarities. Agents are embedded in a fixed network and interact with their network neighbors. They play a game characterized by positive interactions and linear best-replyes. We assume that actions are continuous but bounded from above. This means that our game is supermodular. We show that this game always possesses a unique equilibrium. We derive comparative statics, provide a fast algorithm to compute the equilibrium and we characterize the equilibrium explicitly for important families of graphs. We show that action may not be aligned with Bonacich centrality and that interdependence may be broken in the presence of bridges. Overall, we find that the presence of an upper bound on actions strongly affects the outcomes of the game.

Convex relaxation techniques with applications in computer vision

Vladimir Kolmogorov, IST Austria

Message passing algorithms for MAP-MRF inference

I will consider the problem of computing maximum a posteriori configuration in a Markov Random Field, or equivalently minimizing a function of discrete variables decomposed as a sum of low-order terms. This task frequently occurs in many fields such as computer vision and machine learning. A popular approach to tackling this NP-hard problem is to solve its LP relaxation. I will talk about message passing algorithms that try to solve the LP, in particular sequential tree-reweighted message passing (TRW-S) and its extensions. TRW-S shows good performance in practice and is often used for computer vision problems.

Daniel Cremers, TU Munich (with Antonin Chambolle, Bastian Goldlücke, Kalin Kolev, Thomas Pock, Eugene Strekalovskiy)

Convex relaxation techniques with applications in computer vision

Numerous computer vision problems can be solved by variational methods and partial differential equations. Yet, many traditional approaches correspond to non-convex energies giving rise to suboptimal solutions and often strong dependence on appropriate initialization. In my presentation, I will show how problems like image segmentation, multiview stereo reconstruction and optic flow estimation can be formulated as variational problems. Subsequently, I will introduce convex relaxation techniques which allow to compute globally optimal or near-optimal solutions. The resulting algorithms provide robust solutions, independent of initialization and compare favorable to spatially discrete graph theoretic approaches in terms of computation time, memory requirements and accuracy.

Maxwell Collins, University of Wisconsin-Madison (with Leo Grady, Vikas Singh, Jia Xu)

Random walks based multi-image segmentation: Quasinconvexity results and GPU-based solutions

We recast the cosegmentation problem using random Walker segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in that it also permits cosegmentation constraints which impose consistency between the extracted objects from 2+ images using a nonparametric model. However, several previous nonparametric cosegmentation methods have the limitation that they require one auxiliary node for every pair of pixels that are similar (limiting such methods to describing only those objects that have high entropy appearance models). Our proposed model eliminates this dependence – the resulting improvements are significant. We further allow an optimization scheme exploiting quasinconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of operations on sparse matrices which are easily mapped to GPU architecture. We provide a specialized CUDA library for cosegmentation exploiting this special structure, and report experimental results showing these advantages.
Implementations & software

Testing environments for machine learning and compressed sensing
Organizer/Chair Kathya Scheinberg, Lehigh University - Invited Session

Michael Friedlander, University of British Columbia (with Ewout van den Berg)
Spot: A linear-operator toolbox for Matlab
Linear operators are at the core of many of the most basic algorithms for signal and image processing. Matlab’s high-level, matrix-based language allows us to express naturally many of the underlying matrix operations – e.g., computation of matrix-vector products and manipulation of matrices – and is thus a powerful platform on which to develop concrete implementations of these algorithms. Many of the most useful operators, however, do not lend themselves to the explicit matrix representations that Matlab provides. This talk describes the new Spot Toolbox, which aims to bring the expressiveness of Matlab’s built-in matrix notation to problems for which explicit matrices are not practical. I will demonstrate features of the toolbox with examples from compressed sensing and image reconstruction.

Kathya Scheinberg, Lehigh University
Studying effects of various step selection strategies in first order approaches to compressed sensing and other composite optimization problems
We will discuss theoretical and practical implications of various strategies for choosing the prox parameter in prox gradient methods and related alternating direction methods. We will show extension of existing convergence rates for both accelerated and classical first-order methods. Practical comparison based on a testing environment for L1 optimization will be presented.

Dirk Lorenz, TU Braunschweig (with Christian Kruschel)
Constructing test instances for basis pursuit denoising
The number of available algorithms for the so-called Basis Pursuit Denoising problem (or the related LASSO-problem) is large and keeps growing. Similarly, the number of experiments to evaluate and compare these algorithms on different instances is growing.

In this talk, we discuss a methods to produce instances with exact solutions which is based on a simple observation which is related to the so called source condition from sparse regularization and the so-called dual certificate. We construct such dual-certificate by alternating projections onto convex sets and also by linear programming method. The method have been implemented in a MATLAB package L1TestPack.

Dizgor Oguzeynici, Izmir University of Economics
Allocation of proposals to reviewers to facilitate effective ranking: A branch and price approach
One of the key problems for the funding agencies is to determine the proposals that are worth funding. A recent evaluation approach uses the ordinal ranking of the proposals. The approach allocates the proposals to the reviewers and each reviewer provides pairwise comparison of the assigned proposals. The approach uses a set covering IP model to assign the proposals so as to receive the maximum pairwise comparison information considering the capabilities and the preferences of the reviewers. In this study, we develop two new mathematical models for this approach. The size of the first model is polynomial in the number of the proposals. We propose a branch and price algorithm in the second model. We conduct a computational experiment to compare the performances of three models on a set of randomly generated instances.

Richard Lusby, Department of Management Engineering, Technical University of Denmark
A column generation approach for solving the patient admission scheduling problem
The PatientAdmission Scheduling Problem (PASP) is the problem of assigning patients to hospital rooms in such a way that the preferences of the patients as well as the effectiveness of the medical treatment are maximized. We present a Dantzig-Wolfe decomposition of PASP into a set partitioning master problem and a set of room scheduling problems for the pricing problems; here each column of the master corresponds to a feasible room schedule over the planning horizon. We describe an implementation of the dynamic constraint aggregation methodology proposed by Elhallaoui et al. (2005) to overcome the degeneracy of the master problem and show how this improves the performance of the column generation significantly. The method is tested on benchmark instances described by Demeester et al. (2008) where we derive tighter lower bounds than those previously reported for several of the instances. The computation time for identifying these lower bounds is, in most cases, significantly less than those presented by Ceshia and Scharf (2011). A discussion on several branching strategies to integerize the lower bound solution is also provided.

Mon.1.H 1058

Integer & mixed-integer programming

Mon.1.H 2013

Column generation and decomposition
Chair Richard Lusby, Department of Management Engineering, Technical University of Denmark

Ozgur Ozpeynirci, Izmir University of Economics
Allocation of proposals to reviewers to facilitate effective ranking: A branch and price approach
One of the key problems for the funding agencies is to determine the proposals that are worth funding. A recent evaluation approach uses the ordinal ranking of the proposals. The approach allocates the proposals to the reviewers and each reviewer provides pairwise comparison of the assigned proposals. The approach uses a set covering IP model to assign the proposals so as to receive the maximum pairwise comparison information considering the capabilities and the preferences of the reviewers. In this study, we develop two new mathematical models for this approach. The size of the first model is polynomial in the number of the proposals. We propose a branch and price algorithm in the second model. We conduct a computational experiment to compare the performances of three models on a set of randomly generated instances.

Richard Lusby, Department of Management Engineering, Technical University of Denmark (with Jerger Larsen, Toreis Range)
A column generation approach for solving the patient admission scheduling problem
The PatientAdmission Scheduling Problem (PASP) is the problem of assigning patients to hospital rooms in such a way that the preferences of the patients as well as the effectiveness of the medical treatment are maximized. We present a Dantzig-Wolfe decomposition of PASP into a set partitioning master problem and a set of room scheduling problems for the pricing problems; here each column of the master corresponds to a feasible room schedule over the planning horizon. We describe an implementation of the dynamic constraint aggregation methodology proposed by Elhallaoui et al. (2005) to overcome the degeneracy of the master problem and show how this improves the performance of the column generation significantly. The method is tested on benchmark instances described by Demeester et al. (2008) where we derive tighter lower bounds than those previously reported for several of the instances. The computation time for identifying these lower bounds is, in most cases, significantly less than those presented by Ceshia and Scharf (2011). A discussion on several branching strategies to integerize the lower bound solution is also provided.

Mon.1.H 2032

Integer programming algorithms I
Chair Timm Oertel, ETH Zurich

Chuangang Deng, City University of Hong Kong (with Ying Ye)
A fixed-point iterative approach to integer programming and distributed computation
Integer programming is concerned with the minimization of a linear function over integer or mixed-integer points in a polytope, which is equivalent under binary search to determining whether there is an integer or mixed-integer point in a polytope. Integer programming is an NP-hard problem and has many applications in economics and management science. Constructing an increasing mapping satisfying certain properties, we develop in this paper a fixed-point iterative method for integer programming. The self-dual embedding technique will be applied for a solution to a bounding linear program in the development. Given any polytope, within a finite number of iterations, the method either yields an integer or mixed-integer point in the polytope or proves no such point exists. As a very appealing feature for integer programming, the method can be easily implemented in a distributed way. Furthermore, the method can be applied to compute all integer or mixed-integer points in a polytope. Numerical results show that the method is promising.

Thomas Rehre, University of Rostock (with Karin Herr, Achill Schürmann)
Exploiting symmetry in integer convex optimization using core points
In this talk we consider symmetric convex programming problems with integrality constraints, that is, problems which are invariant under a linear symmetry group. We define a core point of such a symmetry group as an integral point for which the convex hull of its orbit does not contain integral points other than the orbit points themselves. These core points allow us to decompose symmetric integer convex programming problems. In particular for symmetric integer linear programs we describe two algorithms which make use of this decomposition. We characterize core points for some frequently occurring symmetry groups, in particular for direct products of symmetric groups. We use these results for prototype implementations, which can compete with state-of-the-art commercial solvers on some highly symmetric problems and helped solving an open MIPLIB problem.

Timm Oertel, ETH Zurich (with Christian Wagner, Robert Weismantel)
Convex integer minimization in fixed dimension
We show that minimizing a convex function over the integer points of a bounded convex set is polynomial in fixed dimension. For that, we present a geometric cone-shrinking algorithm. That is, we search for improving integer points within cones, reducing their volume step by step.

Mon.1.MA 004

Advances in integer programming
Organizer/Chair Shmuel Onn, Technion – Israel Institute of Technology - Invited Session

Antoine Dazac, McMaster University (with Frédéric Meunier, Taman Stephen, Feng Xie)
Combinatorial, computational, and geometric approaches to the colourful simplicial depth
In statistics, there are several measures of the depth of a point \(p \) relative to a fixed set \(S \) of sample points in dimension \(d \). One of the most intuitive is the simplicial depth of \(p \) introduced by Liu (1999), which is the number of simplices generated by points in \(S \) that contain \(p \). Obtaining a lower bound for the simplicial depth is a challenging problem. Carathéodory’s Theorem can be restated as: The simplicial depth is at least 1 if \(p \) belongs to the convex hull of \(S \). Bárány (1982) showed that the simplicial depth is at least a fraction of all possible simplices generated from \(S \). Gromov (2010) improved the fraction via a topological approach. Bárány’s result uses a colourful version of the Carathéodory’s theorem leading to the associated colourful simplicial depth. We present recent generalizations of the Colourful Carathéodory’s theorem due to
Arocha et al. and Homljen et al. and our strengthening of these. We provide a new lower bound for the colourfull simplicial depth improving the earlier bounds of Bárány & Matoušek and of Stephen & Thomas. Computational approaches for small dimension and the colourful linear programming feasibility problem introduced by Bárány & Onn are discussed.

Justo Puerto, Universidad de Sevilla

Ordered weighted average optimization of combinatorial problems

This talk addresses a class of combinatorial optimization models that include among others, bottleneck, k-centrum, general balanced, lexicographic, ordered median and universal optimization. These problems have been analyzed under different names for different authors in the last years [Calvete and Mateos (1998), De la Croce et al. (1999), Lee (1992), Nickel and Puerto (2005), Puerto and Tamir (2005), Punnen and Aneja (1996, 2004), Turner and Hamacher (2011), Turner et al. (2011)]. We study the common framework that underlines these models, present different formulations as integer programs and study their relationships and reinforcements. This approach leads to a branch and cut algorithm applicable to the general problem which is effective up to median size instances. For some specific cases we also analyze specific properties leading to polynomial time combinatorial algorithms.

Matthew Köppe, University of California, Davis (with Nicole Berline, Michele Vergne)

A discretization-free FPTAS for polynomial optimization over the mixed-integer points in a class of polytopes of varying dimension

We present a new fully polynomial-time approximation scheme for the problem of optimizing non-convex polynomial functions over the mixed-integer points of a polytope of fixed dimension. This improves upon earlier work that was based on discretization [De Loera, Hemmecke, Köppe, Weismantel, FPTAS for optimizing polynomials … . Math. Prog. Ser. A 118 (2008), 273–290]. The algorithm also extends to a class of problems in varying dimension. The algorithm is based on the study of intermediate sums, interpolating between integrals and discrete sums, initiated by A. Barvinok [2006] and continued by Baldoni, Berline, De Loera, Köppe, Vergne [Computation of the highest coefficients … Found. Comput. Math. 2012] and Baldoni, Berline, Köppe, Vergne [Intermediate sums on polyhedra … Mathematika 2012]. For a given polytope P with facets parallel to rational hyperplanes and a rational subspace \(L \), we integrate a given polynomial function \(h \) over all lattice slices of the polytope \(P \) parallel to the subspace \(L \) and show that there are mixed-integer programs with \(h \) that are solvable by \(P \) and \(L \).

This is the culmination of an effort to extend the efficient theory of discrete generating functions to the mixed-integer case.
scenarios of the outlook of the random variables while satisfying the first order stochastic dominance constraints [sdc] for a set of profiles in order to reduce the risk of the cost impact of the solution in non-wanted scenarios. And second, a scheme to obtain the solution of the stochastic p-median problem is developed by considering the splitting variable representation of the static Deterministic Equivalent Model (DEM) of the stochastic p-median problem. This scheme dualizes the non-anticipativity constraints and treats with a special procedure the sdc for each profile (since those constraints have variables from different scenarios). A computational experience is reported.

Vinicius Xavier, Federal University of Rio de Janeiro (with Felipe Franca, Priscila Lima, Adilson Xavier)
Solving the F Weber Webber location problem by the hyperbolic smoothing approach
The Weber problem considers the optimum location of a given number of facilities. The problem corresponds to the minimization of the sum of the euclidean distances of each city to the nearest facility weighted by relative importance of each one. The mathematical modeling of this problem leads to a min-sum-min formulation which in addition to its intrinsic bi-level nature, has the significant characteristic of being strongly non-differentiable and non-convex problem, with a large number of local minima. The hyperbolic smoothing strategy solves a sequence of low dimension differentiable unconstrained optimization sub-problems, which gradually approaches the original problem. The reliability and efficiency of the method are illustrated via a set of computational experiments by using traditional instances presented in the literature.

Haldun Sural, METU Ankara (with Hoaeyun Guden)
The dynamic p-median problem with relocation
The dynamic location problem considers changes of demand amounts over the horizon and minimizes the location and service costs. In this paper, facilities can be opened in addition to the operating facilities and some of the operating ones can be relocated or abolished. We develop exact and heuristic methods for solving the dynamic p-median problem. The former is a branch-and-price algorithm using the reduced size form of an integer programming formulation based on discretization of the number of different distances between facilities and demand points. The latter effort explores the dynamic structure of the problem to find upper bounds on the problem objective function. Our computational results are presented to assess the performance of our methods on test instances derived from the p-median literature.

Mixed-integral nonlinear programming

Supply chain optimization
Organizer/Chair Edwin Romeijn, University of Michigan - Invited Session
Joseph Geunes, University of Florida (with Yiqiang Su)
Multi-period price promotions in a single-supplier, multi-retailer supply chain under asymmetric demand information
This paper considers a two-level supply chain in which a supplier serves a retail chain. We consider a two-stage Stackelberg game in which the supplier sets price discounts for each period of a finite planning horizon under uncertainty in retail-store demand. To stimulate sales, the supplier offers periodic off-invoice price discounts to the retail chain. Based on the price discounts offered, and after store demand uncertainty is resolved, the retail chain determines store order quantities in each period. The retailer may ship inventory between stores, a practice known as diverting. We demonstrate that, despite the resulting bullwhip effect and associated costs, a carefully designed price promotion scheme can improve the supplier’s profit when compared to the case of everyday low pricing (EDLP). We model this problem as a stochastic bilevel optimization problem with a bilinear objective at each level and with linear constraints. We provide an exact solution method based on a Reformulation-Linearization Technique (RLT). In addition, we compare our solution approach with a widely used heuristic and another exact solution method from the literature in order to benchmark its quality.

Dolores Romero Morales, University of Oxford (with H. Edwin Romeijn, Wilco van den Heuvel)
A multi-objective economic lot-sizing problem with environmental considerations
In this talk we study a Multi-Objective Economic Lotsizing Problem. This Multi-Objective Economic Lot-Sizing Problem is a generalization of the classical Economic Lot-Sizing Problem, where we are concerned with both the lot-sizing costs, including production and inventory holding costs, as well as the production and inventory emission of pollution. With respect to the latter, the planning horizon will be split into blocks of the same length (except for possibly the last one), and the total emission in each block will be minimized. This includes the case in which we are interested in measuring the pollution in each of the planning periods, or across all periods, or more generally, across subsets of periods. We assume fixed-chance production cost and emission functions, and linear inventory holding cost and emission functions. When more than one objective function is optimized, the Pareto efficient frontier is sought. In this talk, we show that the Pareto optimal problem is NP-complete. We then identify classes of problem instances for which Pareto optimal solutions can be obtained in polynomial time. We end with some results on the Pareto efficient frontier of the problem.

Zohar Strinika, University of Michigan (with H. Edwin Romeijn)
Approximation algorithms for risk-averse selective newsvendor problems
We consider a single-item single-period problem of a supplier who faces uncertain demands in a collection of markets and wishes to choose a subset of markets x whose demand to satisfy as well as a corresponding overall order quantity Q. The supplier faces costs associated with satisfying demands, overage and underage costs, and lost revenues in the markets whose demand is not selected. Moreover, the supplier optimizes a risk measure associated with those random costs. Finally, we assume that the joint distribution of all market demands and revenues is nonnegative with finite mean. We develop an approximation framework that, under certain conditions on the cost structure and risk measure, provides a solution whose objective function value is, with high probability, within a constant factor of the optimal value. This framework depends on two key techniques: (i) rounding the solution to a continuous relaxation of the problem to obtain the new revenue and demand distribution. We provide explicit examples of some cost structures and risk measures for which the algorithm we develop is efficiently implementable.

Global mixed-integer nonlinear optimization I
Organizer/Chair Ignacio Grossmann, Carnegie Mellon University - Invited Session
Ignacio Grossmann, Carnegie Mellon University (with Juan Ruiz)
Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programming
In this paper we address the global optimization of GDP problems that in addition to bilinear and concave terms, involve other terms such as linear fractional terms for which nonlinear convex relaxations have shown to provide rigorous convex envelopes that are magnitude much tighter than linear relaxations. The use of nonlinear convex relaxations leads to a nonlinear convex GDP which relaxation can be strengthened by using recently results from the recent work of Ruiz and Grossmann. We first define the general nonconvex GDP problem that we aim at solving and review the use of the hull relaxation, the traditional method to find relaxations. Second, we show how we can strengthen the relaxation of the traditional approach by presenting a systematic procedure to generate a hierarchy of relaxations based on the application of basic steps to nonlinear convex sets in disjunctive programming. We outline a set of rules that avoids the exponential transformation to the Disjunctive Normal Form leading to a more efficient implementation of the method. Finally we assess the performance of the method by solving to global optimality engineering design test problems.

Milos Bogataj, Faculty of Chemistry and Chemical Engineering, University of Maribor (with Zdravko Kranjčar)
A multilevel approach to global optimization of MINLP problems
In this work, we present an approach for global optimization of nonconvex mixed-integer nonlinear programs (MINLPs) containing bilinear and linear fractional terms. These terms are replaced by piecewise convex under-/overestimators defined over domains of one or both complicating variables. The domains are partitioned over at least two levels with intersecting grid densities designed to fill a grid large enough to exhaust the gap between the upper and lower bound falls below the predefined convergence criterion. The derived multilevel convex MINLP is then solved using a modified outer approximation/equality relaxation (OA/ER) algorithm. The key idea of the approach is progressive tightening of convex relaxation, while keeping low combinatorial complexity of the convexified MINLP throughout the solution procedure. After each major OA/ER iteration, tighter under-/overestimators are activated, however, only over the domain partitions containing currently optimal solution. Hence, only the most promising alternatives are being explored from the start on. The multilevel approach was tested on illustrative examples to show its advantage over a single level approach.

Tapija Westerlund, Åbo Akademi University (with Andrei Lodi)
A reformulation framework for global optimization
In some previous papers we have published results connected to an optimization framework for solving non-convex mixed integer non-linear programming problems, including signomial functions. In the framework the global optimal solution of such non-convex problems
A multi-objective linear programming approach to data envelopment analysis

Data envelopment analysis (DEA) is a very popular parameter free method for performance measurement of decision making units. Based on linear programming (LP), DEA is closely related to multi-objective linear programming (MOLP) in the sense that efficient decision making units represent efficient solutions of some MOLP. We exploit this relationship and apply the primal and dual variants of Benson’s outer approximation phase and the second order subspace step. We will show how the primal outer approximation algorithm directly finds all hyperplanes defining the efficient frontier of the production possibility set. We demonstrate the efficiency of our algorithm on a number of standard DEA reference problems.

Mohammad Ali Yaghoobi, Shahid Bahonar University of Kerman (with Alireza Dehmiry)

Using ball center of a polytope to solve a multiobjective linear programming problem

Recently, ball center of a polytope as the center of a largest ball inside the polytope is applied to solve a single objective linear programming problem. The current research aims to develop an algorithm for solving a multiobjective linear programming problem based on approximating ball center of some polytopes obtained from the feasible region. In fact, the proposed algorithm asks a weight vector from the decision maker and then tries to solve the problem iteratively. It is proved that the algorithm converges to an epsilon efficient solution after a finite number of iterations. Moreover, the well performance of it in comparison with the well known weighted sum method is discussed. Furthermore, numerical examples and a simulation study are used to illustrate the validity and strengths of the recommended algorithm.

Markku Kallio, Aalto University School of Economics (with Meja Halmes)

Reference point method for multi-criteria optimization with integer variables

An interactive approach for multi-objective optimization with integer variables is introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). Subsequent Pareto optimal point is the reference point projected into the set of feasible objective vectors using a suitable scalarizing function. Thereby, the procedure solves a sequence of optimization problems with integer variables. In such process, the DM provides preference information via pairwise comparisons of Pareto-optimal points identified. Using such preference information and assuming a quasi-concave utility function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. Feasibility in piecewise linear implies convergence and the best Pareto point found is an optimal solution. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function). Our reference point optimization procedure runs in AMPL/MOSEK. Numerical tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence.

Matthias Ehrgott, The University of Auckland (with Maryam Hassamshah, Andrea Raith)

Multi-objective optimization

Linear and integer multiobjective optimization

Chair Matthias Ehrgott, The University of Auckland

Methods for nonlinean optimization

Chair Jean-Pierre Dussault, Université de Sherbrooke

How does the independence assumption affect algorithms of nonconvex constrained optimization

The terminology on the global convergence of algorithms for constrained optimization is first defined. Some recent progress in nonlinear equality constrained optimization is then surveyed. The Steihaus’s conjugate gradient method is applied to the linearized constraint residual minimization problem and its convergence result is proved. The discussions are then extended to the optimization with inequality constraints. The local results demonstrate that the algorithm can be of superlinear convergence even though the gradients of constraints are not linearly independent at the solution.

Mario Mommer, IWR/Heidelberg University (with Hans-Georg Bock, Johannes Schüler, Andreas Summer)

A nonlinear preconditioner for experimental design problems

Optimal experimental design is the task of finding, given an experimental budget, a setup that reduces as much as possible the uncertainty in the estimates of a set of parameters associated with a model. These optimization problems are difficult to solve numerically, in particular when they are large. Beyond the technical challenges inherent to the formulation of the problem itself, which is based on the optimality conditions of a nonlinear regression problem, it is common to observe slow convergence of the sequential quadratic programming (SQP) methods that are used for its solution. We show that the (semi-)indefinite design problem can have large absolute condition number when under generic conditions. We develop a nonlinear preconditioner that addresses this issue, and show that its use leads to a drastic reduction in the number of needed SQP iterations. Our results suggest a role for absolute condition numbers in the presymptotic convergence behavior of SQP methods.

Jean-Pierre Dussault, Université de Sherbrooke

The behaviour of numerical algorithms without constraint qualifications

We consider inequality constrained mathematical optimisation problems. Under suitable constraint qualifications, at a minimiser of such a problem there exists a KKT multiplier set so for any argument of the so called KKT necessary conditions. Usually, stronger assumptions are used to study the behaviour of numerical algorithms in the neighbourhood of a solution, such as LICQ and the strict complementarity condition. Recent works weakened such assumptions and studied the behaviour of algorithm close to degenerate solutions. We explore here the case where no QC is satisfied, so that X may be the empty set. In such a case, clearly primal-dual algorithmic forms are ill-defined. Based on our recent high order path following strategy, we obtain a useful algorithmic framework. This context provides a case where Shamanski-like high order variants are useless while genuine high order extrapolations yield a solution.

Gillian Chin, Northwestern University (with Richard Byrd, Jorge Nocedal, Figen Oztoprak)

A nonlinear preconditioner for experimental design problems

Eckstein Jonathan, Rutgers University (with Yao Wang)

Alternating direction methods and relative error criteria for augmented Lagrangians

We examine the computational behavior of a number of variations on the alternating direction method of multipliers (ADMM) for convex optimization, focusing largely on lasso problems, whose structure is well-suited to the method. In particular, we computationally compare the classical ADMM to minimizing the augmented Lagrangian essentially exactly by alternating minimization before each multiplier update, and to approximate versions of this strategy using the recent augmented Lagrangian relative error criterion of Eckstein and Silva.

Gillian Chin, Northwestern University (with Richard Byrd, Jorge Nocedal, Figen Oztoprak)

A family of second order methods for L1 convex optimization

We describe and analyze a family of second order methods for minimizing an objective that is composed of a smooth convex function and an L1 regularization term. The algorithms in this family are categorized as two phase methods, differing with respect to the active manifold identification phase and the second order subspace step. We will show how to endow these algorithms with convergence guarantees and as well,
propose a new algorithm, contrasting this method with established approaches. We report numerical results on large scale machine learning applications.

Stefan Soltveit, Northwestern University (with Richard Byrd, Jorge Nocedal)

Dynamic batch methods for L1 regularized problems and constrained optimization

A methodology for using dynamic sample sizes in batch-type optimization methods is proposed. Motivated by machine learning applications, dynamic batching can successfully be applied to smooth convex constrained problems as well as non-smooth L1-regularized problems. By dynamically changing the batch size, the algorithm is able to keep overall costs low. The use of a batch approach allows the algorithm to exploit parallelism.

Dennis Janka, Heidelberg University (with Hans-Georg Bock, Stefan Körkel, Sebastian Sager)

Separable formulations of optimum experimental design problems

We consider optimal control problems coming from nonlinear optimization experimental design. These problems are non-standard in the sense that the objective function is not of Bolza type. In a straightforward direct solution approach one discretizes the controls and regards the states as dependent variables. However, this often leads to poor convergence properties of the resulting NLP. We propose a reformulation of the problem to a standard optimal control problem by introducing additional variables. It is then possible to attack this problem with direct state-of-the-art methods for optimal control with better convergence properties, e.g., multiple shooting. The reformulation gives rise to a highly structured NLP due to the multiple shooting discretization as well as due to the peculiarities of the optimal experimental design problem. We highlight some of these structures in the constraints, the objective function and the Hessian matrix of the Lagrangian, and present ways to exploit them leading to efficient SQP methods tailored to optimum experimental design problems. Numerical results are presented comparing the new separable formulations to an existing implementation.

Karin Hatz, Otto-von-Guericke-Universität Magdeburg (with Hans-Georg Bock, Johannes Schlöder)

Hierarchical dynamic optimization - Numerical methods and computational results for estimating parameters in optimal control problems

We are interested in numerical methods for hierarchical dynamic optimization problems with a least-squares objective on the upper level and a optimal control problem (OCP) with mixed path-control constraints on the lower level. The OCP can be considered as a model (a so-called optimal control model) that describes optimal control processes in nature, such as the gait of cerebral palsy patients. The optimal control model includes unknown parameters that have to be determined from measurements. We present an efficient direct all-at-once approach for solving this class of problems. The main idea is to discretize the infinite dimensional bilevel problem, replace the lower level nonlinear program (NLP) by its first order necessary conditions (KKT conditions), and solve the resulting complex NLP with a tailored sequential quadratic programming (SQP) method. The performance of our method is discussed and compared with the one of alternative approaches. Furthermore, we present an optimal control model for a cerebral palsy patient which has been identified from real-world motion capture data that has been provided by the Motion Laboratory of the University Hospital Heidelberg.

Carsten Gräser, Freie Universität Berlin / MATHEON

Truncated nonsmooth newton multigrid methods for nonsmooth minimization

The combination of well-known primal–dual active–set methods for quadratic obstacle problems with linear multigrid solvers leads to algorithms that sometimes converge very fast, but fail to converge in general. In contrast nonlinear multilevel relaxation converges globally but exhibits suboptimal convergence speed and complexity. Combining nonlinear relaxation and active-set ideas we derive the globally convergent “truncated nonsmooth Newton multigrid” (TNNMG) method. While its complexity is comparable to linear multigrid its convergence in general much faster than multilevel relaxation. Combined with nested iteration it turns out to be essentially as fast as multigrid for related linear problems. The key idea is to exploit global convergence and generalization to more other nonquadratic, nonsmooth energies is straightforward.
demonstrate the economic and operational advantages of our model over the traditional reserve adjustment approach.

Anthony Papavasiliou, University of California at Berkeley (with Shmuel Oren)

Applying high performance computing to multi area stochastic unit commitment for high wind penetration

We use a two-stage stochastic programming formulation in order to schedule locational generation reserves that hedge power system operations against the uncertainty of renewable power supply. We present a parallelized implementation of a Lagrangian relaxation algorithm to solving the stochastic unit commitment problem. The model we present addresses the uncertainty of wind power supply, the possibility of generator and transmission line outages and transmission constraints on the flow of power over the network. We present a scenario selection algorithm for representing uncertainty in terms of a moderate number of appropriately weighted scenarios and use a high performance computing cluster in order to validate the quality of our scenario selection algorithm. We compare the performance of our approach to a non-reliable unit commitment. We examine the dependence of the Lagrangian dual-variables on the price and the model and we relate our results to theoretical bounds provided in the literature. We finally report results regarding speedup and efficiency.

Optimization in energy systems

Mon.1 MA 550

Unit commitment and inventory problems
Chair Tim Schulze, The University of Edinburgh

Ali Koc, IBM TJ Watson Research Center (with Jayant Kalagannam)

Parallel branch-cut-price for solving multistage stochastic unit commitment problems

Unit commitment (UC) lies in the heart of future smart grid. Independent system operators and utilities aim to solve various forms of the problem that handle such contemporary concepts as renewable generation, energy storage, power purchase agreements, future power markets, demand response, etc. These concepts induce various forms of uncertainty into the problem. We use multistage stochastic programming framework to incorporate these uncertainties, and present a parallel decomposition algorithm based on a branch-cut-price framework. We bring together several advancements in the UC literature, stochastic programming, internal integer programming, large-scale optimization, and parallel computing. We develop a new weighting scheme and a lower bounding method to improve the decomposition algorithm, and a constructive heuristic method to restore near-optimal solutions. The serial algorithm solves problem instances as efficient as highly sophisticated commercial solvers, and the parallel algorithm solves large-scale nonlinear stochastic UC problem instances with up to 3000 generators, 24 hours, and 200 scenarios on a 32-processor cluster, obtaining almost linear speedups.

Kin Keung Lai, City University of Hong Kong (with Qiang Wang, Qian Zhang)

A stochastic approach to power inventory optimization

Rooted in the airline industry, inventory management systems have been applied for 40 years since the first paper by Beckmann. This involves application of information systems and pricing strategies to allocate the right capacity to the right customer at the right price at the right time. Also there are some salient differences between airlines and power plants. For example: (i) electric power has to be generated, transmitted, and consumed at the same time; (ii) safety of power grid is an important factor to be considered, implying more strict requirements for cancellations, no-shows and overbooking problems. Also, unlike the airline industry, orders for electricity power usually last for a period of time such as one day, one week, one month and even one year, and the price varies with quantity and time periods. Advance bookings are encouraged even one day or even half-an-hour in advance in order to guarantee safety and efficiency of the power grid and the power plant. This study is developed on the basis of power plants facing stochastic demand with varied prices. A network optimization model is proposed for power plant inventory management under an uncertain environment.

Tim Schulze, The University of Edinburgh (with Andreas Grotthey, Kenneth McKinnon)

Decomposition methods for stochastic unit commitment

In recent years the expansion of energy supplies from volatile renewable sources has triggered an increased interest in stochastic optimization models for generation unit commitment. Several studies have modelled the problem as a stochastic mixed-integer piecewise linear or convex quadratic program. Solving this problem directly is computationally intractable for large instances and many alternative approaches have been proposed. However, few of them exploit the structure of the multi-stage formulation. In this talk we outline how decomposition and coordination methods can be applied to exploit the structure of the underlying scenario tree. It has been shown that progressive hedging can yield good solutions for this problem, and we give a short review of our findings from applying it. However, this method is not guaranteed to converge for mixed-integer problems. Therefore the focus of the talk is on a branch & price framework which guarantees convergence. Numerical results are given to illustrate the behaviour of the method.

PDE-constrained opt. & multi-level/multi-grid meth.

Mon.1 MA 415

Applications of PDE-constrained optimization
Organizer/Chair Michael Ulbrich, Technische Universität München - Invited Session

Rene Pfennig, TU Kaiserslautern

Exploiting model hierarchies in space mapping optimization

The solution of optimization problems in industry often requires information on the adjoint variables for very complex model equations. Typically, there is a whole hierarchy of models available which allows to balance the computational costs and the exactness of the model. We exploit these hierarchies in combination with space mapping techniques to speed up the convergence of optimization algorithms. The use of surrogate models yields finally a suboptimal design or control, which is typically near to the optimal design. In this talk we present three applications where this approach proved to be very successful. We will cover questions from semiconductor design, the control of particles in fluids and shape optimization for filters.

Michael Ulbrich, Technische Universität München (with Christian Böhmer)

An adaptive semismooth Newton-CG method for constrained parameter identification in seismic tomography

Seismic tomography infers the material properties of the Earth based on seismograms. This can be stated as an optimization problem that minimizes the misfit between observed and simulated seismograms.

We present a semismooth Newton-CG method for full-waveform seismic inversion with box constraints on the material parameters. It uses a Moreau-Yosida regularization and a trust-region globalization. The matrix-free implementation relies on adjoint-based gradient and Hessian-vector computations and a PCG method. The state equation is a coupled system of the elastic and acoustic wave equations. Our MPI-parallelized solver uses a high order continuous Galerkin method and an explicit Newmark time stepping scheme.

We address ill-posedness by a regularization and, in addition, by inverting sequentially for increasing frequencies. Thereby, the parameter grid is adaptively refined using goal-oriented posteriori error estimates.

Numerical results are shown for the application of our method to a dataset of marine geophysical exploration in the North Sea.

Extensions of robust optimization models
Chair Frank Pfeuffer, Zuse-Institut Berlin

Michael Todd, Cornell University (with Martina Gancarova)

A robust robust (sic) optimization result

We study the loss in objective value obtained when an inaccurate objective is optimized instead of the true one, and show that “on average”, the loss incurred is very small, for arbitrary compact feasible regions.

Frank Pfeuffer, Zuse-Institut Berlin (with Uz-Uwe Haus)

An extension of the controlled robustness model of Bertsimas and Sim

Realistic data in optimization models is often subject to uncertainty. Robust optimization models take such data uncertainty into account. Bertsimas and Sim proposed a robust model which deals with data uncertainty while allowing to control the amount of robustness in the problem by bounding the number of simultaneously uncertain coefficients. They showed that under this model robust min-cost-flow problems are solved by binary search using an oracle for min-cost-flow problems. We extend this model by allowing more general means of imposing control on the amount of robustness via polyhedral control sets, which contain the model of Bertsimas and Sim as a special case. Under our model, robust min-cost-flow problems are solved by a subgradient approach using an oracle for min-cost-flow problems. Applying our approach to the restrictive control set of Bertsimas and Sim reduces the number of oracle calls needed by their approach by half.
about neighboring targets. Good exploration strategies will take advantage of this information as it is revealed. We develop heuristic policies for sequential exploration problems and complement these heuristics with upper bounds on the performance of an optimal policy. We begin by grouping the targets into clusters of manageable size. The heuristics are derived from a model that treats these clusters as independent. The upper bounds are given by assuming each cluster has perfect information about the results from all other clusters. The analysis relies heavily on results for bandit superprocesses, a generalization of the classical multiarmed bandit problem. We evaluate the heuristics and bounds using Monte Carlo simulation and, in our problem, we find that the heuristics are nearly optimal.

Ciamac Moallemi, Columbia University (with Vijay Desai, Vivek Farias)

Batch and cut: efficient branch and cut formulations of reliable network design problems

We study the design of reliably connected networks. Given a graph with arcs that may fail at random, the goal is to select a minimum cost set of arcs such that a path between nodes s and t exists with high probability. We model this problem as a chance-constrained stochastic integer program, and present two solution approaches. The first approach is based on a formulation that uses binary variables to determine if an s-t path exists in each arc failure scenario. We present a branch-and-cut decomposition algorithm to solve this formulation, based on inequalities derived from individual scenario graphs. The second approach uses an alternative formulation based on probabilistic s-t cuts, which is an extension of s-t cuts to graphs with random arc failures. Probabilistic s-t cut inequalities define the feasible region and can be separated efficiently at integer solutions, allowing this formulation to be solved by a branch-and-cut algorithm. Computational results will be presented that demonstrate that the approaches can solve large instances. We also show how our results can be applied to more general connectivity requirements.

Bernardo Pagnoncelli, Universidad de Adolfo Ibáñez (with Adriana Piazza)

The optimal harvesting problem under risk aversion

I will present a model for the exploitation of a one species forest plantation when timber prices are governed by a stochastic process. The problem is stated as a risk averse stochastic dynamic programming, with the conditional value-at-risk (CVaR) as a risk measure. Timber price is uncertain and two important cases are considered: geometric Brownian motion and a mean-reverting (Ornstein-Uhlenbeck) process.

Nicolas Boumal, UC Louvain (with Pierre-Antoine Absil, Amit Singer)

Riemannian algorithms and estimation bounds for synchronization of rotations

We estimate unknown rotation matrices \(R_i \) in \(SO(n) \) from a set of measurements of relative rotations \(R_{ij} \). Each measurement is either slightly noisy, or an outlier bearing no information. We study the case where most measurements are outliers. We propose a Maximum Likelihood Estimator (MLE) approach, explicitly acknowledging outliers in the noise model.

The MLE maximizes the log-likelihood function over the parameter space. That space is a product of rotation groups, possibly quotiented to account for invariance under a common rotation of the estimators.

To compute the MLE, we use Riemannian trust-region methods to maximize the log-likelihood function over the parameter space. That space is a manifold manifold, hence tools and analyses from [Absil et al., Optimization Algorithms on Matrix Manifolds, Princeton Univ. Press, 2008] apply gracefully.

We derive Riemannian Cramer-Rao bounds for synchronization, valid for a broad class of problem dimensions and noise distributions. These bounds admit a simple expression in terms of an information-weighted Laplacian of the measurement graph. Numerical tests suggest the MLE is asymptotically efficient in many cases.

Mark Davenport, Georgia Institute of Technology (with Michael Wakin)

A simple framework for analog compressive sensing

Compressive sensing (CS) has recently emerged as a framework for efficiently capturing signals that are sparse or compressible in an appropriate basis. It is often motivated as an alternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional CS framework and the problem of acquiring a continuous-time signal. In this talk, I will describe a new approach to bridging this gap by exploiting the Discrete Prolate Spheroidal Sequences (DPSS’s), a collection of functions that trace back to the seminal work by Slepian, Landau, and Pollack on the effects of time-limiting and bandlimiting operations. DPSS’s form a highly efficient basis for sampled bandlimited functions; by modulating and merging DPSS bases, we obtain a dictionary that offers high-quality sparse approximations for most sampled multiband signals. This multiband modulated DPSS dictionary can be readily incorporated into the CS framework. I will provide theoretical guarantees and practical insight into the use of this dictionary for recovery of sampled multiband signals from compressive measurements.

Benjamin Recht, University of Wisconsin-Madison (with Badiul Bhaskar, Parikshit Shah, Gongguang Tang)

Atomic norm denoising with applications to spectrum estimation and system identification

One of the most common goals of data analysis is to reject noise by leveraging the latent structure present in the true signal. This talk will propose a general approach to such denoising problems by regularizing data fidelity with a penalty called the atomic norm. Atomic norm denoising is posed as a convex optimization problem and has generic, mean-squared-error guarantees. For sparse signals, atomic norm denoising is equivalent to soft-thresholding, but our techniques can be applied to estimate a variety of other objects and structures beyond sparse signals and images.

To demonstrate the wide applicability of atomic norm denoising, I will specialize the abstract formulation to two applications of practical interest. First, I will present a convex approach to superresolution, estimating the frequencies and phases of a mixture of complex exponential interest. First, I will present a convex approach to superresolution, estimating the frequencies and phases of a mixture of complex exponentials, possibly quotiented to account for invariance under a common rotation of the estimators.

To compute the MLE, we use Riemannian trust-region methods to maximize the log-likelihood function over the parameter space. That space is a product of rotation groups, possibly quotiented to account for invariance under a common rotation of the estimators.

To compute the MLE, we use Riemannian trust-region methods to maximize the log-likelihood function over the parameter space. That space is a manifold manifold, hence tools and analyses from [Absil et al., Optimization Algorithms on Matrix Manifolds, Princeton Univ. Press, 2008] apply gracefully.

We derive Riemannian Cramer-Rao bounds for synchronization, valid for a broad class of problem dimensions and noise distributions. These bounds admit a simple expression in terms of an information-weighted Laplacian of the measurement graph. Numerical tests suggest the MLE is asymptotically efficient in many cases.

Mark Davenport, Georgia Institute of Technology (with Michael Wakin)

A simple framework for analog compressive sensing

Compressive sensing (CS) has recently emerged as a framework for efficiently capturing signals that are sparse or compressible in an appropriate basis. It is often motivated as an alternative to Nyquist-rate sampling, there remains a gap between the discrete, finite-dimensional CS framework and the problem of acquiring a continuous-time signal. In this talk, I will describe a new approach to bridging this gap by exploiting the Discrete Prolate Spheroidal Sequences (DPSS’s), a collection of functions that trace back to the seminal work by Slepian, Landau, and Pollack on the effects of time-limiting and bandlimiting operations. DPSS’s form a highly efficient basis for sampled bandlimited functions; by modulating and merging DPSS bases, we obtain a dictionary that offers high-quality sparse approximations for most sampled multiband signals. This multiband modulated DPSS dictionary can be readily incorporated into the CS framework. I will provide theoretical guarantees and practical insight into the use of this dictionary for recovery of sampled multiband signals from compressive measurements.

Benjamin Recht, University of Wisconsin-Madison (with Badiul Bhaskar, Parikshit Shah, Gongguang Tang)

Atomic norm denoising with applications to spectrum estimation and system identification

One of the most common goals of data analysis is to reject noise by leveraging the latent structure present in the true signal. This talk will propose a general approach to such denoising problems by regularizing data fidelity with a penalty called the atomic norm. Atomic norm denoising is posed as a convex optimization problem and has generic, mean-squared-error guarantees. For sparse signals, atomic norm denoising is equivalent to soft-thresholding, but our techniques can be applied to estimate a variety of other objects and structures beyond sparse signals and images.

To demonstrate the wide applicability of atomic norm denoising, I will specialize the abstract formulation to two applications of practical interest. First, I will present a convex approach to superresolution, estimating the frequencies and phases of a mixture of complex exponentials, possibly quotiented to account for invariance under a common rotation of the estimators.

To compute the MLE, we use Riemannian trust-region methods to maximize the log-likelihood function over the parameter space. That space is a product of rotation groups, possibly quotiented to account for invariance under a common rotation of the estimators.

To compute the MLE, we use Riemannian trust-region methods to maximize the log-likelihood function over the parameter space. That space is a manifold manifold, hence tools and analyses from [Absil et al., Optimization Algorithms on Matrix Manifolds, Princeton Univ. Press, 2008] apply gracefully.

We derive Riemannian Cramer-Rao bounds for synchronization, valid for a broad class of problem dimensions and noise distributions. These bounds admit a simple expression in terms of an information-weighted Laplacian of the measurement graph. Numerical tests suggest the MLE is asymptotically efficient in many cases.
In both cases the problem is solved for every initial condition and the best policy is obtained endogenously, that is, without imposing any ad hoc restrictions such as maximum sustained yield or convergence to a predefined final state. I will compare the results with the risk neutral framework and discuss the differences between the two cases. Finally I will show how to generalize the results to any coherent risk measure that is affine on the current price.

Mon.1.H 3002

Optical access networks
Organizer/Chair Andreas Bley, TU Berlin - Invited Session

Cédric Herivot, Orange Labs / CNAM (with Matthieu Chardy, Marie-Christian Costa, Alain Faye, Stanislas Franchini)

Robust optimization of optical fiber access networks deployments
Due to the recent increase in bandwidth requirements, telecommunication operators have to support it with the deployment of optical fiber networks through Fiber-To-The-Home Gigabit Passive Optical Network technology (FTTH GPON). One great challenge, in a deregulated context, is to design this network while not knowing who and where the future subscribers will be. We focus on the problem of the robust optical fiber network deployment under demand uncertainty. A two-stage robust optimization model is proposed for this problem, as well as two robust solution methods extending classical results from Ben-Tal et al. and Babonneau et al. in order to be compliant with our uncertainty set.

Maria João Lopes, University Institute of Lisbon (ISCTE-IUL) and CIO (with Amara de Sousa, Luis Gouveia)

Modelling the minimum cost PON access network design problem
A PON is an optical access network connecting a Central Office to a set of terminals using optical splitters, installed on intermediate nodes, and optical fibres connecting all elements. In the network design problem, terminals are clustered in a minimum number of PONs and each PON has a maximum capacity in number of terminals. For each PON, we have to decide where to install splitters and how to connect all elements through optical fibres. In intermediate nodes, optical splitters of different PONs can co-exist. There are costs associated with intermediate nodes, splitter types and fibre connections. We define the minimum cost design problem in the context of densely populated urban areas, proposing different ILP formulations and valid inequalities. We address this problem in the general context where the number of splitting stages (and the splitting ratio on each stage) is an outcome of the optimization problem. Therefore, previous works became particular cases of this general network design problem. We present computational results discussing the trade-off between the linear relaxation bounds and the runtime to achieve integer optimal solutions of the different models.

Olad Mauer, TÜ Berlin (with Andreas Bley, Ivona Ljubić)

Lagrangian approaches to a two-level FTTX network design problem
We consider the design of a passive optical telecommunication access network, where clients have to be connected to an intermediate level of distribution points (DPs) and further on to some central offices (COs). Each client demands a given number of connections to its CO. Passive optical splitters installed at the DPs allow several connections to share a single common connection between the DP and the CO. The objective is composed of fixed-cost charges for the use of facilities and hardware and linear costs which depend on the edge utilisation. We present two Lagrangian decomposition approaches that were improved with additional cuts and heuristics. The subproblems are solved using MILP techniques. We report computational results and compare the efficiency of the Lagrangian approach to the direct approach via an integrated MILP model.

Mon.1.H 2035

Nonsmooth phenomena in optical control
Organizer/Chair Roland Herzog, TU Chemnitz - Invited Session

Christian Meyer, TU Dortmund

Boundary control of the obstacle problem
The talk deals with optimal control problems governed by the obstacle problem, where the control is given by Neumann data. Several stationarity concepts for the problem under consideration and additionally second-order sufficient conditions are presented.

Matthias Gerdts, Universität der Bundeswehr

Globalized semi-smooth Newton methods in optimal control problems with DAEs
This paper addresses the numerical solution of optimal control problems subject to differential-algebraic equations and mixed control-state constraints by semi-smooth Newton methods. A particular focus is on globalization techniques for semi-smooth Newton methods and on regularization and smoothing techniques for the Fischer-Burmeister function. An open problem for the convergence analysis remains the construction of a smoothing operator for the Fischer-Burmeister function. Numerical experiments on various problems without smoothing operator however suggest that the methods work well in practice and a
superlinear convergence rate and mesh independence can be observed numerically.

Frank Schmidt, TU Chemnitz (with Roland Herzog)
Properties of the optimal value function and application to worst-case robust optimal control problems
Sufficient conditions ensuring weak lower semi-continuity of the optimal value function are presented. To this end, refined inner semi-continuity properties of set-valued maps are introduced which meet the needs of the weak topology in Banach spaces. The results are applied to prove the existence of solutions in various worst-case robust optimal control problems governed by semilinear elliptic partial differential equations.

Mon.1 H 20:51
Equilibrium problems and related topics
Organizer/Chair Alfredo Iusem, Instituto de Matemática Pura e Aplicada - Invited Session

Olcen Fernana, Federal University of Goias (with Roberto Silva)
Local convergence of Newton’s method under majorant condition in Riemannian manifolds
A local convergence analysis of Newton’s method for finding a singularity of a differentiable vector field defined on a complete Riemannian manifold, based on majorant principle, is presented in this paper. This analysis provides a clear relationship between the majorant function, which relaxes the Lipschitz continuity of the derivative, and the vector field under consideration. It also allows us to obtain the optimal convergence radius, the biggest range for the uniqueness of the solution, and to unify some previous unrelated results.

Susana Scheinberg, UFRJ-Universidade Federal do Rio de Janeiro (with Paulo Santos)
A reflection-projection method for equilibrium problems
We consider an implementable algorithm for solving nonsmooth equilibrium problems in finite-dimensional spaces. The algorithm combines the strategy of generating a feasible point, by using reflections related to hyperplanes, and the projected-subgradient method where the projection is done onto a suitable half-space. The algorithm has a low computational cost per iteration. Computational experience is reported and comparative analysis with other algorithms is also given.

Luis Drummond, UFRJ - Universidade federal do Rio de Janeiro (with E. Fukuda)
New strategies for vector optimization problems
Under partial orders derived from arbitrary closed convex point cones with nonempty interior, we propose extensions of scalar optimization procedures to the vector setting. For constrained vector-valued optimization, we seek efficient/weakly efficient points by adopting classical real-valued strategies. Assuming reasonable hypotheses, we establish some convergence results to optimal points.

Mon.2 H 30:10
Real-time scheduling
Organizer/Chair Sanjoy Baruah, University of North Carolina at Chapel Hill - Invited Session

Martin Niemeier, TU Berlin (with Andreas Wiese)
Scheduling with an orthogonal resource constraint
We address a type of scheduling problems that arises in highly parallelized environments like modern multi-core CPU/GPU computer architectures. Here simultaneously active jobs share a common limited resource, e.g., a memory cache. The scheduler must ensure that the demand for the common resource never exceeds the available capacity. This introduces an orthogonal constraint. Almost any scheduling problem can be made “resource aware” by adding this constraint. Here we focus on two classes of scheduling problems. On the one hand, we study classical makespan minimization problems such as scheduling on identical machines. On the other hand, we study real-time scheduling problems (e.g., partitioned scheduling of synchronous/sporadic tasks on parallel multi-processors).

We present approximation algorithms (either in terms of makespan minimization or machine-speedup minimization) for several variants of the problem.

Suzanne van der Ster, Vrije Universiteit Amsterdam (with Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Hussan J. Alberto Marchetti-Spaccamela, Jien Stege)
Mixed-criticality scheduling of sporadic task systems on a single machine
We consider scheduling an implicit-deadline task system on a single machine in a mixed-criticality (MC) setting. MC systems arise when multiple functionalities are scheduled upon a shared computing platform. This can force tasks of different importance (i.e., criticality) to share a processor.

Each task generates a (possibly infinite) string of jobs, released with an interarrival time bounded from below by a task-dependent period. Each job has a relative deadline equal to the length of its period.

In an MC setting, each task has multiple levels of worst-case execution times and its own criticality level. By executing the tasks, we learn what level the system is in, which may change over time. When the system is in level k, all jobs of tasks of level $\ell > k$ should be scheduled for their ℓ-level execution time, to meet their deadline.

We give an algorithm for scheduling an MC task system, called EDF-VD (Earliest Deadline First with Virtual Deadlines). We give sufficient conditions to check feasibility for K levels. We show that if a 2-level task system is schedulable on a unit-speed processor, it is correctly schedulable by EDF-VD on a processor of speed $1/3$.

Jian-Jia Chen, KIT (with Samarjit Chakraborty)
Resource augmentation in real-time systems
Timing satisfaction is an important property for maintaining the stability or correctness of many real-time embedded systems, especially for avionic or automotive applications. For decades, schedulability of real-time systems has been extensively studied, from periodic tasks, to sporadic tasks, and even to tasks with irregular arrival curves. A task set is guaranteed to be schedulable if it passes the correct schedulability tests. However, the main issue for such an approach is to answer what can be guaranteed when a task set does not pass the schedulability test. For such cases, the resource augmentation factor provides a nice feature to ensure the schedulability by augmenting the resources, e.g., by speeding-up, adding more processors, etc. This talk will focus on the recent research on resource augmentation with respect to speeding-up and allocating more processors in real-time systems for sporadic real-time tasks, from uniprocessor systems to multiprocessor systems. The analysis for resource augmentation upper bound and lower bound will be presented.
computational results demonstrating the high and often superior quality of our buffering solutions.

Stephan Held, University of Bonn

Delay bounded Steiner trees and time-cost tradeoffs for faster chips

We will present combinatorial optimization algorithms that focus on maximizing the clock frequency of modern microprocessors. One central problem is the construction of Steiner trees with delay constraints. They are used for optimizing electrical interconnections and symmetric Boolean functions. We provide a bicriteria algorithm for Steiner forest problems with a preference for short paths. This is done by generalizing light approximate shortest path trees.

For finding globally optimal solutions, many resource critical problems such as threshold voltage of transistors and layer assignment of interconnect wires can be modeled as time-cost tradeoff problems. We will present a new method based on rounding the dual of Minimum-Cost Flows. Finally, we will demonstrate how the presented algorithms are employed for increasing the clock frequency by 18% of an upcoming microprocessor.

Mon.2.H 3005

Structural graph theory and methods
Organizer/Chair Paul Wollan, University of Rome - Invited Session

Sang-il Oum, KAIST
Vertex-minors and pivot-minors of graphs

We will survey vertex- and pivot-minor relations of graphs which are defined in terms of local complementation and pivot operations, respectively, on graphs. Many theorems on graph minors can be extended to graph vertex- or pivot-minors. We will discuss various known aspects and then talk about partial results towards some conjectures generalizing some of the deepest theorems in structural graph theory including the graph minor theorem of Robertson and Seymour.

Gwenaël Joret, Université Libre de Bruxelles (with Samuel Fiorini, David Wood)
Excluded forest minors and the Erdős-Pósa Property

A classical result of Robertson and Seymour states that the set of graphs containing a fixed planar graph \(H \) as a minor has the so-called Erdős-Pósa property; namely, there exists a function \(f \) depending only on \(H \) such that, for every graph \(G \) and every integer \(k \subseteq \mathbb{N} \), either \(G \) has a \(k \)-vertex-disjoint subgraphs each containing \(H \) as a minor, or there exists a subset \(X \) of vertices of \(G \) with \(|X| \leq f(k) \) such that \(G \setminus X \) has no \(H \)-minor. While the best function \(f \) currently known is super-exponential in \(k \), an \(O(k \log k) \) bound is known in the special case where \(H \) is a forest. This is a consequence of a theorem of Bienstock, Robertson, Seymour, and Thomas on the pathwidth of graphs with an excluded forest-minor.

Excluded forest minors and the Erdős-Pósa Property

Gwenaël Joret, Université Libre de Bruxelles (with Samuel Fiorini, David Wood)

Mon.2.H 3008

Discrete structures and algorithms I
Organizer/Chair Satoshi Fujishige, Kyoto University - Invited Session

Shuji Kijima, Graduate School of Information Science and Electrical Engineering, Kyushu University

Efficient randomized rounding in permutahedron

Permutahedron \(P_n \) is a polyhedron in the \(n \)-dimensional space defined by the convex hull of all permutations vectors \(x(\pi) = (\pi(1), \pi(2), \ldots, \pi(n)) \in \mathbb{R}^n \). In this talk, we are concerned with randomized rounding in permutahedron; given a point \(p \in P_n \), output a permutation vector \(X(\pi) \) with a probability satisfying that

\[
\sum_{\pi \in S_n} Pr[X = x(\pi)|X(p)| = \rho = \rho_p.
\]

It is well known that \(P_n \) is a base polyhedron of a submodular function, more precisely \(P_n = \{ x | \sum_{i=1}^{n} x_i \leq \sum_{j=1}^{n} (n+1-j) \} \) for any \(\rho \in [n] \), and \(\sum_{\pi \in S_n} x(\pi) = n(n+1)/2 \). In this talk, we present an algorithm for randomized rounding in permutahedron, with \(O(n \log n) \) time using \(O(n) \) space. We also explain an extension to a base polyhedron of an arbitrary cardinality based submodular function.

Júlia Pataki, Esteban Leordean University (with András Frank, Tamás Király, David Pritchard)
Characterizing and recognizing generalized polymatroids

Generalized polymatroids are a family of polyhedra with several nice properties and applications. A main tool used widely in the literature is that generalized polymatroids can be described by a linear system whose dual can be uncrossed: there is an optimal dual solution with laminar support. We make this notion of “total dual laminarity” explicit and show that the polyhedra described by such systems are always generalized polymatroids. We also show that for a full-dimensional generalized polymatroid every describing system is totally dual laminar. Using these we give a polynomial-time algorithm to check whether a given linear program defines a generalized polymatroid, and whether it is integral if so. Additionally, whereas it is known that the intersection of two integral generalized polymatroids is integral, we show that no larger class of polyhedra satisfies this property.

Jens Maack, University of Ulm (with Saburo Fujishige)
Dual consistency and cardinality constrained polytopes

We introduce a concept of dual consistency of systems of linear inequalities with full generality. We show that a cardinality constrained polytope is represented by a certain system of linear inequalities if and only if the systems of linear inequalities associated with the cardinalities are dual consistent. Typical dual consistent systems of inequalities are those which describe polymatroids, generalized polymatroids, and dual greedy polyhedra with certain choice functions. We show that the systems of inequalities for cardinality-constrained ordinary bipartite matching polytopes are not dual consistent in general, and give additional inequalities to make them dual consistent. Moreover, we show that ordinary systems of inequalities for the cardinality-constrained polymatroid intersection are not dual consistent, which disproves a conjecture of Maurras, Spiegelberg, and Stephan about a linear representation of the cardinality-constrained polymatroid intersection.

Mon.2.H 3012

Scheduling I
Chair George Steiner, McMaster University

Thomas Rieger, Technische Universität Braunschweig (with Ronny Hansmann, Uwe Zimmermann)
Two variants of flexible job shop scheduling with blockages

Motivated by an application in rail car maintenance, we discuss mixed-integer programming formulations for two variants of flexible job shop scheduling with work centers (FJS). In contrast to standard FJS in these variants a work center (rail track) consists of a linearly ordered set of machines with restricted accessibility. In particular, a busy machine blocks both the access to and the exit from all succeeding machines of a work center. The two considered variants only differ in the implication of the latter restricting requirement. If a succeeding machine is blocked when it completes a job then this job is either allowed to wait on its machine (until the exit is free again) or not.

In particular, we present the computational complexity and solution methods (heuristic and exact) and introduce a mixed integer linear programming model for both variants. Our exact methods are based on a dedicated branch-and-bound implementation using bounds generated from certain longest paths. Finally, we present some computational results for several data sets, discuss the solution quality of both FJS-variants and compare our results to results obtained using the commercial solvers CPLEX and Gurobi.

Leen Stougie, VU University & CWI Amsterdam (with Frans Schalenkamp, Rene Sitters, Suzanne van der Ster, Anke van Zuylen)
Scheduling with job-splitting and fixed setup

We consider a scheduling problem with a fixed setup time and job-splitting. Jobs can be preempted and machines can work on the same job simultaneously. We encountered this problem in studying disaster relief operations. We consider minimisation of total completion time. The version with preemption and fixed setup time is still solved by the Shortest Processing Time first rule (SPT), in which the option of preemption is not used. The situation with job-splitting is much less clear. If is very large, then splitting becomes too expensive and the problem is solved by SPT again. If is very small (say 0), then each job is split over all machines and the jobs are scheduled in SPT order. To find out
where to start splitting jobs and over how many machines appears to be a non-trivial problem.

We will present a polynomial time algorithm for the case in which there are 2 machines exploiting the structure of optimal solutions. Some of the crucial properties of optimal solutions already fail to hold on 3 machines. This leaves the complexity of the problem for more than 2 machines open.

George Steiner, McMaster University

Scheduling and the traveling salesman problem on permuted monge matrices

A variety of scheduling problems has been shown to be solvable as special cases of the Traveling Salesman Problem (TSP) on permuted Monge matrices. Although the TSP on permuted Monge matrices is known to be strongly NP-hard, polynomial-time solutions exist for many of the special cases generated by the scheduling problems. Furthermore, a simple subtour-patching heuristic is asymptotically optimal for the TSP on permuted Monge matrices under some mild technical conditions.

Christina Büsing, RWTH Aachen

k-distance recoverable robustness

Recoverable Robustness (RR) is a method to deal with uncertainties in optimization problems extending the classical concept of robustness by allowing limited recovery actions after all data is revealed. In this talk I will present a special case of RR where the recovery actions are limited by changing at most k elements of the previous fixed solution and apply this method to various combinatorial optimization problems. For the shortest path problem, we will see that small changes in the problem setting, e.g., choosing simple s,t-paths at the beginning instead of any s,t-path, strongly influences the complexity status and combinatorial structures of the optimal solutions. I will conclude the talk with an overview of current results on cutting planes for the recoverable robust knapsack polytope and an application to the train classification problem.

Arie Koster, RWTH Aachen University (with Christina Büsing, Manuel Kutschka)

The recoverable robust knapsack problem

In this talk, we consider the knapsack problem with uncertain item weights. In contrast to the classical robust setting, a limited recovery action is allowed, i.e., up to k items may be removed when the actual weights are known. This problem is motivated by the assignment of traffic nodes to antennas in wireless network planning and the bandwidth packing problem from telecommunication.

We study two scenarios to represent the uncertainty. First, a finite set of realizations is discussed. Second, the uncertainty is modelled by the approach of Bertsimas and Sim (2003,2004) limiting the number of deviations from nominal values by a parameter Γ. For both cases, we present the results of a polyhedral study, generalizing the well-known covering inequalities. Computational experiments conclude the presentation.

Marjan van den Akker, Utrecht University (with Paul Bouman, Han Hoogeveen, Denise T Gonzales)

Column generation for the demand robust shortest path problem

Combinatorial optimization

Mon.2.H 3013

Recoverable robust combinatorial optimization

Organizer/Chair Arie Koster, RWTH Aachen University - Invited Session

Christina Büsing, RWTH Aachen

k-distance recoverable robustness

Recoverable Robustness (RR) is a method to deal with uncertainties in optimization problems extending the classical concept of robustness by allowing limited recovery actions after all data is revealed. In this talk I will present a special case of RR where the recovery actions are limited by changing at most k elements of the previous fixed solution and apply this method to various combinatorial optimization problems. For the shortest path problem, we will see that small changes in the problem setting, e.g., choosing simple s,t-paths at the beginning instead of any s,t-path, strongly influences the complexity status and combinatorial structures of the optimal solutions. I will conclude the talk with an overview of current results on cutting planes for the recoverable robust knapsack polytope and an application to the train classification problem.

Arie Koster, RWTH Aachen University (with Christina Büsing, Manuel Kutschka)

The recoverable robust knapsack problem

In this talk, we consider the knapsack problem with uncertain item weights. In contrast to the classical robust setting, a limited recovery action is allowed, i.e., up to k items may be removed when the actual weights are known. This problem is motivated by the assignment of traffic nodes to antennas in wireless network planning and the bandwidth packing problem from telecommunication.

We study two scenarios to represent the uncertainty. First, a finite set of realizations is discussed. Second, the uncertainty is modelled by the approach of Bertsimas and Sim (2003,2004) limiting the number of deviations from nominal values by a parameter Γ. For both cases, we present the results of a polyhedral study, generalizing the well-known covering inequalities. Computational experiments conclude the presentation.

Marjan van den Akker, Utrecht University (with Paul Bouman, Han Hoogeveen, Denise T Gonzales)

Column generation for the demand robust shortest path problem

Combinatorial optimization

Mon.2.H 3013

Recoverable robust combinatorial optimization

Organizer/Chair Arie Koster, RWTH Aachen University - Invited Session

Christina Büsing, RWTH Aachen

k-distance recoverable robustness

Recoverable Robustness (RR) is a method to deal with uncertainties in optimization problems extending the classical concept of robustness by allowing limited recovery actions after all data is revealed. In this talk I will present a special case of RR where the recovery actions are limited by changing at most k elements of the previous fixed solution and apply this method to various combinatorial optimization problems. For the shortest path problem, we will see that small changes in the problem setting, e.g., choosing simple s,t-paths at the beginning instead of any s,t-path, strongly influences the complexity status and combinatorial structures of the optimal solutions. I will conclude the talk with an overview of current results on cutting planes for the recoverable robust knapsack polytope and an application to the train classification problem.

Arie Koster, RWTH Aachen University (with Christina Büsing, Manuel Kutschka)

The recoverable robust knapsack problem

In this talk, we consider the knapsack problem with uncertain item weights. In contrast to the classical robust setting, a limited recovery action is allowed, i.e., up to k items may be removed when the actual weights are known. This problem is motivated by the assignment of traffic nodes to antennas in wireless network planning and the bandwidth packing problem from telecommunication.

We study two scenarios to represent the uncertainty. First, a finite set of realizations is discussed. Second, the uncertainty is modelled by the approach of Bertsimas and Sim (2003,2004) limiting the number of deviations from nominal values by a parameter Γ. For both cases, we present the results of a polyhedral study, generalizing the well-known covering inequalities. Computational experiments conclude the presentation.

Marjan van den Akker, Utrecht University (with Paul Bouman, Han Hoogeveen, Denise T Gonzales)

Column generation for the demand robust shortest path problem

Combinatorial optimization

Mon.2.H 3013

Recoverable robust combinatorial optimization

Organizer/Chair Arie Koster, RWTH Aachen University - Invited Session

Christina Büsing, RWTH Aachen

k-distance recoverable robustness

Recoverable Robustness (RR) is a method to deal with uncertainties in optimization problems extending the classical concept of robustness by allowing limited recovery actions after all data is revealed. In this talk I will present a special case of RR where the recovery actions are limited by changing at most k elements of the previous fixed solution and apply this method to various combinatorial optimization problems. For the shortest path problem, we will see that small changes in the problem setting, e.g., choosing simple s,t-paths at the beginning instead of any s,t-path, strongly influences the complexity status and combinatorial structures of the optimal solutions. I will conclude the talk with an overview of current results on cutting planes for the recoverable robust knapsack polytope and an application to the train classification problem.

Arie Koster, RWTH Aachen University (with Christina Büsing, Manuel Kutschka)
primal-dual methods can provide quadratic convergence, while still allowing for efficient implementation in decentralized wireless networks. Given the limited and costly nature of wireless resources, decentralized algorithms are required to minimize the control message overhead for each iteration step. Therefore we present a distributed handshake scheme based on the use of so-called adjoint network to efficiently estimate iteration updates from some locally measurable quantities. Due to estimation errors and other distorting factors, the proposed algorithm has to be analyzed in a more general context of stochastic approximation.

Zhi-Quan (Tom) Luo, University of Minnesota (with Mingyi Hong, Razvan Popa, and Sun Runyu)

Linear precoder optimization and base station selection for heterogeneous networks

Consider the problem of weighted sum rate maximization in a MIMO interference communication network. We propose to jointly optimize the users’ linear precoders as well as their base station (BS) associations. This approach enables the users to avoid congested BSs and can improve system performance as well as user fairness. In this paper we first show that this joint optimization problem is NP-hard and thus is difficult to solve to global optimality. We also identify a special case (single antenna case) where the joint maximization of the minimum rate problem is soluble via an appropriate weighted bipartite matching for base station assignment and then a simple linear program for power allocation. To find a locally optimal solution, we formulate the problem as a noncooperative game in which the users and the BSs act as players who autonomously optimize their own utility functions. We then develop an algorithm that allows the players to distributedly reach the Nash Equilibrium (NE) of the game. Moreover, we introduce a set of utility functions for the players and show that every NE of the resulting game is a stationary solution of the weighted sum rate maximization problem.

Gesualdo Scutari, State University of New York at Buffalo (with Francesco Faccchinei, Jorg-Shang Pang)

Monotone communication games

In recent years, there has been a growing interest in the use of noncooperative games to model and solve many resource allocation problems in communications and networking, wherein the interaction among several agents is by no means negligible and centralized approaches are not suitable. In this talk we present a mathematical treatment of (generalized) Nash equilibrium (NE) problems based on the variational inequality approach. Our emphasis is on the design of distributed algorithms for solving best-response iterations along with their convergence properties. The proposed framework has many desirable new features: i) it can be applied to (monotone) games having no specific structure; ii) the algorithms proposed for computing a NE converge under mild conditions that do not imply the uniqueness of the equilibrium; and iii) in the presence of multiple NE, one can control the quality of the computed solution by guaranteeing convergence to the “best” NE, according to some prescribed criterion, while keeping the distributed implementation of the algorithm. These are new features enlarge considerably the applicability and flexibility of game-theoretic models in wireless distributed networks.

Complementarity & variational inequalities

Mon.2.A 313

Optimization and equilibrium problems 1

Organizers/Chairs Christian Kanzow, University of Würzburg; Michael Ulbrich, Technische Universität München - Invited Session

Oliver Stein, Karlsruhe Institute of Technology (with Nadja Hamm, Christian Kanzow)

On differentiability properties of player convex generalized Nash equilibrium problems

Any smooth generalized Nash equilibrium problem allows a reformulation as a single constrained minimization problem with possibly nonsmooth objective function. Under the assumption of player convexity, we study smoothness properties of this objective function and, by using several results from parametric optimization, we show that, except for special cases, all locally minimal points of the reformulation are differentiability points. This justifies a numerical approach which basically ignores the possible nondifferentiabilities.

Alexandra Schwartz, University of Würzburg (with Jing Frank, Christian Kanzow, Wolfgang Leininger)

Biased lottery versus all-pay auction contests: A revenue dominance theorem

We allow a contest organizer to bias a contest in a discriminatory way; that is, he can favor specific contestants through the choice of the contest success function in order to maximize the total equilibrium effort. Percentage enhancement through biasing is analyzed and compared for the two predominant contest regimes: all-pay auctions and lottery contests. In order to determine the optimally biased all-pay auction or lottery contest, the organizer has to solve a mathematical program with equilibrium constraints. We derive the optimally biased lottery contest analytically. But although this optimal lottery has a few interesting properties, it turns out that the optimally biased lottery contest will always be dominated by an appropriately biased all-pay auction.

Michael Ferris, University of Wisconsin

Stochastic variational inequalities and MOPEC

We describe some recent extensions of the extended mathematical programming (EMP) framework that enable the modeling of stochastic variational inequalities and link these to the notion of multiple optimization problems with equilibrium constraints (MOPEC). We show how to incorporate stochastic information into these systems, including notions of hedging and dynamics, and give examples of their use and their possible extensions to hierarchical modeling. We contrast these approaches to existing modeling formats such as complementarity problems and mathematical programs with equilibrium constraints, and show how this relates to decentralized operations. We demonstrate this mechanism in the context of energy and environmental planning problems, specifically for capacity expansion, hydro operation, water pricing and load shedding.

Mon.2.H 2036

Algorithms for matrix optimization problems

Chair Tu Xia, Lakehead University

Qingna Li, AMSS, Chinese Academy of Sciences (with Houduo Qi)

Sequential semismooth Newton method for nearest low-rank correlation matrix problems

Rank constrained matrix optimization problems have been receiving great interest in the past few years due to the applications in various fields. One of such problems is the nearest low-rank correlation matrix problem, arising from finance. In this talk, we propose the sequential semismooth Newton method to solve it. We analyze the connections between the proposed method and some other methods. Potential improvement of the method is also discussed.

Chengdu Wang, Southwest Jiaotong University (with Defeng Sun, Kim-Chuan Toh)

On how to solve large scale matrix log-determinant optimization problems

We propose a Newton-CG primal proximal point algorithm (PPA) and a Newton-CG primal augmented Lagrangian method (ALM) for solving large scale nonlinear semidefinite programming problems whose objective functions are a sum of a log-determinant term with a linear function and a sum of a log-determinant term with a convex quadratic function, respectively. Our algorithms employ the essential ideas of the PPA, the ALM, the Newton method, and the preconditioned conjugate gradient (CG) solver. We demonstrate that our algorithms perform favorably compared to existing state-of-the-art algorithms and are much preferred when a high quality solution is required for problems with many equality constraints.

Tu Xia, Lakehead University

Gradient methods for a general least squares problem

We consider a constrained least squares problem over cones. We show how to adapt Nesterov’s fast gradient methods to the problem efficiently. Numerical examples will be provided.

Mon.2.H 2038

Nonlinear semidefinite programs and copositive programs

Organizer/Chair Florian Jarre, Universität Düsseldorf - Invited Session

Michal Kocvara, University of Birmingham (with Jan Fiala, Michael Stingl)

Introducing PENLAB, a Matlab code for nonlinear conic optimization

We will introduce a new code PENLAB, an open Matlab implementation and extension of our older PENNON. PENLAB can solve problems of nonconvex nonlinear optimization with standard (vector) variables and constraints, as well as matrix variables and constraints. We will demonstrate its functionality using several nonlinear semidefinite examples.

Mirjam Dür, University of Trier (with Wollkiewicz van Vliet)

Remarks on copositive plus matrices and the copositive plus completion problem

A matrix A is called copositive if it is copositive and if x ≥ 0, xTAx ≥ 0 implies Ax ≥ 0. These matrices play a role in linear complementarity problems (LCPs), since it is well known that Lemke’s algorithm can solve LCPs when the matrix involved is copositive plus. In this talk, we study two issues: first, we discuss properties of the cone of copositive plus matrices. In particular, we formulate an analogous result to the well-known fact that any copositive matrix of order up
to four can be represented as a sum of a positive semidefinite and an entrywise nonnegative matrix.

The second problem we are interested in is the copositive plus completion problem: Given a partial matrix, i.e., a matrix where some entries are unspecified, can this partial matrix be completed to a copositive plus matrix by assigning values to the unspecified entries? We answer this question both for the setting where diagonal entries are unspecified, and for the case of unspecified non-diagonal entries.

Peter Dickinson, Johane Bernoulli Institute, University of Groningen (with Kurt Anstreicher, Samuel Burer, Lusk Gijben)

Considering the complexity of complete positivity using the Ellipsoid method

Copositive programming has become a useful tool in dealing with all sorts of optimization problems. It has however been shown by Murty and Kabadi (Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programming, 39, no.2:117–129, 1987) that the strong membership problem for the copositive cone, that is deciding whether or not a given matrix is in the copositive cone, is a co-NP-complete problem. The dual cone to the copositive cone is called the completely positive cone, and, because of this result on the copositive cone, it has widely been assumed that the strong membership problem for this cone would be an NP-complete problem. The proof to this has however been lacking. In order to show that this is indeed true we would need to show that the problem is both an NP-hard problem and a problem in NP. In this talk we use the Ellipsoid Method to show that this is indeed an NP-hard problem and that the weak membership problem for the completely positive cone is in NP (where we use a natural extension of the definition of NP for weak membership problems). It is left as an open question as to whether the strong membership problem itself is in NP.

Michel Rüther, University of Nice Sophia Antipolis

Using IIS for error localization

Modern model-checkers are often very efficient for generating counterexamples, i.e., to compute input data violating a given property or a post-condition. However, the associated execution traces are often lengthy and difficult to understand. Hence, the localization of the portions of code that contain errors is therefore often very expensive, even for experienced programmers. Recently, Griessmayer et al proposed to encode a trace of a program and the post-condition as a failing Boolean formula F. They use MAX-SAT to compute the maximum number of clauses that can be satisfied in F and output the complement as a potential cause of the errors. We propose here to improve their approach and to use IIS (irreducible infeasibility set) for the linear constraint subsystems. The advantage is that linear constraints provide a much richer and concise model for numeric programs than Boolean formula.

Charlotte Truchet, LINA, Université de Nantes (with Frédéric Benhamou, Marie Pelleau)

Octagonal domains for constraint programming

Continuous Constraint Programming relies on interval representa-
tions of the variables domains. Filtering and solution set approxima-
tions are based on Cartesian products of intervals, called boxes. We pro-
pose to improve the Cartesian representation precision by introducing an n-ary octagonal representation of the domains in order to improve the propagation accuracy. The principles of constraint solving remain the same: reduce the domains by applying constraint propagators (filter-
ing), by computing fixpoints of these operators (propagation) and by splitting the domains to search the solution space. Nevertheless, each of these steps is redesigned so as to take the new domains into account. Our contributions are the following: first, we show how to transform the initial constraint problem into an semantic equivalent problem on octagonal domains. Second, we define a specific local consistency, oct-
consistency, and propose a propagation algorithm, built on top of any continuous filtering method. Third, we propose a split algorithm and a notion of precision adapted to the octagonal case. Practical experiments show that the octagonal domains perform well on the Coconut benchmark.

Thomas Coleman, University of Waterloo (with Xi Chen)

On the use of automatic differentiation to efficiently determine first and second derivatives in financial applications

Many applications in finance require the efficient computation of the first derivatives (i.e., “Greeks”) and sometimes 2nd derivatives of pricing functions of financial instruments. This is particularly true in the context of portfolio optimization and hedging methodologies. Efficient and accurate derivative computations are required. If the target instruments are simple, e.g., vanilla instruments, then this task is simple: indeed, ana-
lytic formulae exist and can be readily used. However, explicit formulae for more complex models are unavailable and the accurate and efficient calculation of derivatives is not a trivial matter. Examples include mod-
els that require a Monte Carlo procedure, securities priced by the Libor model, the Libor swap market model, and the copula model. A straightforward application of automatic differentiation (AD) is exorbit-
tantly expensive; however, a structured application of AD can be very efficient (and highly accurate). In this talk we illustrate how these pop-
ular pricing models exhibit structure that can be exploited, to achieve significant efficiency gains, in the application of AD to compute 1st and 2nd derivatives of these models.

Raquel Fonseca, Faculty of Sciences - University of Lisbon (with Ber Ruster!) Robust value-at-risk with linear policies

We compute the robust value-at-risk in the context of a multistage international portfolio optimization problem. Decisions at each time pe-
orid are modeled as linearly dependent on past returns. As both the cur-

ency and the local asset returns are accounted for, the original model is non-linear and non-convex. With the aid of robust optimization tech-
iques, however, we develop a tractable semidefinite programming for-
mulation of our model, where the uncertain returns are contained in an ellipsoidal uncertainty set. The worst case value-at-risk is minimized over all possible probability distributions with the same first two order moments. We additionally show the close relationship between the min-
imization of the worst case value-at-risk and robust optimization, and the conditions under which the two problems are equivalent. Numerical results with simulated and real market data demonstrate the potential gains from considering a dynamic multiperiod setting relative to a single stage approach.

Christoph Reisinger, University of Oxford

The effect of the payoff on the penalty approximation of American options

This talk combines various methods of analysis to draw a compre-

hensive picture of penalty approximations to the value, hedge ratio, and optimal exercise strategy of American options. While convergence of the penalised PDE solution for sufficiently smooth obstacles is well es-
blished in the literature, sharp rates of convergence and particularly the effect of gradient discontinuities (i.e. the semi-present `kinks' in op-
tion payoffs) on this rate have not been fully analysed so far. We use matched asymptotic expansions to characterise the boundary layers between exercise and hold regions, and to compute first order correc-
tions for representative payoffs on a single asset following a diffusion

Stability analysis of transportation networks with multiscale driver decisions

Stability of Wardrop equilibria is analyzed for dynamical transporta-
tion networks in which the drivers' route choices are influenced by infor-
mation at multiple temporal and spatial scales. The considered model...
involves a continuum of drivers commuting between a common origin/destination pair in an acyclic transportation network. The drivers' route choices are affected by their, relatively infrequent, perturbed best responses to global information about the current network congestion levels, as well as their instantaneous local observation of the immediate surroundings as they transit through the network. A novel model is proposed for the drivers' route choice behavior, exhibiting local consistency with their preference toward globally less congested paths as well as myopic decisions in favor of locally less congested paths. The main result shows that, if the frequency of updates of path preferences is sufficiently small as compared to the frequency of the traffic flow dynamics, then the state of the transportation network ultimately approaches a neighborhood of the Wardrop equilibrium. The presented results may be read as a further evidence in support of Wardrop's postulate of equilibrium.

Dario Bauso, Università di Palermo (with Giuseppe Notarstefano, Raffaele Passeri)

Time-averaged consensus and distributed approachability in large multi-agent networks

We consider a doubly (over time and space) distributed averaging algorithm in a large multi-agent network. At every iteration, each single agent first computes a weighted average of its own time-averaged estimate and those of its neighbors and then generates a new estimate in order to drive the time-averaged estimate towards a pre-assigned set. The main contribution of the paper is to prove that under certain assumptions, i) all agents reach consensus on time-averaged estimates, and ii) the estimates approach the pre-assigned set. Conditions for this to happen are related to the connectivity over time of the communication topology and to the approachability principle. Motivations arise in the context of repeated coalitional games with transferable utilities and linear systems. Here, the algorithm represents a distributed allocation process converging to the core of the game in the limit.

Peter Caines, McGill U. (with Zhenging Ma, Roland Malhame)

Nash equilibria in radial communication networks via mean field game theory

Mean Field Game theory is developed and applied in this paper to call admission control in a point process model of communication networks. In general the MFG methodology establishes the existence of approximate Nash equilibria for large populations of agents which employ only local feedback and precomputed solutions to the Mean Field equations. In this paper dynamic communication networks are modeled by highly symmetric radial loss networks driven by Poisson call request point processes subject to decentralized admission control. A key concept introduced in the analysis in this paper is that of the so-called network decentralized state (NDS) which is a state induced asymptotically (in population size) in a given network under any (randomized) local admission control law when it is common to all agents. Under appropriate assumptions, an analysis of networks in an NDS establishes the existence of Nash equilibria which are achieved for all sufficiently large populations. Computational illustrations of the methodology are included.

Henrik Engberg, MOSEK

The R-to-MOSEK optimization interface

Currently, R and a wide variety of contributed packages on CRAN as well as other package repositories offer tools to solve many different optimization problems (see the overview at http://cran.R-project.org/view=Optimization). However, the user interfaces to available optimizers and the output, i.e., the format of the returned solution, often differ considerably. It is not only the users interested in R as an optimization tool, but also the developers who need to handle different optimization problem classes transparently and who are facing this lack of standardization. Therefore, an integrative multi-purpose optimization framework for R seems to be desirable.

In this talk we present the R Optimization Infrastructure package, an extensible framework for modeling and solving linear as well as nonlinear (possibly mixed-integer) optimization problems. Without the need to learn a domain specific language ROI enables users to employ both, open source and commercial solvers directly within R via so-called plugin packages.

Steven Dirkse, GAMS Development Corporation (with Michael Ferris, Renger van Nieuwkoop)

GDXXRW: Exchanging data between GAMS and R

We discuss GDXXRW (GDX-R Read/Write), a tool for moving data between GAMS and R. This data exchange is beneficial for those in both communities. For example, it gives R users the capability to use the superior modeling and optimization capabilities of GAMS, and it allows for visualization and analysis of GAMS data [both pre- and post-solution] directly within R to take advantage of R’s wide range of functionality. The freely available tool is based on GDX (GAMS Data eXchange), a well-established and public API for sharing data.

A mixed-integer programming model for enforcing priority list policies in Markov decision processes

Optimal dispatching policies for server-to-customer systems can be identified using Markov decision process models and algorithms, which indicate the optimal server to dispatch to each customer type in each state. Optimal policies are fully state dependent and may be tedious to use in practice. Restricted policies that are partially state dependent and conform to a priority list policy for each type of customer may be easier to use in practice. This research demonstrates how the
optimal priority list policy can be identified by formulating constrained Markov decision processes as mixed integer programming models.

Silvio de Araujo, UNESP/Brasil (with Diego Fiorotto)

Lagrangian heuristics for a reformulated lot sizing problem in parallel machines

The capacitated lot sizing problem with multiple items, setup time and unrelated parallel machines is considered. The aim of this work is to design a Lagrangean heuristic that provides good solutions for this problem and strong lower bounds to assess their quality. Based on a strong reformulations of the problem, Lagrangean relaxation is applied on the the demand constraints and the subgradient optimization procedure is used. A primal heuristic, based on production transfers, is developed to generate feasible solutions (upper bounds). Computational experiments are presented on data sets available from the literature.

Mon.2 H 2032
Integer programming algorithms II
Chair Serigne Gueye, Université d’Avignon, Laboratoire d’Informatique d’Avignon (LIA) (with Philippe Michelon)

Using distance variables for the quadratic assignment problem

The Quadratic Assignment Problem (QAP) is the problem of allocating facilities to locations such as to minimize the sum of a linear and quadratic cost depending on the distances between facilities and flows. The Minimum Linear Arrangement (MinLA) is a special case of (QAP) where \(d_{kl} = |k - l| \). It has been proposed for MinLA a linear model using distance variables. The lower bound is poor, equal to 0, but can be improved with facets [see {1, 2}]. We have independently observed that the distance variables can be used for (QAP), and that some facets are also applicable each time \(d \) defines a metric, as the grid graphs in QAPLIB instances. Adding valid inequalities linking \(D \) and \(x \), we have tested this model. The result shows a competitive average relative gap of 10.7% with a minimum of 3.4%.

Serigne Gueye, Université d’Avignon, Laboratoire d’Informatique d’Avignon (LIA) (with Philippe Michelon)

New methodologies for mixed-integer programming

Organizer/Chair Daniel Bienstock, Columbia University - Invited Session
Juan Pablo Velaia, Massachusetts Institute of Technology (with Daniel Dadush, Santanu Dey, Mustafa Kilinc, Sina Modaresi)

Split cuts for convex nonlinear mixed integer programming

In this talk we study split cuts for convex nonlinear mixed integer programming. We give closed form expressions of split cuts for some quadratic sets and show that the split closure of a strictly convex set is generated by a finite number of split disjunctions, but is not necessarily a polyhedron.

Daniel Bienstock, Columbia University (with Alexander Michalka)

Strong formulations for convex functions over nonconvex sets

In this paper we derive strong linear inequalities for systems representing a convex quadratic over the complement of a convex set, and present, in several cases, characterizations of the convex hull by polynomially separable linear inequalities. An example of this situation is that of positive definite quadratic over the complement of a polyhedron.

Diego Moran, Georgia Tech (with Santanu Saha Das Dey, Juan Pablo Velaia)

Strong dual for conic mixed-integer programs

Mixed-conic integer programming is a generalization of mixed-integer linear programming. We present an extension of the duality theory for mixed-integer linear programming to the case of mixed-integer conic programming. Under a simple condition on the primal problem, we are able to prove strong duality.

Mon.7 MA 042
Computational integer programming
Organizer/Chair Ricardo Fukasawa, University of Waterloo - Invited Session
Daniel Stiffler, Oakland University (with Ambros Gleiner, Kati Wolter)

Improving the accuracy of linear programming solvers with iterative refinement

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved at iterations of this algorithm share the same constraint matrix as the original problem instance and are transformed only by modification of the objective function, right-hand side, and variable bounds. Exact computation is used to compute and store the exact representation of the transformed problems, while numeric computation is used for computing approximate LP solutions and applying iterations of the simplex algorithm. We demonstrate that this algorithm is effective in practice for computing extended precision solutions and directly benefits methods for solving LPs exactly over the rational numbers. A proof-of-concept implementation is done within the SoPlex LP solver.

Franz Wieselsberger, University of Padova (with Uwe Suhl)

Computational experiments with general-purpose cutting planes

General-purpose cutting planes are known to play a crucial role in solving mixed-integer linear programs. We report on computational experiments with families of split cuts which can be generated efficiently such as Gomory mixed-integer cuts, reduce-and-split cuts, lift-and-project cuts and pivot-and-reduce cuts. We also consider several variants of these basic algorithms, e.g., lift-and-project cuts generated from split disjunctions obtained with the reduce-and-split algorithm or reduce-and-split cuts generated using tableau rows produced by the lift-and-project method. Moreover, we present computational results obtained with different variants of multi-row cut separators.

Daniel Espinoza, Universidad de Chile (with Angulo Alejandro)

Cutting and separation for semi-continuous variables

Semi-continuous variables appear naturally when modeling general functions with mixed integer linear programs (MILPs), and are widely used in many applications. In this talk we present several classes of inequalities to be facet-defining; and also, we describe an approximate lifting scheme, and conditions under which the approximately lifted is exact. Although the separation problem is NP-complete, we present some separation heuristics, as well as extensive testing on instances coming from unit commitment problems. Our results show that, in our test instances, we close in average between 50 and 90 percent of the root LP gap.
approximability of hybridization number and directed feedback vertex set

We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa \(X \) has a constant factor polynomial-time approximation if and only if the problem of computing a minimum-size feedback vertex set in a directed graph (DFVS) has a constant factor polynomial-time approximation. The latter problem, which asks for a minimum number of vertices to be removed from a directed graph to transform it into a directed acyclic graph, is one of the problems in Karp's seminal 1972 list of 21 NP-complete problems. Despite considerable attention from the combinatorial optimization community, it remains to this day unknown whether a constant factor polynomial-time approximation exists for DFVS. Our result thus places the (in)approximability of hybridization number in a much broader complexity context. On the positive side, we use results from the DFVS literature to give an \(O(\log \log r) \) approximation for the hybridization number where \(r \) is the correct value.

Céline Scornavacca, ISEM, Université Montpellier II (with Stefan Kelk)

Constructions minimal phylogenetic networks from softwired clusters is fixed parameter tractable

Here we show that, given a set of clusters \(C \) on a set of taxa \(X \), where \(|X| = n \), it is possible to determine in time \(f(k) \cdot \poly(n) \) whether there exists a level-\(k \) network (i.e. a network where each biconnected component has reticulation number at most \(k \)) that represents all the clusters in \(C \) in the softwired sense, and if so to construct such a network. This extends a polynomial time result from Kelk et al. (2011) on the elusiveness of clusters, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011. By generalizing the concept of “level-\(k \) generator” to general networks, we then extend this fixed parameter tractability result to the problem where \(k \) refers not to the level but to the reticulation number of the whole network.

Robert Wool,TU Dortmund University (with Uwe Clausen)

Branch-and-price algorithms in transportation

We present a consolidation problem from wagonload traffic, which is a production form in railway freight traffic. A huge number of OD-requests – each of them consists of only a small number of wagons has to be routed through the railway network. Wagons from different OD-pairs (relations) are consolidated in reclassification yards in order to take advantage of their maximum possible capacity. The route of each relation is determined by so called Blocking Plans which shall be optimized. The objective is to minimize the sum of train and reclassification costs. We consider a multicmodity flow problem with elements of a fixed charging problem and the generation pattern developed earlier is extended to a Branch-and-Price-algorithm. Our branch-and-bound strategy decouples the simple subproblem structure of the aforementioned column generation approach, but we overcome this problem by dynamical programming. We can take advantage from our branch-and-bound rule by deriving effective cuts. Numerical results are presented and compared to solutions provided by commercial solvers. We also analyze the impact of our cuts empirically. First experiments are very promising.

Michel Seixas, University of Sao Paulo (with André Mendes)

Branch-and-price and-cut for railroad blocking plans

We present a consolidation problem from wagonload freight traffic, which is a production form in railway freight traffic. A huge number of OD-requests – each of them consists of only a small number of wagons has to be routed through the railway network. Wagons from different OD-pairs (relations) are consolidated in reclassification yards in order to take advantage of their maximum possible capacity. The route of each relation is determined by so called Blocking Plans which shall be optimized. The objective is to minimize the sum of train and reclassification costs. We consider a multicmodity flow problem with elements of a fixed charging problem and the generation pattern developed earlier is extended to a Branch-and-Price-algorithm. Our branch-and-bound strategy decouples the simple subproblem structure of the aforementioned column generation approach, but we overcome this problem by dynamical programming. We can take advantage from our branch-and-bound rule by deriving effective cuts. Numerical results are presented and compared to solutions provided by commercial solvers. We also analyze the impact of our cuts empirically. First experiments are very promising.

Robert Wool,TU Dortmund University (with Uwe Clausen)

Branch-and-price and-cut for railroad blocking plans

We present a consolidation problem from wagonload traffic, which is a production form in railway freight traffic. A huge number of OD-requests – each of them consists of only a small number of wagons has to be routed through the railway network. Wagons from different OD-pairs (relations) are consolidated in reclassification yards in order to take advantage of their maximum possible capacity. The route of each relation is determined by so called Blocking Plans which shall be optimized. The objective is to minimize the sum of train and reclassification costs. We consider a multicmodity flow problem with elements of a fixed charging problem and the generation pattern developed earlier is extended to a Branch-and-Price-algorithm. Our branch-and-bound strategy decouples the simple subproblem structure of the aforementioned column generation approach, but we overcome this problem by dynamical programming. We can take advantage from our branch-and-bound rule by deriving effective cuts. Numerical results are presented and compared to solutions provided by commercial solvers. We also analyze the impact of our cuts empirically. First experiments are very promising.

Michel Seixas, University of Sao Paulo (with André Mendes)

Branch-and-price and-cut for railroad blocking plans

We present a consolidation problem from wagonload traffic, which is a production form in railway freight traffic. A huge number of OD-requests – each of them consists of only a small number of wagons has to be routed through the railway network. Wagons from different OD-pairs (relations) are consolidated in reclassification yards in order to take advantage of their maximum possible capacity. The route of each relation is determined by so called Blocking Plans which shall be optimized. The objective is to minimize the sum of train and reclassification costs. We consider a multicmodity flow problem with elements of a fixed charging problem and the generation pattern developed earlier is extended to a Branch-and-Price-algorithm. Our branch-and-bound strategy decouples the simple subproblem structure of the aforementioned column generation approach, but we overcome this problem by dynamical programming. We can take advantage from our branch-and-bound rule by deriving effective cuts. Numerical results are presented and compared to solutions provided by commercial solvers. We also analyze the impact of our cuts empirically. First experiments are very promising.

Michel Seixas, University of Sao Paulo (with André Mendes)
duction pads are often widely spread over a large geographical area, and interconnected by comprehensive surface gathering lines. We present a discrete time mixed integer nonlinear program (MINLP) for optimal scheduling of shale-gas multi-well pads. The MINLP model is formulated by using a dynamic reservoir proxy model and a nonlinear well model for each well, and we show how subroutines may be efficiently scheduled to prevent liquid loading and boost late-life rates for these types of wells. Furthermore, by using a simplified well model and performing a linear reformulation, we do a preliminary comparison of solving the scheduling problem as an MILP compared to the MINLP.

Gonzalo Guillen-Gosio, Universitat Rovira I Virgili (with Pedro Copado, Ignacio Grossmann)

Solving mixed-integer linear-fractional programming problems via an exact MILP reformulation

We present a method to solve mixed-integer linear-fractional programming (MILFP) problems in which the objective function is expressed as a ratio of two linear functions and the equality and inequality constraints are all linear. Our approach extends the transformation of Charnes and Cooper (1962), originally devised for linear-fractional programs with continuous variables, to handle the mixed-integer case. In essence, we reformulate the MILFP into an equivalent mixed-integer linear program (MILP) that makes use of auxiliary continuous variables. The solution of this MILP, which can be obtained by standard branch-and-cut methods, provides the global optimum of the original MILFP. Numerical results show that our strategy outperforms the most widely used general-purpose mixed-integer nonlinear programming solution methods (i.e., outer approximation – available in DICOPT –, nonlinear branch and bound – SB-B, and extended cutting plane, alphaBB) as well as the branch-and-reduce global optimization algorithm implemented in BARON.

Pedro Castro, Laboratorio Nacional de Energia e Geologia (LNEG) (with Ignacio Grossmann, João Teles)

Multi-parametric disaggregation as a new paradigm for global optimization of mixed-integer polynomial programs

Multi-parametric Disaggregation involves discretization of the domain of one of the variables appearing in a bilinear term, the basic building block to tackle higher order polynomials. Alternative numeric representation systems can be employed (e.g., decimal, binary) with the user specifying the accuracy level for the approximation. With this, the original MINLP can be approximated by an upper bounding MILP, which may be easier to solve to global optimality. In this work, we propose a lower bounding relaxation MILP, where a truncation error is defined for the parameterized variables. Since the higher the chosen accuracy, the tighter the formulation, we can easily construct a global optimization algorithm starting with a significant digit (first iteration) and ending when the optimality gap is lower than a given tolerance. Starting with Disjunctive Programming models, we show that the new relaxation, although looser, leads to a better performance than the one from piecewise McCormick relaxations (using univariate and uniform domain partitioning). The primary cause is the linear vs. exponential increase in problem size for an order of magnitude reduction in optimality gap.

Nicolás García, Li-Kuang Chen (with Michael Kostreva)

Efficient set representations

Organizer/Chair Luis Paquete, University of Coimbra - Invited Session

Michael Stiglmayr, University of Wuppertal

The multicriteria linear bottleneck assignment problem

We present a solution method for the multicriteria linear bottleneck assignment problem (MLBAP), which is the multicriteria analogon of the well studied linear bottleneck assignment problem. Our algorithm is an extension of the single criteria threshold algorithm. We define a residual graph by specifying a (multicriteria) threshold vector, such that all of its edges have cost dominated by the threshold. Any complete matching in this residual graph is a candidate for an efficient solution with at least the threshold values. The computation of matchings in the residual graph is realized by an efficient update algorithm which is based on our method, which computes the complete efficient set, we also suggest an approximation scheme for the efficient set with an adjustable quality. The uniformity and the disparity of this representation can be bounded during the course of the algorithm. While we restrict ourselves to bicriteria cases, we show possible extensions to multiple criteria.

Luis Paquete, University of Coimbra (with Carlos Fereira, Kathrin Klamroth, Michael Stiglmayr)

Concise representation of nondominated sets in discrete multicriteria optimization

The problem of finding a representative subset of the nondominated point set of a discrete multicriteria optimization problem with respect to uniformity and coverage is introduced. Provided that the decision maker is able to indicate the number of points to visualize, a subset of well-spread points (uniformity) that are close enough to the remaining points (coverage) is of interest.

Finding a representative p-point subset with respect to uniformity and coverage can be formulated as a combination of p-dispersion and p-center facility location problems, respectively, with a special location structure. In this work, polynomial-time dynamic programming algorithms to find representative subsets with respect to each of these measures in the two-dimensional case are presented. Moreover, the multicriteria version of this problem is shown to be solvable also in polynomial time using dynamic programming. The extension of these and related problems to larger dimensions will be discussed.

Florian Slipp, University of Kaiserstuhl (with Stefan Ruzika)

A polynomial time approach for the multiple objective minimum spanning tree problem

The minimum spanning tree problem is a well-studied problem in combinatorial optimization. Whereas the single objective version can be solved in polynomial time by greedy algorithms, the multiple objective version is known to be intractable and NP-hard. Even worse, the number of both supported and unsupported nondominated points may be exponentially large in the number of edges of the underlying graph. In this talk, it is shown that it is however possible to bound the number of extremal supported nondominated points polynomially. The result is based on the fact that the theory of arrangements of hyperplanes. It immediately implies that if the first stage of the two-phases method, i.e., computing the nondominated frontier, can be accomplished by solving a polynomial number of weighted sum problems. A solution approach is presented which demonstrates how this can be achieved algorithmically.

Osvaldo Mondaca, University of Coimbra (with José Marques)

Nonlinear programming

Organizer/Chair Cosimado Zoulti, FICO

Art Gorka, Erskine College (with Michael Kostreva)

Parallel direction finding algorithm in method of feasible directions

A Parallel version of the Method of Feasible Directions algorithm is presented. Parallelization allows for finding multiple directions simultaneously on parallel machines. The algorithm is tested on a number of problems with known solutions from Hock-Schittkowski and compared with sequential algorithms. A number of speedup ratios are reported.

James Hungerford, University of Florida (with William Hager)

Edge directions in polyhedral optimization

We consider the problem of maximizing a continuously differentiable function $f(x)$ over a polyhedron $P \subseteq \mathbb{R}^n$. We present first and second order optimality conditions for this problem which are stated in terms of the derivatives of f along directions parallel to the edges of P. We show that for a special class of quadratic programs, local optimality can be checked in polynomial time. Finally, we present a new continuous formulation for a well known discrete optimization problem: the vertex separator problem on a graph G. Easily checked optimality conditions for this problem are derived via the theory of edge directions. These optimality conditions are shown to be related to the existence of edges at specific locations in the graph.

Cosimado Zoulti, FICO

Pros and cons of first order methods for solving general nonlinear problems

Second order methods to solve non-linear problems are often the best of the shelf methods to solve general non-linear problems due to their robustness and favorable un-tuned convergence properties. However, there are several problem classes, where either due to the special structure of the problem, or their size make first order approaches several magnitudes faster compared to their second order counterparts. First order methods exhibit several well-known numerically unfavorable properties; successful applications often rely on efficient, problem specific methods of addressing these challenges. The talk will focus on practical examples and applications where sequential linear programming approaches are either superior, or can be adjusted to achieve significantly better performance than second order methods if the right problem formulation or algorithmic features are used.
singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining the rank or a best rank-1 approximation to a 3-tensor. Additionally, some of these problems have no polynomial time approximation schemes, some are undecidable over Q, and at least one enumerative version is #P-complete. Restricting these problems to symmetric 3-tensors does not alleviate their NP-hardness.

Gongyi Tang, NanJing University, China
Some properties of tensors’ eigenvalues and related optimization problem

In this talk, I will focus on the properties of tensors’ eigenvalues and related optimization problem. The tensor is an array of high dimensional data, which can be viewed as the extension of the vector and matrix. In the past some years, especially recent years, due to the needs of real problems, the study on the tensors attracts a great attention. Several different definitions of eigenvalues of tensors were presented, and various properties with respect to tensors’ eigenvalues were put forward, some interesting conclusions were calculated from the matrix to tensor, such as the Perron-Frobenius theorem for nonnegative matrices. In addition, for some problems one has to find the largest or smallest eigenvalues of tensors, which can be written as some special constrained optimization problem(s). I will introduce the recent development in properties of tensors’ eigenvalues as well as the algorithms for solving the related optimization problem(s).

Organizers/Chairs Frank E. Curtis, Lehigh University; Daniel Robinson, Johns Hopkins University.

Invited Session

Mon. 0110 Nonlinear optimization I

Daniel Robinson, Johns Hopkins University [with Frank Curtis, Zheng Han]
A primal-dual active set method for convex QP

We present a rapidly adapting active-set method for solving large scale strictly convex quadratic optimization problems. In contrast to traditional active-set methods, ours allows for rapid changes in the active set estimate. This leads to rapid identification of the optimal active set, regardless of the initial estimate. Our method is general enough that it can be utilized as a framework for any method for solving convex quadratic optimization problems. Global convergence guarantees are provided for two variants of the framework. Numerical results are also provided, illustrating that our framework is competitive with state-of-the-art solvers on most problems, and is superior on ill-conditioned problems. We attribute these latter benefits to the relationship between the framework and a semi-smooth Newton method.

Sven Leyffer, Argonne National Laboratory
Large-scale nonlinear optimization solvers

We describe the development of a suit of tools and solvers for large-scale nonlinearly constrained optimization problems. We emphasize methods that can operate in a matrix-free mode and avoid matrix factorizations. Our framework implements a range to two-phase active-set methods, that are required, for example, for fast resolvers in mixed-integer solvers. In the first phase, we estimate the active set, and in the second phase we perform a Newton step on the active constraints. We show that our framework can be designed in a matrix-free mode, and analyze its convergence properties. We show that allowing a small number of active-set changes in the Newton step improves convergence.

Elizabeth Wong, University of California, San Diego [with Philip Gill, Daniel Robinson]
Regularized quadratic programming methods for large-scale SQP

We present a regularized method for large-scale quadratic programming (QP). The method requires the solution of a sequence of bound-constrained subproblems defined in terms of both the primal and dual variables. The subproblems may be solved using a conventional active-set method, which would involve the solution of a regularized KKT system at each step, or a method based on gradient projection. In the convex case, the solution of the bound-constrained subproblem is a solution of the QP subproblem for a stabilized sequential quadratic programming (SQP) method. Numerical results are presented.

Organizer/Chair Shuzhong Zhang, University of Minnesota - Invited Session

Mon. 0112 Nonlinear programming

Zhi-Quan Luo, Georgia Institute of Technology
Optimization and related results for large-scale network design problems

We discuss an active set method and a trust region method based on the logarithmic barrier. The methods are designed for large-scale network design problems. We present some computational results on several test problems.

Nonsmooth optimization

Mon. 0112 Constrained variational inequalities: Approximation and numerical resolution

Juan Peypouquet, Universidad Tecnica Federico Santa Maria [with Pierre Frankel]
Lagrangian-penalization algorithm for constrained optimization and variational inequalities

Let X, Y be real Hilbert spaces. Consider a bounded linear operator $A: X \to Y$ and a nonempty closed convex set $C \subset Y$. In this paper we propose an inexact proximal-type algorithm to solve constrained optimization problems

$$\min \{ f(x) : Ax \in C \},$$

where f is a proper lower-semicontinuous convex function on X; and variational inequalities

$$0 \in Mx + A^T N_C(x),$$

where $M : X \rightrightarrows X$ is a maximal monotone operator and N_C denotes the normal cone to the set C. Our method combines a penalization procedure involving a bounded sequence of parameters, with the predictor corrector proximal multiplier method. Under suitable assumptions the sequences generated by our algorithm are proved to converge weakly to solutions of the aforementioned problems. As applications, we describe how the algorithm can be used to find sparse solutions of linear inequality systems and solve partial differential equations by domain decomposition.

Yboon Garcia Ramos, Universidad Del Pacifico [with Marc Lassonde]
Representable monotone operators and limits of sequences of maximal monotone operators

We show that the lower limit of a sequence of maximal monotone operators on a reflexive Banach space is a representable monotone operator. As a consequence, we obtain that the variational sum of maximal monotone operators and the variational composition of a maximal monotone operator with a linear continuous operator are both representable monotone operators.

Felipe Alvarez, Universidad de Chile [with Julio Lopez]
A strictly feasible Bundle method for solving convex nondifferentiable minimization problems under second-order constraints

We will describe a bundle proximal method with variable metric for solving nonsmooth convex optimization problems under positivity and second-order cone constraints. The proposed algorithm relies on a locally complete metric which is induced by the Hessian of the log barrier. An appropriate choice of a regularization parameter ensures the well-definedness of the algorithm and forces the iterates to belong to the relative interior of the feasible set. Also, under suitable but fairly general assumptions, we will show that the limit points of the sequence generated by the algorithm are optimal solutions. Finally, we will report some computational results on several test nonsmooth problems.

Mon. 0112 Structures, complexities, and eigenvalues of tensor forms and polynomial functions

Organizer/Chair Shuzhong Zhang, University of Minnesota - Invited Session

Shuzhong Zhang, University of Minnesota [with Bo Jiang, Zhening Li]
Polynomial and tensor optimization models have proved to be useful in a wide range of applications in engineering and scientific computation. Applications aside, the structure of higher order polynomial/tensor functions however remains largely unknown. For example, the computational status to test if a quartic function is convex or not had remained an open problem until 2010 when Ahmadi et al. proved that it is in fact strongly NP hard. In this talk, we discuss six particular convex cones generated from the nonnegative quartic polynomial functions. Our goal is to illustrate the rich structure of nonnegative quartic polynomial functions. In particular, these convex cones are in decreasing order, much like the Russian Matryoshka dolls, with varying computational complexities. We discuss the modeling power and applications of these convex cones in the context of these cones introduce an interesting result known as Hilbert’s identity, and discuss its role in our study.

Lek-Heng Lim, University of Chicago [with Christopher Hillar]
3-tensors as the boundary of tractability

Why do problems in numerical computing become intractable as they transition from linear to nonlinear or convex to nonconvex? We shall argue that 3-tensor problems form the boundary separating the tractability of linear algebra and convex optimization from the intractability of polynomial algebra and nonconvex optimization – 3-tensor analogues of many efficiently computable matrix problems are NP-hard. Our list includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, evaluating the minimum singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or spectral norm; determining the rank or a best rank-1 approximation to a 3-tensor. Additionally, some of these problems have no polynomial time approximation schemes, some are undecidable over Q, and at least one enumerative version is #P-complete. Restricting these problems to symmetric 3-tensors does not alleviate their NP-hardness.
In the regulated electricity market, a power producer’s goal is to satisfy his customers’ electricity demand while minimizing his expected cost of operating his power system. In the deregulated market, a power producer has no longer to meet the electricity demand of his customers, but is able to trade the electricity in the market. This complicates the problem as uncertainty of spot prices and risk appetite have to be considered in addition. The objective of optimization is the maximization of expected net profit of the power system in the mid-term horizon. In our case the power system is hydro-dominated and the resulting multi-stage stochastic programming problem contains jointly uncertainties in the hydro inflows and electricity spot prices. These kinds of models are usually solved with the SDDP method. For this special case we need to use a hybrid SDPSDDP algorithm and we enhance it with CVaR risk constraints.

Nicola Secomandi, Carnegie Mellon University (with Margot Francois, Nadarajah Selvaraj)

Approximate linear programming relaxations for commodity storage real option management

The option management of commodity storage typically gives rise to an intractable Markov Decision Process (MDP). We derive novel approximate dynamic programs for this MDP from partitioned surrogate relaxations of an approximate linear program. We estimate lower bounds and dual upper bounds on the value of storage for a seasonal commodity (natural gas) and a non-seasonal commodity (oil). Our lower bounds essentially match the best known lower bounds for the natural gas storage instances, and are near-optimal for the oil instances, which are new. Our upper bounds either match or improve those available in the literature for natural gas, but are weaker than an exchange-option based upper bound from the literature for the oil instances. We use a tractable version of the problem to highlight the source of the bias in our estimated upper bounds.

Yonggei Giani, University of Florida (with Ruwei Jiang, Jean-Paul Watson, Ming Zhao)

A branch-and-cut algorithm for the Multi-stage Stochastic Unit Commitment Problem

Due to the uncertainty from both supply and demand sides, power grid operation is generally a stochastic nonlinear problem for regulated electricity market. In this talk, we propose a Multi-stage Stochastic Unit Commitment (MSUC) model to address this problem, where we approximate the nonlinear fuel cost functions by piecewise linear functions. Furthermore, we employ a branch-and-cut algorithm to solve MSUC by constructing strong inequalities for the substructures of the constraints.

Monica Evtov, University of Vale do Rio de Sinos (UNISINOS) (with Luis Basilio, Rodrigo de Figueiredo, José Vicente dos Santos, Márcio Refael Stracke)

Optimal allocation of equipment for monitoring and identification of commercial losses in distribution networks

In 2011, the Brazilian National Agency of Electrical Energy estimated that economic losses due to fraud in distribution networks are around US. 4.6 billion a year in Brazil. This paper focuses on this problem and presents a system for monitoring and identification of commercial losses. The proposed solution is based on low cost power meters installed at strategic points of the network, communicating by wireless with a control central. The network model and data received from power meters is analyzed based on the grid. A linear programming method is employed to define the areas of installation that produce the best coverage results, considering distance, number of consumers and power demand. Graphical and mathematic tools PSL, DMS, GEPATH and Google Earth are employed to represent the grid under test. The methodology is applied in a real network of 4 km of extension. Economic viability and payback analysis for the proposed solution are also presented. The main contribution of this work, for electrical utilities, is a reliable indication of commercial losses in each monitored segment of the distribution network.

Optimization in energy systems

Network operation under failures and losses

Chair Monica Evtov, University of Vale do Rio do Sinos (UNISINOS)

Richard Chen, Sandia National Laboratories (with Amy Cohn, Neng Fan, Ali Pinar, Jean-Paul Watson)

Survivability-constrained generation unit commitment with post-contingency corrective recourse

We consider the problem of optimizing generation unit commitment under load uncertainty while ensuring N-k-ε survivability criterion. This survivability criterion is a generalization of the well-known N-k criterion, and it requires that at least \((1 - \frac{\epsilon}{k})\) fraction of the total demand is met even after failures of any \(k\) system components, for all \(k = 0, 1, \ldots, k_{\text{max}}\). We present a mixed-integer formulation of this problem that takes into account both transmission and generation component failures. We propose a cutting plane algorithm that can avoid combinatorial explosion in the number of contingencies that needs to be considered, by seeking vulnerabilities in intermediary solutions and constraining the search space accordingly. Our empirical studies on modified instances from the IEEE test systems showed the effectiveness of our proposed techniques.

Jose Canto dos Santos, Unisinos - Brazil (with Iverson Costa)

New genetic algorithms for contingencies selection in electric power systems

The importance of a reliable supply of electricity to the industrial society is unquestionable. In a control center of an electrical utility, an important computational task is the security analysis. In this task, contingency is the output of operation of an equipment and contingencies selection is the determination of the most severe contingencies for the system. Even with the current technological advances, an analysis in real time of all possible failures in a large grid is impractical. In this work we present a method to perform efficiently the selection of multiple contingencies. The model is problem as a combinatorial optimization problem, and solved by genetic algorithms that make efficient the screenings of the associated non-convex and non-linear search spaces. We developed a robust method, which considers aspects of power flow and voltage that was tested with an IEEE test system and with a large real network, considering double outages of branches. Excellent results with levels of accuracy close to 100 %, when compared with an exact method, obtained with scans of reduced portions of search spaces are presented.

Monica Evtov, University of Vale do Rio de Sinos (UNISINOS) (with Luis Basilio, Rodrigo de Figuereido, José Vicente dos Santos, Márcio Refael Stracke)

Optimal allocation of equipment for monitoring and identification of commercial losses in distribution networks

In 2011, the Brazilian National Agency of Electrical Energy estimated that economic losses due to fraud in distribution networks are around US. 4.6 billion a year in Brazil. This paper focuses on this problem and presents a system for monitoring and identification of commercial losses. The proposed solution is based on low cost power meters installed at strategic points of the network, communicating by wireless with a control central. The network model and data received from power meters is analyzed based on the grid. A linear programming method is employed to define the areas of installation that produce the best coverage results, considering distance, number of consumers and power demand. Graphical and mathematic tools PSL, DMS, GEPATH and Google Earth are employed to represent the grid under test. The methodology is applied in a real network of 4 km of extension. Economic viability and payback analysis for the proposed solution are also presented. The main contribution of this work, for electrical utilities, is a reliable indication of commercial losses in each monitored segment of the distribution network.

Optimization in energy systems

Network operation under failures and losses

Chair Monica Evtov, University of Vale do Rio do Sinos (UNISINOS)

Richard Chen, Sandia National Laboratories (with Amy Cohn, Neng Fan, Ali Pinar, Jean-Paul Watson)

Survivability-constrained generation unit commitment with post-contingency corrective recourse

We consider the problem of optimizing generation unit commitment under load uncertainty while ensuring N-k-ε survivability criterion. This survivability criterion is a generalization of the well-known N-k criterion, and it requires that at least \((1 - \frac{\epsilon}{k})\) fraction of the total demand is met even after failures of any \(k\) system components, for all \(k = 0, 1, \ldots, k_{\text{max}}\). We present a mixed-integer formulation of this problem that takes into account both transmission and generation component failures. We propose a cutting plane algorithm that can avoid combinatorial explosion in the number of contingencies that needs to be considered, by seeking vulnerabilities in intermediary solutions and constraining the search space accordingly. Our empirical studies on modified instances from the IEEE test systems showed the effectiveness of our proposed techniques.

Jose Canto dos Santos, Unisinos - Brazil (with Iverson Costa)

New genetic algorithms for contingencies selection in electric power systems

The importance of a reliable supply of electricity to the industrial society is unquestionable. In a control center of an electrical utility, an important computational task is the security analysis. In this task, contingency is the output of operation of an equipment and contingencies selection is the determination of the most severe contingencies for the system. Even with the current technological advances, an analysis in real time of all possible failures in a large grid is impractical. In this work we present a method to perform efficiently the selection of multiple contingencies. The model is problem as a combinatorial optimization problem, and solved by genetic algorithms that make efficient the screenings of the associated non-convex and non-linear search spaces. We developed a robust method, which considers aspects of power flow and voltage that was tested with an IEEE test system and with a large real network, considering double outages of branches. Excellent results with levels of accuracy close to 100 %, when compared with an exact method, obtained with scans of reduced portions of search spaces are presented.

Monica Evtov, University of Vale do Rio de Sinos (UNISINOS) (with Luis Basilio, Rodrigo de Figuereido, José Vicente dos Santos, Márcio Refael Stracke)

Optimal allocation of equipment for monitoring and identification of commercial losses in distribution networks

In 2011, the Brazilian National Agency of Electrical Energy estimated that economic losses due to fraud in distribution networks are around US. 4.6 billion a year in Brazil. This paper focuses on this problem and presents a system for monitoring and identification of commercial losses. The proposed solution is based on low cost power meters installed at strategic points of the network, communicating by wireless with a control central. The network model and data received from power meters is analyzed based on the grid. A linear programming method is employed to define the areas of installation that produce the best coverage results, considering distance, number of consumers and power demand. Graphical and mathematic tools PSL, DMS, GEPATH and Google Earth are employed to represent the grid under test. The methodology is applied in a real network of 4 km of extension. Economic viability and payback analysis for the proposed solution are also presented. The main contribution of this work, for electrical utilities, is a reliable indication of commercial losses in each monitored segment of the distribution network.
Robust nonlinear optimization
Chair Daniel Fleschman, Cornell University

Martin Meinrenken, IBM Research Ireland (with Emanuele Ragroni, Jia Yu)

Distributionally robust optimization for polynomial optimization problems

In many real-world optimization problems, one faces the dual challenge of hard nonlinear functions in both objective and constraints and uncertainty in some of the problem parameters. Often, samples for each uncertain parameter are given, whereas its actual distribution is unknown. We propose a novel approach for constructing distributionally robust counterparts of polynomial optimization problems. The approach aims to use the given samples, not only to approximate the support of the unknown distribution but also to second order moments, and also its density. We show that polynomial optimization problems with distributional uncertainty sets defined via density estimates are particular instances of the generalized problem of moments with polynomial data and employ Lasserre’s hierarchy of SDP relaxations to approximate the distributionally robust solutions. As a result of using distributional uncertainty sets, we obtain a less conservative solution than classical robust optimization. We demonstrate the potential of our approach for a range of polynomial optimization problems including linear regression and water network problems.

Hans Pirnay, Process Systems Engineering, RWTH Aachen (with Wolfgang Marquardt)

An algorithm for robust optimization of nonlinear dynamic systems

Nonlinear model predictive control (NMPC) is an attractive control methodology for chemical processes. In NMPC, the control is computed by solving a dynamic optimization problem constrained by a differential-algebraic equation (DAE) model of the underlying process. These systems are often subject to unknown disturbances, which, if not taken into account, can lead to deterioration of the control quality and even instability of the control loop.

To overcome this problem, the dynamic optimization problem has to be formulated in a robust way such that feasibility is guaranteed under all uncertainties. This leads to a bi-level formulation with a dynamic lower level problem. Unfortunately, even simple dynamical models used for NMPC lead to non-convex feasible sets, which tremulously complicates the solution. In this talk, we present an algorithm for bi-level dynamic optimization in the context of NMPC. To deal with the non-convexity, recent advances in dynamic global optimization are employed. In addition, we take advantage of the parametric nature of the lower level problem to speed up the computation and make the algorithm viable for real-time applications.

Daniel Fleschman, Cornell University (with Mike Todd)

On the trade-off between robustness and value

Linear programming problems may be formulated based on data collected with measurement error, which may make the optimal solution to the problem with the nominal parameters infeasible for the “real parameters”. One way to approach this difficulty is by using robust optimization, where we form an uncertainty set that contains the nominal parameter vector, and a solution has to be feasible for any vector in . One question that arises is how large the uncertainty set should be. The larger it is, the safer we are, but at the same time, our solution becomes worse. We study such questions when the uncertainty set for each constraint is a uniform scale factor times a fixed ellipsoid, and propose a simple, easy to compute approximate solution depending on the scale factor.
Optimization of water network operation under uncertainties

Water utilities operate their water networks in a very conservative manner. To be able to satisfy a volatile demand, the current operation procedure focuses on maintaining high water levels in the reservoirs. This results in higher operation costs due to inefficiencies regarding over- and underestimation of demand. While common approaches available in literature and as software packages use deterministic water demand predictions as a base, the focus of this talk considers uncertainties in the water demands prediction. We present a methodology, which targets on lowering the minimum water storage levels while increasing the resilience against unexpected events. This is done by modeling uncertainties in water demand and applying stochastic programming techniques. Controlling the water storage levels allows the decrease of the artificial high bounds. Reducing water storage levels implies a reduction of pumping costs, as pumps do not have to work against these heads. Finally we present the results by means of a small practical problem.

Adriana Piazza, Universidad Técnica Federico Santa María (with Bernardo Pagacerrillo)

The optimal harvesting problem under price uncertainty

We study the exploitation of a one species forest plantation when timber price is governed by a stochastic process. The work focuses on providing closed expressions for the optimal harvesting policy in terms of the parameters of the price process and the discount factor. We assume that harvest is restricted to mature trees older than a certain age and neglect natural mortality and growth after maturity. We use stochastic dynamic programming techniques to characterize the optimal policy for two important cases: (i) when prices follow a geometric Brownian motion, the price process exhibits abnormal jumps; (ii) when prices are governed by a mean reverting (Ornstein-Uhlenbeck) process we provide sufficient conditions, based on explicit expressions for reservation prices, assuring that harvesting everything available is optimal. For the Ornstein-Uhlenbeck process, we propose a policy based on a reservation price that performs well in numerical simulations. In both cases we solve the problem for every initial condition and the best policy is obtained without imposing any ad hoc restrictions such as maximum sustained yield or convergence to a predefined final state.

Takashi Hasuike, Osaka University

Dynamic programming

We develop heuristics for computing optimal ordering policies and optimal stock levels. These heuristics are directly useful for practical applications. The quality of the results are considerably improved by the simultaneous use of all the heuristics. We also study the properties of the policies and stock levels obtained from these heuristics. We further develop a methodology for computing optimal policies and stock levels under additional constraints. We evaluate the performance of the heuristics and the additional constraints, and provide some insights into the nature of the optimal policies and stock levels.

Ralf Lenz, Zuse Institute Berlin (ZIB) (with Fredrik Blank, Guido Dr. Sand, Martin Dr. Weiner)

Risk control approach to critical path method in mathematical programming under uncertainty

We consider a risk control approach to find a critical path in the project scheduling network for several uncertainties for each activity. We formulate the optimization problem based on a critical path method and then develop a two-stage stochastic programming model. In the first stage, we introduce the deterministic model and solve it using the proposed methodology. In the second stage, we introduce the stochastic uncertainties and solve the problem using a scenario-based approach. We also present an application of this methodology to a real-world project scheduling network. The results show that the proposed methodology is effective in handling uncertainties and providing robust solutions.
We are considering a problem for min-density covering of a stripe in wireless sensor networks. There is the special condition for networks such as sensor unit not located in area of stripe. Since energy consumption of sensing is proportional to the coverage space, a problem of power efficient sensing of a plane region could be reduced to the problem of sensing min-density covering of a region within disks with adjustable sensing ranges. We studied several new efficient regular models of covering and have offered a general classification.

A Lagrangian heuristic for delay constrained relay node placement problem in wireless sensor networks

The Optimal Delay Constrained Relay Node Placement problem is stated as: given the locations of the root node, a set of source nodes and a set of candidate relay nodes and delays provided on each possible links (edges), find a minimal set of relay nodes amongst the candidate relay nodes such that there is a path, within the specified delay bound, between each source node and the root node via the selected relay nodes only. In our work, we propose an algorithm which uses the constrained shortest path using Dijkstra and Lagrangian heuristic. The proposed polynomial time algorithm [Complexity $O(n \times \log(d_{max}/m))$, where n is the number of candidate relay nodes, m is the number of edges and d_{max} is the pre-specified delay bound] provides closed to optimal solution (in most of the cases the optimality gap is within 10%). We also compare our algorithm with other existing polynomial time algorithms and demonstrate the efficiency of our algorithm in terms of solution strength as well as the CPU Time.

Constrained resource assignments: Fast algorithms and applications in wireless networks

Resource assignment problems occur in a vast variety of applications, from scheduling problems over image recognition to communication networks, just to name a few. While in some of the applications an assignment of the resources may be needed only once, often the assignment has to be computed more often for different scenarios. In that case it is essential that the assignments can be computed very fast. Moreover, implementing different assignments in different scenarios may come with a certain cost for the reconfiguration of the system.

In this paper we consider the problem of determining optimal assignments sequentially over a given time horizon, where consecutive assignments are coupled by constraints which control the cost of reconfiguration. We develop fast approximation and online algorithms for this problem with provable approximation guarantees and competitive ratios.

Finally, we establish the applicability of our model and our algorithms in the context of OFDMA wireless networks, finding a significant performance improvement for the total bandwidth of the system using our algorithms.

Variational analysis

The spectral abscissa and radius are respectively the largest of the real parts and the largest of the moduli of the eigenvalues of a matrix. They are non-Lipschitz, nonconvex functions on the space of complex $n \times n$ matrices. To motivate our work, we briefly discuss a spectral radius optimization problem for parametrized matrices arising from subdivision surfaces, a method to construct smooth surfaces from polygonal meshes used in computer graphics and geometric modeling. In this case, we find that the minimizing matrix is both defective and derogatory: the Jordan form of the optimal matrix has four blocks corresponding to the eigenvalue zero, with sizes 3, 4, 2, and 2. Generally, spectral functions are not Clarke regular at such points in matrix space, and hence their subdifferential analysis is complicated. By refining results of Burke and Overton, we address the simplest such case, presenting a complete characterization of the Mordukhovich subgradients of the spectral abscissa for a matrix with an eigenvalue having two Jordan blocks of size 2 and 1.

On a constructive approach to optimality conditions for convex SIP problems with polyhedral index sets

In the paper, we consider a problem of convex Semi-Infinite Programming with multi-dimensional index set in the form of a multimimensional polyhedron. In study of these problems we apply the approach suggested in our recent paper [Kost-Tchernia] and based on the notions of immune indices and their immobility orders. For this problem, we formulate explicit optimality conditions that do not use constraint qualifications and have the form of criterion. The comparison with other known optimality conditions is provided.

On the subdifferential regularity of functions of roots of polynomials

Eigenvalue optimization problems arise in the control of continuous and discrete time dynamical systems. The spectral abscissa and spectral radius are examples of functions of eigenvalues, or spectral functions, connected to these problems. A related class of functions are polynomial root functions. In 2001, Burke and Overton showed that the abscissa mapping on polynomials is subdifferentially regular on the monic polynomials of degree n. We extend this result to the class of max polynomial root functions which includes both the polynomial abscissa and the polynomial radius mappings. The approach to the computation of the subgradient simplifies that given by Burke and Overton and provides new insight into the variational properties of these functions.
Location and routing problems
Chair Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Tim Nonner, IBM Research – Zurich

Polynomial-time approximation schemes for shortest path with alternatives

Consider the generic situation that we have to select k alternatives from a given ground set, where each element in the ground set has a random arrival time and cost. Once we have done our selection, we will greedily select the first arriving alternative, and the total cost is the time we had to wait for this alternative plus its random cost. Our motivation to study this problem comes from public transport, where each element in the ground set might correspond to a bus or train, and the user has to select, according to greedily select the first option from a given set of alternatives at each stop. First, we give an $O(n \log n + d^2)$ time algorithm for exponentially distributed arrival times, where n is the number of stops in the transportation network and d is the maximal number of buses or trains leaving any stop, making this approach practicable for large networks if d is relatively small, and second, for uniformly distributed arrival times, we give a PTAS under reasonable assumptions. These results are obtained by combining methods from low-rank quasi-concave optimization with fractional programming. We finally complement them by showing that general distributions are NP-hard.

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)

The school bus problem

The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus relative to the shortest distance from the child’s home to the school does not exceed a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. We also consider the variant where we have a fixed number of buses and the goal is to minimize the maximum regret. We present logarithmic factor approximation algorithms as well as constant factor approximations for the special case where all children and the school are located on a fixed tree.

Artem Panin, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

On approximability some location and pricing problems

We consider location and pricing problems based on different pricing strategies: mill, uniform and discriminatory pricing. We suggest the bilevel mixed integer formulations. We prove that these problems are NP-hard in the strong sense. We present the polynomial time polyapproximate algorithms for these problems.

Adrian Bock, TU Berlin (with Elyet Grant, Jochen Kürmern, Laura Santia)
Combinatorial optimization

Distances in graphs
Organizer/Chair Christian Wulff-Nilsen, University of Southern Denmark
Glencora Borndølle, Oregon State University - Invited Session
Rachit Agarwal, University of Illinois at Urbana-Champaign

The space-stretch-time tradeoff in distance oracles
We present distance oracles for weighted undirected graphs that return distances of stretch 2 and less. For the realistic case of sparse graphs, our distance oracle exhibit the three-way trade-off between space, stretch and query time — a phenomenon that does not occur in dense graphs. In particular, for any positive integer t and for any \(1 < n \leq m \), our distance oracle is of size \(O(m + n^t) \) and returns stretch \((1 + 2/(t+1)) \) distances in time \(O((\alpha \Delta)^1) \), where \(\Delta = 2m/n \) is the average degree of the graph. The query time can be further reduced to \(O((\alpha + \Delta)^1) \) at the expense of a small additive stretch.

Consider, for example, the realistic case of graphs with \(m = \tilde{O}(n) \) edges and fix the query time to be \(O(n^{2/3}) \). Our distance oracles, then, return stretch \(22/3 \) distances using space \(O(n^{5/3}) \) and stretch 5/3 distances using space \(O(n^{5/3}) \).

Christian Wulff-Nilsen, University of Southern Denmark

Approximate distance oracles with improved preprocessing and query time
Given an undirected graph \(G \) with \(m \) edges, \(n \) vertices, and non-negative edge weights, and given an integer \(k \geq 2 \), we show that a \((2k - 1) \)-approximate distance oracle for \(G \) of size \(O(kn^{1+1/k}) \) and with \(O(\log k) \) query time can be constructed in \(O(\min\{kmn^{1/k}/\sqrt{k}, km + kn^{1+1/k}\}) \) time for some constant \(c \). This simultaneously improves the \(O(kn^{1+1/k}) \) preprocessing and the \(O(k) \) query time of Thorup and Zwick. For any \(0 < \epsilon \leq 1 \), we also give an oracle of size \(O(kn^{1+1/k}) \) that answers \((1 + \epsilon k) \)-approximate distance queries in \(O(1/\epsilon) \) time. At the cost of a \(k \)-factor in size, this improves the \(O(2k^n) \) approximation achieved by the constant query time oracle of Mendel and Naor and approaches the best tradeoff between size and stretch, implied by a widely believed girth conjecture of Erdős. We can match the \(O(n^{1+1/k}) \) size bound of Mendel and Naor for any constant \(\epsilon > 0 \) and \(k = O(\log n/\log \log n) \).

Liam Roditty, Bar-Ilan University (with Mihai Patrascu, Mikkel Thorup)

A survey on distance oracles
Computing distances is one of the most fundamental computational problems. In many applications we are not really interested in all distances, we want the ability to retrieve them quickly. Thorup and Zwick [2005] initiated the theoretical study of data structures capable of representing approximated distances efficiently, in terms of space requirement and query time. Given an \(n \)-vertex weighted undirected graph with \(m \) edges, they show that for any integer \(k \geq 1 \) it is possible to preprocess the graph in \(O(nm^{1/k}) \) time and generate a compact data structure of size \(O(n^{1+1/k}) \). For each pair of vertices, it is then possible to retrieve a \(k \)-approximate distance in \(O(k) \) time. Recently, Patrascu and Roditty [2010] broke the long-standing theoretical status-quo in the field of distance oracles. They obtained, in particular, a distance oracle for unweighted graphs of size \(O(n^{5/3}) \) that can supply in \(O(1) \) time an estimated distance in the range \([d, 2d + 1] \), where \(d \) is the actual distance between the two vertices queried.

Liun Roditty, Bar-Ilan University (with Mihai Patrascu, Mikkel Thorup)

Combinatorial optimization

Scheduling II
Chair Alexander Tson, TÜ Berlin / Zuse Institute Berlin (ZIB)

Matthew Oster, Rutgers University (with Jonathan Eckstein)
A branch and cut algorithm for solving capacitated max \(k \)-cut with an application in scheduling
We model the scheduling of a multi-track conference as a capacitated version of the combinatorial optimization problem known as Maximum \(k \)-Cut (MKC). We solve this NP-hard problem to optimality with a branch-and-bound framework equipped with a semidefinite programming relaxation of MKC, enhanced with triangle and clique cuts, as well as new problem-specific cuts (e.g., what we call star-capacity cuts, total-capacity cuts, etc.). We also introduce a heuristic for generating feasible solutions at most tree nodes. Test results for small to moderate-sized conferences will be discussed for both serial and parallel implementations of our algorithm.

Alexander Tson, TÜ Berlin / Zuse Institute Berlin (ZIB)

Combinatorial optimization

Optimization of the ISMP 2012 schedule
Your favourite sessions overlap at the same time, the lecture halls are overcrowded or your talk just wasn’t added to a suitable date-slot? Assignment-problems like that may occur in conference planning like this year’s ISMP. To avoid such incidents hopefully we developed a MIP with multi-criteria objective to handle several conflicts like an even offering of different clusters, room-capacity-requirements and prevention of time-dependant-crossovers of popular talks. Therefore we integrated a priority model for the talks to evaluate high visitor rates. We also used an approach to relax the original assignment problem and introduce a heuristic to solve the master problem from the obtained relaxed solution.

Walter Kern, Universität Twente
Cooperative games and fractional programming
Straightforward analysis of core-related optimization problems leads to interesting fractional versions of standard (combinatorial) opti-
A primal-dual algorithm for weighted abstract cut packing

Hoffman and Schwartz developed the Lattice Polyhedron model and proved that it is totally dual integral (TDI), and so has integral optimal solutions. The model generalizes many important combinatorial optimization problems such as polymatroid intersection, cut covering polyhedra, min cost aboressences, etc., but has lacked a combinatorial algorithm. The problem can be seen as the blocking dual of Hoffman’s Weighted Abstract Flow (WAF) model, or as an abstraction of an ordinal Shortest Path and its cut packing dual, so we call it Weighted Abstract Cut Packing (WACP). We develop the first combinatorial algorithm for WACP, based on the Primal-Dual Algorithm framework. The framework is similar to that used by Martens and McCormick for WAF, in that both algorithms depend on a relaxation by a scalar parameter, and then need to solve an unweighted “restricted” subproblem. The WACP subroutine uses an oracle to solve a restricted abstract cut packing/shortest path subproblem using greedy cut packing, breadth-first search, and an update that achieves complementary slackness. This plus a standard scaling technique yields a polynomial combinatorial algorithm.
lutions of many optimization problems cannot be implemented directly due to (i) the deliberate simplification of the model, and/or (ii) human factors and technological reasons. We propose a new alternative paradigm for treating issues of implementation that we call “implementation robustness.” This paradigm is applied to the setting of optimizing the fabricable design of photonic crystals with large band-gaps. Such designs enable wide variabilities in the interaction with and control of mechanical and electromagnetic waves. We present and use an algorithm based on convex conic optimization to design fabricable two- dimensional photonic crystals with large absolute band gaps. Our modeling methodology yields a series of finite-dimensional eigenvalue optimization problems that are large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigen-subspaces, we reduce the problem to a sequence of small-scale SDPs for which modern SDP solvers are successfully applied.

Tomohiko Mitsuura, Kagawa University (with Makoto Yamashita)

SDP relaxations for the concave cost transportation problem

We present a hierarchy of semidefinite programming (SDP) relaxations for solving the concave cost transportation problem (CCTP) with p suppliers and q demanders. The key idea of the relaxation methods is in the change of variables to CCTPs, and due to this, we can construct SDP relaxations whose matrix variables depend on \(\min(p, q) \) at each relaxation order. The sequence of optimal values of SDP relaxations converges to the global minimum of the CCTP as the relaxation order goes to infinity. We show the performance of the relaxation methods through numerical experiments.

Houdou Li, University of Southampton

Computing the nearest Euclidean distance matrix

The Nearest Euclidean distance matrix problem (NEDM) is a fundamental computational problem in applications such as multidimensional scaling and molecular conformation from nuclear magnetic resonance data in computational chemistry. Especially in the latter application, the problem is often a large scale with the number of atoms ranging from a few hundreds to a few thousands. In this paper, we introduce a semismooth Newton method that solves the dual problem of NEDM. We prove that the method is quadratically convergent. We then present an application of the Newton method to NEDM with \(H \)-weights via majorization and an accelerated proximal gradient scheme. We demonstrate the superior performance of the Newton method over existing methods including the latest quadratic semi-definite programming solver. This research also opens a new avenue towards efficient solution methods for the molecular embedding problem.

Bin Wu, National University of Singapore (with Chao Ding, Defeng Sun, Kim-Chuan Toh)

The Moreau-Yosida regularization of the Ky Fan \(k \)-norm related functions

Matrix optimization problems (MOPs) involving the Ky Fan \(k \)-norm arise frequently in diverse fields such as matrix norm approximation, graph theory, and so on. In order to apply the proximal point algorithms to solve large scale MOPs involving the Ky Fan \(k \)-norm, we need to understand the first and second order properties of the Moreau-Yosida regularization of the Ky Fan first\(k \)-norm function and the indicator function of its epigraph. As an initial step, we first study the counterparts of the vector \(k \)-norm related functions, including the metric projectors over the dual vector \(k \)-norm ball and the vector \(k \)-norm epigraph, and their directional derivatives and Fréchet differentiability. We then use these results to study the corresponding properties for the Moreau-Yosida regularization of the Ky Fan \(k \)-norm epigraph indicator function.

Renato Monteiro, Georgia Tech (with Sören Stuper)

An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods

We present an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the A-HPE method. Theoretical results on convergence and complexity bounds are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are described in the context of a structured convex optimization problem whose objective function consists of the sum of a smooth convex function and an extended real-valued non-smooth convex function. In the first implementation, a generalization of a variant of Nesterov’s method is obtained for the case where the smooth component of the objective function has Lipschitz continuous gradient. In the second one, an accelerated Newton proximal extragradient (A-NPE) method is obtained for the case where the smooth component of the objective function has Lipschitz continuous Hessian. It is shown that the A-NPE method has a \(O(1/k^2) \) convergence rate, which improves upon the \(O(1/k^2) \) convergence rate bound for another accelerated Newton-type method presented by Nesterov.

An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods

We present an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the A-HPE method. Theoretical results on convergence and complexity bounds are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are described in the context of a structured convex optimization problem whose objective function consists of the sum of a smooth convex function and an extended real-valued non-smooth convex function. In the first implementation, a generalization of a variant of Nesterov’s method is obtained for the case where the smooth component of the objective function has Lipschitz continuous gradient. In the second one, an accelerated Newton proximal extragradient (A-NPE) method is obtained for the case where the smooth component of the objective function has Lipschitz continuous Hessian. It is shown that the A-NPE method has a \(O(1/k^2) \) convergence rate, which improves upon the \(O(1/k^2) \) convergence rate bound for another accelerated Newton-type method presented by Nesterov.

Roberto Castaño Lozano, Swedish Institute of Computer Science (SICS) (with Mats Carlsson, Frej Drehgorn, Christian Schulte)

Robust code generation using constraint programming

Code generation in a compiler transforms an intermediate program representation into assembly code for a particular architecture. It has tremendous impact on the resulting code: optimal assembly code can be several times more efficient than naive assembly code. However, optimization techniques are typically not used for code generation as they are considered as non-scalable. Instead, traditional optimizing compilers compromise code quality by addressing code generation with heuristic algorithms and phase decomposition.

Two central phases in code generation are instruction scheduling and register allocation which are strongly interdependent. In this presentation, we introduce combinatorial models that naturally capture both phases. These models are easier to analyze and reuse than traditional heuristic algorithms. Then, we present an integrated model that captures the dependencies between phases and hence enables the generation of possibly optimal code. Finally, we illustrate why constraint programming with features such as flexible search and global constraints is a good candidate for robustly solving code generation problems.

Bin Wu, National University of Singapore (with Chao Ding, Defeng Sun, Kim-Chuan Toh)

The Moreau-Yosida regularization of the Ky Fan \(k \)-norm related functions

Matrix optimization problems (MOPs) involving the Ky Fan \(k \)-norm arise frequently in diverse fields such as matrix norm approximation, graph theory, and so on. In order to apply the proximal point algorithms to solve large scale MOPs involving the Ky Fan \(k \)-norm, we need to understand the first and second order properties of the Moreau-Yosida regularization of the Ky Fan \(k \)-norm function and the indicator function of its epigraph. As an initial step, we first study the counterparts of the vector \(k \)-norm related functions, including the metric projectors over the dual vector \(k \)-norm ball and the vector \(k \)-norm epigraph, and their directional derivatives and Fréchet differentiability. We then use these results to study the corresponding properties for the Moreau-Yosida regularization of the Ky Fan \(k \)-norm epigraph indicator function.

Renato Monteiro, Georgia Tech (with Sören Stuper)

An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods

We present an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the A-HPE method. Theoretical results on convergence and complexity bounds are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are described in the context of a structured convex optimization problem whose objective function consists of the sum of a smooth convex function and an extended real-valued non-smooth convex function. In the first implementation, a generalization of a variant of Nesterov’s method is obtained for the case where the smooth component of the objective function has Lipschitz continuous gradient. In the second one, an accelerated Newton proximal extragradient (A-NPE) method is obtained for the case where the smooth component of the objective function has Lipschitz continuous Hessian. It is shown that the A-NPE method has a \(O(1/k^2) \) convergence rate, which improves upon the \(O(1/k^2) \) convergence rate bound for another accelerated Newton-type method presented by Nesterov.
asset. Risk measures play a key role when defining required capital for a financial institution. We address the three critical questions: when is required capital a well-defined number for any financial position? When is required capital a continuous function of the financial position? Can the eligible asset be chosen in such a way that for every financial position the corresponding required capital is lower than any other asset had been chosen? Our discussion is not limited to convex or coherent acceptance sets and this generality opens up the field for applications to acceptance sets based on Value-at-Risk and on Tail Value-at-Risk.

Cosimo-Andrea Munari, ETH Zurich (with Walter Farkas, Pablo Koch-Medina)

Risk measures and capital requirements with multiple eligible assets

We discuss risk measures associated with general acceptance sets for financial positions. Such risk measures represent the cost expressed as the minimum additional capital amount that, when invested in a pre-specified set of eligible assets, makes an unacceptable position acceptable. In contrast to earlier papers where the attention was focused on a single eligible asset, here we allow for multiple eligible assets. We show that the multiple eligible asset case can be reduced to the single asset case, provided that the set of acceptable positions can be properly enlarged. This is the case when it is not possible to make every financial position acceptable by adding a zero-cost portfolio of eligible assets. The results here simplify and generalize results of Fritelli and Scandolo from 2006 and of Artzner, Delbaen and Koch-Medina from 2009. However, in contrast to the literature, we do not impose any coherence or convexity requirements on the acceptance sets.

William Pouliot, University of Birmingham

Value-at-Risk

The implementation of appropriate statistical techniques (back-testing) for monitoring conditional VaR models is the mechanism used by financial institutions to determine the severity of the departures of the VaR model from market results and, subsequently the tool used by regulators to determine the penalties imposed for inadequate risk models. So far, however, there has been no attempt to determine the timing of this rejection and with it to obtain some guidance regarding the cause of failure in reporting an appropriate VaR. This paper corrects this by proposing U-statistic type processes that extend standard CUSUM statistics widely employed for change-point detection. In contrast to CUSUM statistics these new tests are indexed by certain weight functions that enhance the statistical power to detect the timing of the market risk model failure. These tests are robust to estimation risk and can be devised to be very sensitive to detection of market failure produced early in the out-of-sample evaluation period, in which standard methods usually fail due to the absence of data.

Mon.3.H 2053

Algorithms and relaxations for nonconvex optimization Problems

Bissan Ghaddar, Department of National Defence (with Juan Vera)

A global optimization approach for binary polynomial programs

In this talk, we present branch-and-dig, an algorithm to find global solutions for binary polynomial programming problems. Inequality generating techniques based on lift-and-project relaxations are developed for binary polynomial problems which can help speed up the branch-and-bound process by improving the bounds at each node, thus reducing the number of nodes of the tree. Computational results for small test problems of degree three are given. In the computational study, we investigate the performance of different branching rules and the impact of the dynamic inequality generation scheme.

Takahito Kuno, University of Tokyo (with Tomomu Ishibashi)

A class of convergent subdivision strategies in the conical algorithm for concave minimization

We present a new proof of the convergence of the conical algorithm for concave minimization under a pure ω-subdivision strategy. In 1991, Tuy showed that the conical algorithm with ω-subdivision is convergent if a certain kind of nondegeneracy holds for sequences of nested cones generated in the process of the algorithm. Although the convergence has already been proven in other ways, it still remains an open question whether the sequences are nondegenerate or not. In this talk, we introduce a weaker condition of nondegeneracy named pseudo-nondegeneracy, and show that the conical algorithm with ω-subdivision converges as long as the pseudo-nondegeneracy holds for sequences of nested cones generated by the algorithm. We also show that every sequence generated by the algorithm is pseudo-nondegenerate. The pseudo-nondegeneracy is not only a useful condition for proving the convergence, but suggests a possible class of convergent subdivision strategies.

Achim Wichtung, Massachusetts Institute of Technology (with Paul Barton)

Improving relaxations of implicit functions

A factorable function \(f: Y \to R^n, Y \subset R^n \) can be represented as a DAG. While it is natural to consider interval extensions of factorable functions, the DAG representation has been shown to also enable the backward propagation of interval bounds on the function’s range, i.e., to provide an enclosure of the intersection of \(Y \) with the function’s preimage. One application is to eliminate points in the domain where no solution of \(f(y) = 0 \) exists. This idea can be extended to the case of constructing convex relaxations of implicit functions. When \(n > m \), it is possible to partition \(Y \) into \(X \subset R^m \) and \(P \subset R^{n-m} \). Assuming that \(X \) and \(P \) are intervals and that there exists a unique \(x: P \to X \) such that \(f(x(p)) = 0 \), it is then possible to construct relaxations of the implicit function \(x \) using the DAG representation of \(f \), backward propagation and generalized McCormick relaxation theory. These relaxations can be used to initialize other methods that improve relaxations of implicit functions iteratively.
SCIP preprocessing for MILPs arising in supply chain management

Supply Chain Management (SCM) deals with the combination of procurement, production, storage, transport and delivery of commodities. Problems of this kind occur in different industry branches. Since the integrated planning of these processes contain a high potential for optimization, it is of great importance for the efficiency of a related company. The method of choice to find optimal solutions for SCM problems is mixed integer programming. However, there are big challenges to overcome due to the very detailed and therefore large models. One way to reduce the large models is to perform an extensive preprocessing. We show preprocessing algorithms which decisively help reducing and solving the problems. The implementations of the preprocessing algorithms are done within the non-commercial mixed integer programming solver SCIP.

Philipp Christophel, SAS Institute Inc. (with Amar Narisetty, Yan Xu)

Research topics of the SAS MILP solver development team

This talk will give an overview of current research interests of the SAS MILP solver development team. The focus will be on the use and customization of simplex algorithms inside MILP solvers. Other topics will be branching, cutting planes and primal heuristics.

Gerald Gamrath, Zuse Institute Berlin

The SCIP Optimization Suite 3.0 - It’s all in the bag!

We present the latest release of the SCIP Optimization Suite, a tool for modeling and solving optimization problems. It consists of the modeling language ZIMPL, the LP solver SoPlex, and the constraint integer programming framework SCIP.

Furthermore, SCIP is able to solve a much wider range of optimization problems including pseudo-boolean optimization, scheduling, and non-convex MINLP. Its plugin-based design allows to extend the framework to solve even more different kinds of problems and to customize the optimization process.

We report on current developments and new features of the SCIP Optimization Suite 3.0 release, including enhanced MINLP support, a framework to parallelize SCIP and the new exact solving capabilities for MILPs.

Mon.3 H 1058 I
Organizer/Chair Thorsten Koch, ZIB - Invited Session

Dieter Weninger, FAU-Erlangen (with Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Miltenberger)

Implementations & software

Mon.3 H 2033
MLP formulations II
Chair Rui Oliveira, ISTAD

Stefan Schneider, FAU Erlangen-Nürnberg (with Alexander Martin)

Optimizing life cycle costs for buildings

Life cycle oriented optimization of infrastructures is concerned with the automatic planning of buildings, plants etc from the first line of drawing up to the final polishing of the windows. Turning this into a mathematical model results in a very complex problem. There are a vast number of influencing factors, which have to be considered and which have a strong impact on the final solutions. In the case of our application scenario, namely public buildings, this leads to huge mixed-integer linear programs. To develop solution methods for the application we decompose the problem into subproblems, which stay hard to solve individually too. In the buildings scenario we present the room allocation problem and take a closer look at different aspects like the planning of escape routes which we formulate as a graph theoretical problem and analyze its complexity. Moreover we present a mathematical model and solution methods for the complete room allocation problem.

Ali Fattahi, KOC University (with Erfan Sadeqi Azer, Hossein Shams Shemirani, Metin Turkyay)

A novel integer programming formulation for U-shaped line balancing problems type-1

U-shaped production lines are regarded as an efficient configuration in Just-in-Time manufacturing and attract the attention from academia and industry. Balancing the workload in these lines is an unsolved problem and significant research has been done within the past two decades. So far, only a few optimization models have been developed and researchers and practitioners use these models to solve different variants of the balancing problem in U-shaped production lines.

We present a novel integer programming formulation for U-shaped line balancing problems (type-1), where the cycle time is given and the aim is to minimize the number of utilized stations. This new formulation has been tested on all of the benchmarking problems in literature and a paired t-test is also applied to provide a comparative analysis with the existing models. The analysis of the results shows that this novel integer programming formulation leads to significant improvement over the other models.

Rui Oliveira, ISTAD (with Ana Catana)

Models for school networks planning

School network planning can be formulated as a multi-facility location problem, and these formulations are reviewed in this paper. In practice, however, decisions on where to build new schools or to close/convert existing education facilities have to take into account numerous conflicting factors of different nature [social, political, pedagogical, financial, etc.] and various stakeholders with contrasting views on points and objectives. This leads to a fluid decision context for which such a normative approach has been recognized to have limitations to effective decision support. An alternative framework that nicely fits the ill-structured nature of the decision context, adopting a more descriptive/prescriptive approach, was developed for school network planning at municipal level in Portugal and is reported in this paper. This includes education demand forecasting based on demographic projection models, coupled with strategic options derived from urban and regional plans, leading to geographic-based education services demand-supply balancing analysis.

Mon.3 H 1063
Organizer/Chair Andrea Logli, University of Bolonga, Robert Weismantel, ETH Zürich - Invited Session

Giacomo Nannicini, Singapore University of Technology and Design (with Gérard Cornuéjols, Francois Margot)

On the safety of Gomory cut generators

Gomory mixed-integer cuts are one of the key components in branch-and-cut solvers for mixed-integer linear programs. The textbook formula for generating these cuts is not used directly in open-source and commercial software due to the limited numerical precision of the computations: Additional steps are performed to avoid the generation of invalid cuts. This paper studies the impact of some of these steps on the safety of Gomory mixed-integer cut generators. As the generation of invalid cuts is a relatively rare event, the experimental design for this study is particularly important. We propose an experimental setup that allows statistically significant comparisons of generators. We also propose a parameter optimization algorithm and use it to find a Gomory mixed-integer cut generator that is as safe as a benchmark cut generator from a commercial solver even though it rejects much fewer cuts.

Utz-Uwe Haus, IFOR, ETH Zürich (with Frank Pfeuffer)

Split cuts for robust and generalized mixed-integer programming

Robust Mixed-Integer optimization problems are conventionally solved by reformulation as non-robust problems. We propose a direct method to separate split cuts for robust mixed-integer programs with polyhedral uncertainty sets, for both worst-case as well as best-case robustness. The method generalizes the well-known cutting plane procedure of Balas. Computational experiments show that applying cutting planes directly is favorable to the reformulation approach. It is thus viable to solve robust MIP problems in a branch-and-cut framework using a Generalized Linear Programming oracle.

Oktay Göğüşik, IBM Research (with Sanjeev Dass, Neil Dobbs, Tomasz Nowicki, Grzegorz Swarczcz)

Lattice-free sets, branching disjunctions, and mixed-integer programming

Lattice-free sets, branching disjunctions, and mixed-integer programming

We study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and structured disjunctive cuts, especially the t-branch split cuts introduced by Li and Richard (2008). By analyzing n-dimensional lattice-free sets, we prove that every facet-defining inequality of the convex hull of a mixed-integer polyhedron with n integer variables is a t-branch split cut for some positive integer t. Moreover, this number t does not depend on the data defining the polyhedral set and is bounded by a function of the dimension n only. We use this result to give a finitely convergent cutting-plane algorithm to solve mixed-integer programs. We also show that the minimum value t, for which all facets of polyhedral mixed-integer sets with n integer variables can be expressed as t-branch split cuts, grows exponentially with n. In particular, when n = 3, we observe that not all facet-defining inequalities are 6-branch split cuts.
and some results from our tests. Our model differs from others used in the brachytherapy field by more directly including dosimetric indices.

Rasmus Bokrantz, KTH Royal Institute of Technology / RaySearch Laboratories
Multi-criteria optimization for volumetric-modulated arc therapy by convex decompositions
Volumetric-modulated arc therapy (VMAT) is a technique for rotational radiation therapy that has gained widespread clinical use due to its ability of improving delivery efficiency without compromising treatment quality. Treatment planning for VMAT is a challenging multi-criteria decision problem due to a high-dimensional trade-off between tumor coverage and sparing of healthy structures in the vicinity of the target volume. Here, an approach to multi-criteria VMAT optimization is presented that relies on two convex decompositions of an initially nonconvex problem formulation. An infeasible relaxation with the elements of the energy fluence vector as variables is first used to define a global trade-off between conflicting objectives. The solution to the relaxed problem is subsequently converted into a deliverable VMAT plan. A feasible restriction with segment weights as variables is finally used to evaluate deliverable solutions in its neighborhood. The practical value of the presented method is discussed in view of comparative results with a commercially available single-objective method.

Laurenz Göllmann, Münster - University of Applied Sciences [with Helmut Maurer]
Combination therapy considered as a multiple delayed optimal control problem
We consider optimal control problems with multiple time delays in state and control and present an enhanced form of Pontryagin’s minimum principle as well as a numerical discretization method. Let $x(t) \in \mathbb{R}^n$ denote the state and $u(t) \in \mathbb{R}^m$ denote the control of a system at time t. Time delays for x and u are given by a vector (r_1, \ldots, r_q). The problem for two delays has been investigated earlier in [Paparrizos, 2009]. We now present a generalization in form of necessary conditions for the problem with multiple delays. We finally optimize a combination therapy by a model of the innate immune response with a delayed antibody production and a retarded drug action.

EPSA was originally developed by Paparrizos for the assignment problem. The key idea behind EPSA is that making steps in directions that pass others. This study calculates reduced total travel time by expressing the check-pattern theory and empirical literature on factors that explain firm growth, the study identifies business competencies, derived through inter-firm alliances, as determinants of enterprise performance. The study establishes that the size of the firm influences the choice of business association among manufacturing enterprises in Nigeria. It is further noted that the decision to join a business association is positively related to the ages of the entrepreneur and enterprise. The study recommends incentive mechanisms that encourage business associations among small enterprise.

Hidetoshi Miura, Nanzan University (with Toshio Nemoto)
Operations research approach to enhancing enterprise through alliances: A case study of Mowe Town, Ogun State, Nigeria
Small firm sub-sector has the potential to reduce poverty and unemployment in Nigeria. However, in the face of global competition, market uncertainties and rapid technological changes, it is necessary to assist firms, particularly small enterprise to access information that can build their business competencies to create income and employment generation opportunities. Through in-depth recourse to existing theories and empirical literature on factors that explain firm growth, the study identifies business competencies, derived through inter-firm alliances, as determinants of enterprise performance. The study establishes that the size of the firm influences the choice of business association among manufacturing enterprises in Nigeria. It is further noted that the decision to join a business association is positively related to the ages of the entrepreneur and enterprise. The study recommends incentive mechanisms that encourage business associations among small enterprise.

Joshua Magbagbeola, Joseph Ajas Balalaula University, Kogi-Akajiwa [with Samuel Awoyinji, Eunice Magbagbeola]
Operations research approach to enhancing enterprise through alliances: A case study of Mowe Town, Ogun State, Nigeria
Small firm sub-sector has the potential to reduce poverty and unemployment in Nigeria. However, in the face of global competition, market uncertainties and rapid technological changes, it is necessary to assist firms, particularly small enterprise to access information that can build their business competencies to create income and employment generation opportunities. Through in-depth recourse to existing theories and empirical literature on factors that explain firm growth, the study identifies business competencies, derived through inter-firm alliances, as determinants of enterprise performance. The study establishes that the size of the firm influences the choice of business association among manufacturing enterprises in Nigeria. It is further noted that the decision to join a business association is positively related to the ages of the entrepreneur and enterprise. The study recommends incentive mechanisms that encourage business associations among small enterprise.

Hidetoshi Miura, Nanzan University (with Toshio Nemoto)
Operations research approach to enhancing enterprise through alliances: A case study of Mowe Town, Ogun State, Nigeria
Small firm sub-sector has the potential to reduce poverty and unemployment in Nigeria. However, in the face of global competition, market uncertainties and rapid technological changes, it is necessary to assist firms, particularly small enterprise to access information that can build their business competencies to create income and employment generation opportunities. Through in-depth recourse to existing theories and empirical literature on factors that explain firm growth, the study identifies business competencies, derived through inter-firm alliances, as determinants of enterprise performance. The study establishes that the size of the firm influences the choice of business association among manufacturing enterprises in Nigeria. It is further noted that the decision to join a business association is positively related to the ages of the entrepreneur and enterprise. The study recommends incentive mechanisms that encourage business associations among small enterprise.

Hidetoshi Miura, Nanzan University (with Toshio Nemoto)
Operations research approach to enhancing enterprise through alliances: A case study of Mowe Town, Ogun State, Nigeria
Small firm sub-sector has the potential to reduce poverty and unemployment in Nigeria. However, in the face of global competition, market uncertainties and rapid technological changes, it is necessary to assist firms, particularly small enterprise to access information that can build their business competencies to create income and employment generation opportunities. Through in-depth recourse to existing theories and empirical literature on factors that explain firm growth, the study identifies business competencies, derived through inter-firm alliances, as determinants of enterprise performance. The study establishes that the size of the firm influences the choice of business association among manufacturing enterprises in Nigeria. It is further noted that the decision to join a business association is positively related to the ages of the entrepreneur and enterprise. The study recommends incentive mechanisms that encourage business associations among small enterprise.
scribe the optimal limited-service stop patterns and the optimal num-
ber of stops of three systems.

Paola Pellegrafti, IFSTTAR, Univ. Lille Nord de France (with Gregory Mariére, Joaquin Rodriguez)

Exact models for the real time railway traffic management problem: tackling perturbed traffic considering real junction details

A railway traffic management problem appear when trains are de-
layed: the originally planned routing and scheduling become infeasible. This problem must be solved in real time (i.e., in a short time) by finding a rerouting and rescheduling of trains on a network. Solution cost is assessed in terms of either punctuality or fluidification. In the literature, this problem, known as “real time railway traffic management problem”, is typically tackled with heuristic algorithms. Opti-
mal approaches appear only when few network details are considered. We propose two mixed-integer linear programming models which con-
sider real railway junctions details. They differ in the computation of so-
lution cost. We test the two models on real instances representing three complex junctions: Pierrefitte-Gonesse (France), Lille Flandres station (France), and Utrecht Den Bosh line (Netherlands). In all cases, computa-
tion time is very short. Interestingly, different junctions are differently complex for the two models. We will devote further research to the ex-
planation of these differences, and to the identification of effective valid inequalities.

Mon.3.H 0111
Network problems
Chair Kwong Meng Teo, National University of Singapore

Thomas Kalinowski, Universität Rostock (with Natasha Boland, Hamish Witterer, Lanbo Zheng)

Scheduling arc outages in networks to maximize total flow over time

We present a problem arising in the annual maintenance planning process for the Hunter Valley Coal Chain which has the potential to be applied in a variety of transportation network contexts. The problem consists of sending flow from a source s to a sink t in each time period $1, 2, ..., T$. An additional difficulty comes from the fact that some arcs in the network have associated jobs that have to be scheduled and during processing of a job the corresponding arc is not available. In the talk we discuss some complexity results (NP-hardness of the single node case, efficiently solvable special cases), a MIP model and some computational results on real world data sets.

Daniel Ferber, Petrobras – Petroleo Brasileiro S/A

Incorporating temporal in-transit inventory into linear programming network flow models

We consider a network flow model to support planning the pipeline supply chain of oil refined commodities. The traditional supply chain models discussed in literature do not regard temporal aspects of in-
transit inventory. Hence, they may underestimate the utilization of pipelines and risk proposing impracticable solutions. We take into ac-
count a multi-product, multi-period network with production, demand and storage on facilities, through a pure linear programming model. For a better approximation of pipeline utilization rates, we incorporate temporal aspects of transit in-transit inventory on their path between facilities. Without resorting to integer variables, we extend the model to estimate on each time slot dynamic flow capacities which depend on the current in-transit inventory configuration. Further, pipelines are allowed to reverse their flow. A result for a real world industry scenario is compared in order to attest benefits of our model.

Kwong Meng Teo, National University of Singapore (with Trung Hieu Tran)

Solving network flow problems with general non-separable convex cost using a two-phase gradient projection algorithm

Network flow problems are often encountered in practical applica-
tions such as multi-commodity flows, traffic assignment and telecommu-
nications problems. Simpler problems such as those with quadratic costs are often solved using general solvers such as CPLEX, while more realistic but difficult ones with generalized non-separable convex costs would require specialized network optimization algorithms where speed of convergence and problem size becomes challenging issues in prac-
tice. We propose a two-phase gradient projection algorithm to bridge this gap. The proposed algorithm is designed to address the weak-
nesses of traditional gradient projection approaches reported in the lit-
erature, including choice of step size, speed of convergence and ease of implementation. Furthermore, the algorithm has been implemented as a toolbox riding on general solvers such as CPLEX for easy adop-
tion and to handle industrial size problems. We will evaluate and compare the performance of the proposed algorithm with other approaches un-
der common network flow scenarios such as (i) integral or continuous flows and (ii) explicit or non-explicit objective.

Mon.3.H 1029
Multi-objective optimization
Organizer Chair Emilio Carrizosa, Universidad de Sevilla - Invited Session

Antonio Flores-Tlacuahuac, Universidad Iberoamericana (with Morales Pilar, Zavala Victor)

An utopia-tracking approach to multiobjective predictive control

We propose a multiobjective strategy for model predictive control (MPC) that we term utopia-tracking MPC. The controller minimizes, in some norm, the distance of its cost vector to that of the unreachable steady-state utopia point. Stability is ensured by using a terminal con-
straint to a selected point along the steady-state Pareto front. One of the key advantages of this approach is that multiple objectives can be han-
dled systematically without having to compute the entire Pareto front or selecting weights. In addition, general cost functions (i.e., economic, regularization) can be used.

Wojciech Ogrzyka, Warsaw University of Technology

Fair multiobjective optimization: Models and techniques

In systems which serve many users there is a need to respect some fairness rules while looking for the overall efficiency, e.g., in network design one needs to allocate bandwidth to flows efficiently and fairly, in location analysis of public services the clients of a system are enti-
tied to fair treatment according to community regulations. This leads to concepts of fairness expressed by the equitable multiple objective op-
timization. The latter is formalized with the model of multiple objective optimization of fail averages and the Lorenz order enhancing the Pareto dominance concept. Due to the duality theory the order is also equi-
alent to the second order stochastic dominance representing multiple objective optimization of the mean shortgages (mean below-target devi-
ations). Despite equivalent, two orders lead to different computational models though both based on auxiliary linear inequalities and criteria.
Moreover, the basic computational models can be differently enhanced. We analyze advantages of various computational models when applied to linear programming and mixed integer programming problems of fair optimization.

Kai-Simon Gortmann, TU Berlin (with Christina Büsing, Jannik Matuschke, Sebastian Stiller)

Compromise solutions

The most common concept in multicriteria optimization is Pareto optimality. However, in general the number of Pareto optimal solutions is exponential. To choose a single, well-balanced Pareto optimal solution, Yu (1973) proposed compromise solutions. A compromise solution is a feasible solution closest to the ideal point. The ideal point is the component-wise optimum over all feasible solutions in objective space. Compromise solutions are always Pareto optimal. Using different weighted norms, the compromise solution can attain any point in the Pareto set. The concept of compromise solutions (and the slightly more general reference point methods) are widely used in state-of-the-art software tools. Still, there are very few theoretical results backing up these methods.

We establish a strong connection between approximating the Pareto set and approximating compromise solutions. In particular, we show that an approximate Pareto set always contains an approximate compromise solution. The converse is also true if we allow to substitute the ideal point by a sub-ideal reference point. Compromise solutions thus neatly fit with the concept of Pareto optimality.

Mon.3.H 0107

Methods for nonlinear optimization III

Chair Masoud Ahookhosh, University of Vienna

Yuan Shen, Nanjing University (with Bingzhong He)

New augmented lagrangian-based proximal point algorithms for convex optimization with equality constraint

The Augmented Lagrangian method (ALM) is a classic and efficient method for solving constrained optimization problems. It decomposes the original problem into a series of easy-to-solve subproblems to approach the solution of the original problem. However, its efficiency is still, to large extent, dependent on how efficient the subproblem can be solved. In general, the accurate solution of the subproblem can be expensive to compute; hence, it is more practical to relax the subproblems to make it easy to solve. When the objective has some favorable structure, the relaxed subproblem can be simple enough to have a closed form solution. Therefore, the resulting algorithm is efficient and practical for the low cost in each iteration. However, compared with the classic ALM, this algorithm can suffer from the slow convergence rate. Based on the same relaxed subproblem, we propose several new methods with faster convergence rate. We also report their numerical results in comparison to some state-of-the-art algorithms to demonstrate their efficiency.

Mehiddin Al-Baali, Sultan Qaboos University (with Mohamed Al-Lawatia)

Hybrid damped-BFGS/Gauss-Newton methods for nonlinear least-squares

The damped-technique in the modified BFGS method of Powell (1978) for constrained optimization will be extended to the hybrid BFGS/Gauss-Newton methods for unconstrained nonlinear least squares. It will be shown that this extension maintains the useful convergence properties of the hybrid methods and improves their performance substantially in certain cases. The analysis is based on a recent proposal for using the damped-technique when applied to the Broyden family of methods for unconstrained optimization, which enforces safely the positive definiteness property of Hessian approximations.

Masoud Ahookhosh, University of Vienna (with Nosratipour Hadi, Amini Keyvan)

An improved nonmonotone technique for both line search and trust-region frameworks

The nonmonotone iterative approaches are efficient techniques for solving optimization problems avoiding a monotone decrease in the sequence of function values. It has been believed that the nonmonotone strategies not only can enhance the likelihood of finding the global optimum but also can improve the numerical performance of approaches. Furthermore, the traditional nonmonotone strategy contains some disadvantages encountering with some practical problems. To overcome these drawbacks, some different nonmonotone strategies have proposed with more encouraging results. This study concerns with exploiting the merits and disadvantages of the traditional nonmonotone technique and introduce a variant version which mostly avoids the drawbacks of original one. Then we incorporate it into both line search and trust-region frameworks to construct more reliable approaches. The global convergence to first-order and second-order stationary points are investigated under some classical assumptions. Preliminary numerical experiments indicate the efficiency and the robustness of the proposed approaches for solving unconstrained nonlinear optimization.

Mon.3.H 0110

Nonlinear optimization III

Organizers/Chairs Frank E. Curtis, Lehigh University; Daniel Robinson, Johns Hopkins University

Invited Session

Mikhail Soledov, IMPA (with Damian Fernandes)

Convergence properties of augmented Lagrangian methods under the second-order sufficient optimality condition

We establish local convergence and rate of convergence of the classical augmented Lagrangian algorithm under the sole assumption that the dual starting point is close to a multiplier satisfying the second-order sufficient optimality condition (SOSC). No constraint qualifications of any kind are needed. Previous literature on the subject required, in addition, the linear independence constraint qualification and either strict complementarity or a stronger version of SOSC. Using only SOSC, for penalty parameters large enough we prove primal-dual Q-linear convergence rate, which becomes superlinear if the parameters are allowed to go to infinity. Both exact and inexact solutions of subproblems are considered. In the exact case, we further show that the primal convergence rate is of the same Q-order as the primal-dual rate. Previous assertions for the primal sequence all had to do with the the weaker R-rate of convergence and required the stronger assumptions cited above. Finally, we show that under our assumptions one of the popular rules of controlling the penalty parameters ensures they stay bounded.

Frank E. Curtis, Lehigh University (with James Burke, Hao Wang)

Infeasibility detection in nonlinear optimization

Contemporary numerical methods for nonlinear optimization possess strong global and fast local convergence guarantees for feasible problems under common assumptions. They also often provide guarantees for (eventually) detecting if a problem is infeasible, though in such cases there are typically no guarantees of fast local convergence. This is a critical deficiency as in the optimization of complex systems, one often finds that nonlinear optimization methods can fail or stall due to minor constraint incompatibilities. This may suggest that the problem is infeasible, but without an infeasibility certificate, no useful result is provided to the user. We present a sequential quadratization optimization (SQO) method that possesses strong global and fast local convergence guarantees for both feasible and infeasible problem instances. Theoretical results are presented along with numerical results indicating the practical advantages of our approach.

Figen Öztürk, Northwestern University

Two-phase active set methods with applications to inverse covariance estimation

We present a semi-smooth Newton framework that gives rise to a family of second order methods for structured convex optimization. The generality of our approach allows us to analyze their convergence properties under a unified setting, and to contrast their algorithmic components. These methods are well suited for a variety of machine learning applications, and in this talk we give particular attention to an inverse covariance matrix estimation problem arising in speech recognition. We compare our method to state-of-the-art techniques, both in terms of computational efficiency and theoretical properties.

Mon.3.H 0112

Unconstrained optimization I

Chair Roummel Marcia, University of California, Merced

Saman Babai-Kolahi, Simon University

A modification on the Hager-Zhang conjugate gradient method

Conjugate gradient (CG) methods comprise a class of unconstrained optimization algorithms characterized by low memory requirements and strong global convergence properties which made them popular for engineers and mathematicians engaged in solving large-scale unconstrained optimization problems. One of the efficient CG methods has been proposed by Hager and Zhang. Here, a singular value study is made in order to find lower and upper bounds for the condition number of the matrix which generates the search directions of the Hager-Zhang method. Then, based on the insight gained by the analysis, a modified version of the Hager-Zhang method is proposed using an adaptive switch form the Hager-Zhang method to the Hestenes-Stiefel method, when the mentioned condition number is large. It can be shown that if the line search fulfills the strong Wolfe conditions, then the
proposed method is globally convergent for uniformly convex objective functions. Numerical experiments on a set of unconstrained optimization test problems of the CUTEr collection demonstrate the efficiency of the suggested adaptive CG method in the sense of the performance profile introduced by Dolan and Moré.

Tore Odland, Royal Institute of Technology (with Anders Forsgren)

On the relationship between quasi-Newton methods and the conjugate

It is well known that a Quasi-Newton method using any well-defined update from the Broyden class of updates and the conjugate gradient method produce the same iterates on a quadratic objective function with positive-definite Hessian. In this case both methods produce conjugate directions with respect to the Hessian. This equivalence does not hold for any quasi-Newton method. We discuss more precisely what the updates in a Quasi-Newton method need satisfy to give rise to this behavior.

Roumell Marcia, University of California, Merced (with Jennifer Erway)

Limited-memory BFGS with diagonal updates

We investigate a formula to solve limited-memory BFGS quasi-Newton Hessian systems with full-rank diagonal updates. Under some conditions, the system can be solved via a recursion that uses only vector inner product calculations. This approach has broad applications in trust region and barrier methods.

Gabriel Peyré, CNRS (with Jalal Fadili, Hugo Raguet)

A review of proximal splitting methods with a new one

In the first part of this talk, I will review proximal splitting methods for the resolution of large scale non-smooth convex problems (see for instance [1, 2]). I will show how each algorithm is able to take advantage of the structure of typical imaging problems. In the second part of this talk I will present the Generalized Forward Backward (GFB) splitting method [3] that is tailored for the minimization of the sum of a smooth function and an arbitrary number of ”simple” functions (for which the proximal operator can be computed in closed form). I will show on several imaging applications the advantage of our approach over state of the art proximal splitting schemes. Demos and codes for these proximal splitting schemes can be obtained by visiting www.numerical-tours.com.

Thomas Pock, Graz University of Technology (with Karl Kirisits)

On parameter learning in variational models

In this work we consider the problem of parameter learning for variational image denoising models. We formulate the learning problem as a bilevel optimization problem, where the lower level problem is given by the variational model and the higher level problem is given by a loss function that penalizes errors between the solution of the lower level problem and the ground truth data. We consider a class of image denoising models incorporating a sum of analysis based priors over a fixed set of linear operators. We devise semi-smooth Newton methods to solve the resulting non-smooth bilevel optimization problems and show that the optimized image denoising models can achieve state-of-the-art performance.

Volkan Cevher, École Polytechnique Federale de Lausanne (with Anastasios Kyrillidis)

Nonconvex models with exact and approximate projections for constrained linear inverse problems

Many natural and man-made signals exhibit a few degrees of freedom relative to their dimension due to natural parameterizations or constraints. The inherent low-dimensional structure of such signals are mathematically modeled via combinatorial and geometric concepts, such as sparsity, unions-of-subspaces, or spectral sets, and are now revolutionizing the way we address linear inverse problems from incomplete data. In this talk, we describe a set of low-dimensional, non-convex models for constrained linear inverse problems that feature exact and epsilon-approximate projections in polynomial time. We pay particular attention to structured sparsity models based on matroids, multi-knapsack, and clustering as well as spectrally constrained models. We describe a hybrid optimization framework which explicitly leverages these non-convex models along with additional convex constraints to improve recovery performance. We then analyze the convergence and approximation guarantees of our framework based on restrictions on the linear operator in conjunction with several well-known acceleration techniques, such as step-size selection, memory, splitting and block coordinate descent.

Rodrigo Moreno, Imperial College London (with Danny Pudjianto, Goran Strbac)

Transmission network operation and planning with probabilistic security to facilitate the connection of renewable generation

Current transmission networks are mainly operated and designed based on deterministic decision-making methods. Such methods do not take consideration of real outage risks of network components and therefore of actual benefits and costs of corrective control (or operational measures). This leads to over requirement of transmission capacity in planning time-scales and significant constraints to access remote wind power in operational timescales. In this context, this presentation analyses various characteristics of a fully integrated economic and reliability probabilistic framework for network operation and planning that takes account of efficient operational measures to deliver network capacity to users. For the demonstrations, a new two-stage probabilistic optimisation model for the operational and planning problems is presented. The model is based on a Benders algorithm and is able to balance network utilisation/redundancy levels against the use of operational measures by minimising costs and risks in every operating condition. A novel contingencies-selection technique to identify the relevant outages and therefore lower the computational burden is also presented.

José Sauma, Pontificia Universidad Catolica de Chile (with Javier Contreras, David Paz)

Transmission planning and generation response for integrating renewables

Using a Mixed Integer Linear Programming (MILP) model, we analyze the transmission planning decisions while characterizing the competitive interaction among generation firms whose decisions in generation capacity investments and production are affected by both the transmission investments and the market operation. We illustrate the model by means of the implementation of a stylized version of the transmission planning in the main Chilean network.

Álvaro Véga, PUC-Rio (with Bianca Amari, Bruno Fánsares, Lucas Freire, Deliberio Lima, Alexandre Steyer)

Backing up wind power firm contract sales on hydro generation with stochastic optimization: A Brazilian case study

In this case study, a wind power producer (WPP) backs up a contract sell in the forward market on a small run-of-river hydro (SH) Genco production. The model determines the amount of SH participation and the WPP willingness to contract. To achieve this goal, a joint wind-infos statistical model is used to simulate renewable resources consistently with a set of simulated scenarios of short-term prices provided by an independent dispatch simulation tool. Such methodology is able to couple both sets of independently simulated scenarios such that a joint contracting opportunity can be evaluated and optimized.

Stochastic optimization for electricity production and trading

We consider cost-optimization models of power production in the context of mean-risk multi-stage stochastic optimization problems. We introduce the concept of occupation times to reduce the size of the scenario tree in a finite setting in time and states. In terms of financial risk measurement, we apply multiperiod extensions of the risk measure Conditional-Value-at-Risk (CVaR), which is widely used in applications due to its coherence properties. We show a time-consistent generalization to multiple periods that applies CVaR-like measures recursively over the time periods and compare with other extensions. In terms of modeling, we discuss how financial futures may reduce risk and how
Numerical methods in shape and topology optimization

Kevin Sturm, WIAS (with Michael Hintermüller, Dietmar Hömberg)
Shape optimization for an interface problem in linear elasticity for distortion compensation

In this talk I will introduce a sharp interface model describing a workpiece made of several phases, e.g., martensite and pearlite can be produced in the workpiece. The goal of my work is to obtain a desired workpiece shape by controlling the final phase distribution. Therefore our control variables are sets and thus we have to consider a shape optimization problem. I will show how one can derive the shape derivative for this problem, which then can be used to solve the shape optimization problem approximately. Moreover, numerical results for different workpiece shapes in two dimensions will be presented.

Volkmar Schulz, University of Trier
On the usage of the shape Hessian in aerodynamic shape optimization

The talk demonstrates how approximations of the shape Hessian can be profitably used to accelerate shape optimization strategies significantly in the application field of aerodynamics. However, at least theoretically, the shape Hessian is of less advantage than usual Hessians - essentially because there does not yet exist a Taylor series expansion in terms of the shape Hessian, and it tends to be non-symmetric. In this talk, a new view on the shape Hessian is proposed in terms of an appropriate distance measure. Furthermore consequences for numerical implementations are explained.

Michael Römer, Martin-Luther-University Halle-Wittenberg
Linear optimization with variable parameters: Robust and generalized linear programming and their relations

In linear programming, it is usually assumed that the problem data is certain and fixed. In many real world situations, however, the parameters are subject to variation. In a pessimistic scenario, the variation is not controllable by the decision maker. This is the case for parameters affected by measurement errors or uncertainty. One way to deal with such a situation is to employ robust linear programming to obtain a solution that is feasible for all elements of a given parameter uncertainty set.

In an optimistic scenario, the variation can be controlled. Some coefficients may represent adjustable technical parameters or can be influenced by higher-level decisions. A possible approach to model this setting is generalized linear programming. In this approach, going back to early work of Dantzig and Wolfe, a solution is sought which is feasible for at least one parameter combination from a given variation set.

In this work, we provide a unified view of robust and generalized linear programs and their compact reformulations. We discuss the dual relation of both approaches and show how this duality may contribute to a deeper understanding and a mutual stimulation of both fields.

Mohammad Mehdi Nasrabadi, Payam Noor University
A fuzzy programming approach to robust optimization

A crucial feature of linear programming occurring in real-world applications is that all or some of parameters are uncertain. Robust optimization has attracted a great deal of attention to address this situation. We consider robust linear programs, where the parameters in the constraint matrix are uncertain but known to lie in a given deterministic uncertainty set. We present a fuzzy programming approach to soften the hard constraints of the robust optimization. In particular, given a feasible solution, we introduce a membership function for each constraint to indicate how much the constraint is violated in the worst-case. We characterize the three basic ingredients in fuzzy decision making, that are, fuzzy goal, fuzzy constraint, and fuzzy decision. We then present an algorithm for solving the robust linear program with softness constraints based on the well-known approach of Bellman and Zadeh (1970) in fuzzy programming. We show that the problem is efficiently solvable when the uncertain parameters are the ones considered by Bertsimas and Sim (2003).

Sebastian Stiller, TU Berlin (with Dimitris Bertsimas, Talha Claudo, Ebrahim Nasrabadi, Kui-Simon Gamdddin)
Robust network flows

This talk collects results on four different variants of robust network flows: the cost-robust counterpart, the strict robust counterpart, and the adjustable robust counterpart of the maximum network flow problem, and the robust flow-over-time problem. For all four models we consider scenario sets where at most a fixed number of coefficients in the input can change and all coefficients are limited within given intervals. The results on the cost-robust counterpart are derived in the form of a general result on cost-robust integer programs, in particular for those with TUM matrices. The strict robust network flow is shown to be polynomial time solvable but far too conservative. The (fractional) adjustable robust flow problem is shown to be NP-hard. It lacks a lot of the properties of nominal network flows. Nevertheless, it exhibits a variant of the min-cut-max-flow property, which we prove via a game theoretic argument. We also describe some efficiently solvable special cases. The robust flow-over-time is already hard on series-parallel graphs and in general cannot be solved by a temporally repeated flow.

David Adjiashvili, ETH Zurich
Fault-tolerant shortest paths - Beyond the uniform failure model

The overwhelming majority of survivable (fault-tolerant) network design models assumes a uniform scenario set. Such a scenario set assumes that every subset of the network resources is a failure with a given cardinality k comprises a scenario. While this approach yields problems with clean combinatorial structure and good algorithms, it often fails to capture the true nature of robustness coming from applications....
On the power of randomization in robust optimization

Robust optimization can be viewed as a game involving two players, a decision maker and an adversary (or nature), who stand opposite each other. When only the cost parameters are subject to uncertainty, the decision maker chooses a solution (or a pure strategy) and the adversary selects adaptively a response after observing the decision maker’s choice. We introduce a new modeling approach that allows the decision maker to select a random strategy. In this setting, the decision maker assigns a probability to each pure strategy and randomly selects a pure strategy according to the probabilities, where the adversary’s response is based only on knowing the probability distribution and not its realization.

We show that the ratio between the value of the optimal pure strategy and the value of the optimal random strategy is bounded by the maximum number of affinely independent points in the feasible region. This bound is tight for several combinatorial optimization problems. We also show that an optimal random strategy can be computed in polynomial-time whenever the nominal problem (where costs are known) is solvable in polynomial time.

Wotao Yin, Rice University (with Ming-Jun Lai)
Augmented L1 and nuclear norm minimization with a globally linearly convergent algorithm

L1 minimization tends to give sparse solutions while the least squares (LS) give dense solutions. We show that minimizing the weighted sum of L1 and LS, with an appropriately small weight for the LS term, can efficiently recover sparse vectors with provable recovery guarantees. For compressive sensing, exact and stable recovery guarantees can be given in terms of the null-space property, restricted isometry property, spherical section property, and “RIPless” property of the sensing matrix. Moreover, the Lagrange dual problem of L1+LS minimization is convex, unconstrained, and differentiable; hence, a rich set of classical techniques such as gradient descent, line search, Barzilai-Borwein steps, quasi-Newton methods, and Nesterov’s acceleration can be directly applied. We show that the gradient descent iteration is globally linearly convergent, and we give an explicit rate. This is the first global linear convergence result among the gradient-based algorithms for sparse optimization. We also present an algorithm based on the limited-memory BFGS and demonstrate its superior performance than several existing L1 solvers.

Lin Xiao, Microsoft Research (with Tong Zhang)
A proximal-gradient homotopy method for the sparse least-squares problem

We consider the ℓ_1-regularized least-squares problem in the context of sparse recovery or compressed sensing. The standard proximal gradient method (iterative soft-thresholding) has low computational cost per iteration but a rather slow convergence rate. Nevertheless, when the solution is sparse, it often exhibits fast linear convergence in the end. We exploit this local linear convergence using a homotopy continuation strategy, i.e., we minimize the objective for a sequence of decreasing values of the regularization parameter, and use an approximate solution at the end of each stage to warm-start the next stage. Similar strategies have been studied in the literature, but there has been no theoretical analysis of their global iteration complexity. We show that under suitable assumptions for sparse recovery, the proposed homotopy strategy ensures that all iterates along the homotopy solution path are sparse. Therefore the objective function is effectively strongly convex along the path, and geometric convergence at each stage can be established. As a result, the overall iteration complexity of our method is $O(\log(1/\epsilon))$ for finding an ϵ-optimal solution.

Michel Baes, ETH Zurich (with Michael Biegler, Arkadi Nemirovski)
First-order methods for eigenvalue maximization

Many semidefinite programming problems encountered in practice can be recast as maximizing the maximal eigenvalue of a convex combination of symmetric matrices. In this talk, we describe and analyze a series of first-order methods for solving this problem when the input matrices are large (of dimension 1000 to 10000 and more) and mildly sparse. We propose several accelerating strategies, notably in the step-size selection, and based on randomization, and illustrate the theoretical and practical efficiency of the new approach.

Retsef Levi, MIT Sloan School of Management (with Venkatesh Goyal, Danny Segev)
Near-optimal algorithms for assortment planning under dynamic substitution and stochastic demand

We consider a single-period assortment planning problem under a dynamic-substitution model with stochastic demand and give a polynomial time approximation scheme for the problem under fairly general assumptions. Our algorithm computes an assortment containing only a...
small number of product types and obtains near-optimal revenue. We also present several complexity results for the problem that indicate that our assumptions are almost necessary to solve it efficiently.

Dragos Cernas, Massachusetts Institute of Technology (with Vivek Farias)

Dynamic allocation problems with volatile demand

We present a simple, easy to interpret algorithm for a large class of dynamic allocation problems with unknown, volatile demand. Potential applications include Ad Display problems and network revenue management problems. The algorithm operates in an online fashion and relies on re-optimization and forecast updates. The algorithm is robust (as witnessed by uniform worst case guarantees for arbitrarily volatile demand) and in the event that demand volatility (or equivalently deviations in realized demand from forecasts) is not large, the method is simultaneously optimal. Computational experiments, including experiments with data from real world problem instances, demonstrate the practicality and value of the approach. From a theoretical perspective, we introduce a new device – a balancing property – that allows us to understand the impact of changing bases in our scheme.

Cong Shi, Massachusetts Institute of Technology (with Rotem Levy)

Revenue management of reusable resources with advanced reservations

This paper studies a class of revenue management problems in systems with reusable resources and advanced reservations. A simple control policy called the class selection policy (CSP) is proposed based on solving a knapsack-type linear program (LP). It is shown that the CSP and its variants perform provably near-optimal under several classical asymptotic parameter regimes, such as the critically loaded and the Halfin-Whitt heavy-traffic regimes. The analysis is based on entirely new approaches that model the problem as loss network systems with advanced reservations. In particular, asymptotic upper bounds on the blocking probabilities are derived under the above mentioned heavy-traffic regimes. There have been very few results on loss network systems with advanced reservations, and we believe that the approaches developed in this paper will be applicable in other operations management and other applications domains.

Mon.3 H 3022

Optimization of optical networks

Organizer/Chair Brigitte Jaumard, Concordia University - Invited Session

Brigitte Jaumard, Concordia University (with Minh Bui, Anh Hoang)

Path vs. cutset column generation models for the design of IP-over-WDM optical networks

Multi-layer optical networks have recently evolved towards IP-over-WDM networks. Therein, in order to avoid protection/restoration redundancies against either single or multiple failures, synergies need to be developed between IP and optical layers in order to reduce the costs and the energy consumption of the future IP-over-WDM networks.

We propose two new column generation models. The first one is an enhanced cutset model. The second one is a path model, based on a multi-flow formulation. Both models can solve exactly most benchmark instances, which were only solved heuristically so far.

Jørgen Hiatl, University of Copenhagen (with Thomas Stidsen, Martin Zachariassen)

Heuristic planning of shared backup path protection

Protecting communication networks against failures is becoming increasingly important as they have become an integrated part of our society. Cable failures are fairly common, but it is unacceptable for a single cable failure to disconnect communication even for a very short period and hence protection schemes are employed. The most utilized protection schemes today are ring protection and 1+1 protection. Both schemes do however require a significant extra network capacity. A more advanced protection method such as shared backup path protection (SBPP) can be used instead. SBPP is a simple but efficient protection scheme that can be implemented in backbone networks with technology available today. We prove that SBPP planning is a NP-hard optimization problem. Previous work confirms that it is time-consuming to solve the problem in practice using exact methods. We present heuristic algorithms and lower bound methods for the SBPP planning problem. Experimental results show that the heuristic algorithms are able to find good quality solutions in few minutes. A solution gap of less than 12% was achieved for seven test networks.

Philippe Maulay, ISIMA - Université de Clermont-Ferrand (with Christophe Duhame, Alexandre Martins, Rodney Saldanha, Maurice Stouza)

Algorithms for lower and upper bounds for routing and wavelength assignment

In all-optical networks a traffic demand is carried from source to destination through a lightpath, which is a sequence of fiber links carrying the traffic from end-to-end. The wavelength continuity constraint implies that to a given lightpath a single wavelength must be assigned. Moreover, a particular wavelength cannot be assigned to two different lightpaths sharing a common physical link. The routing and wavelength assignment (RWA) problem arises in this context as to establish lightpaths to carry traffic demands. The problem is found in two versions: (i) to minimize the number of wavelengths to meet fixed traffic requests; and (ii) to maximize the traffic requests satisfied given a fixed number of wavelengths. In this work, we develop algorithms to tackle the RWA problem via lower and upper bounds. We present, by combining column generation models from the literature, a fast procedure to obtain lower bounds. We also present heuristic approaches based on variable neighborhood descent (VND) with iterated local search (ILS) for the min-RWA. We report numerical results showing optimality gaps obtained on benchmark instances from the literature.
mality indication set. Our result on constrained nonlinear programming includes some existing ones in the literature as special cases.

Boshi Tian, The Hong Kong Polytechnic University (with Xiaoqi Yang)

An interior-point \(\ell_{1/2}\)-penalty method for nonlinear programming

In this presentation, we solve general nonlinear programming problems by using a quadratic relaxation scheme for their \(\ell_{1/2}\)-lower order penalty problems. Combining an interior point method, we propose an interior point \(\ell_{1/2}\)-penalty function method, and design some robust algorithms. Using some relaxed constraint qualifications, we obtain first-order optimality conditions of relaxed \(\ell_{1/2}\)-lower order penalty problems. We also carry out numerical experiments for three test problem sets, which contain small scale and medium scale test problems, large scale test problems and optimization problems with different kinds of degenerate constraints, respectively. The comparison of the numerical performance of our method with other existing interior point penalty methods shows that our method in general performs better in terms of CPU time, iteration number, barrier parameter, and penalty parameter.

Zhangyou Chen, The Hong Kong Polytechnic University (with Xiaoqi Yang, Jinchuan Zhou)

Exact penalty functions for semi-infinite programming

We study optimality conditions of an inequality constraint semi-infinite optimization problem from the point of view of exact penalty functions. We introduce two types of penalty functions for the semi-infinite optimization problem, \(\ell_w\)-type and integral-type penalty functions, and investigate their exactness relations as well as their relations with corresponding calmness properties, respectively. We establish first-order optimality conditions for the semi-infinite optimization problem via \(\ell_w\)-type exact penalty functions. Finally, we apply our results to a generalized semi-infinite optimization problem by virtue of a double penalization technique.

Mon.3 Tue.1 2015

Some applications of variational analysis

Organizer/Chair Nguyen Dong Yen, Institute of Mathematics, Vietnam Academy of Science and Technology - Invited Session

Mau Nam Nguyen, University of Texas-Pan American

Variational analysis of minimal time functions with unbounded dynamics and generalized smallest enclosing circle problems

The smallest enclosing circle problem introduced in the 19th century by J. J. Sylvester asks for the circle of smallest radius enclosing a given set of finite points in the plane. In this talk, we will present new results on variational analysis of of minimal time functions generated by unbounded constant dynamics and discuss their applications to generalized versions of of the smallest enclosing circle problem. This approach continues our effort in applying variational analysis to the well-established field of facility location.

Andrew Eberhard, RMIT University (with Boris Mordukhovich, Charles Pearce, Robert Wenczel)

Approaches to optimality conditions using nonsmooth and variational methods

In this talk we survey a number of approaches to the development of optimality conditions that delay the introduction of regularity conditions. In doing so they generalize the standard Lagrangian optimality conditions and second order sufficiency conditions in various ways. The infimal regularization and a mixture of subhessian and coderivative like techniques are used in combination with variational methods.

Gue Myung Lee, Pohang National University (with Chieu Nguyen Huy)

On constraint qualifications for mathematical programs with equilibrium constraints

Mathematical program with equilibrium constraints (shortly, MPEC) has been the subject of intensive research during the last decades. We introduce a relaxed version of a constraint qualification for the MPEC formulated as optimization problems with complementarity constraints. We present that the relaxed version is a constraint qualification for \(M\)-stationarity. Using the limiting second-order subdifferential for \(C_{1,1}\)-functions, we show that the relaxed version is strong enough to ensure the validity of a local MPEC-error bound under a certain additional assumption.

Mon.3 Tue.1 2015

Variational analysis

Approximation in algorithmic game theory

Organizer/Chair Chaitanya Swamy, University of Waterloo - Invited Session

Konstantinos Georgiou, University of Waterloo (with Chaitanya Swamy)

Black-box reductions for cost-sharing mechanism design

We consider the design of strategyproof cost-sharing mechanisms, focusing mainly on the integral-type penalty function, and design some robust algorithms. Using some relaxed constraint qualifications, we obtain first-order optimality conditions of relaxed \(\ell_{1/2}\)-lower order penalty problems. We also carry out numerical experiments for three test problem sets, which contain small scale and medium scale test problems, large scale test problems and optimization problems with different kinds of degenerate constraints, respectively. The comparison of the numerical performance of our method with other existing interior point penalty methods shows that our method in general performs better in terms of CPU time, iteration number, barrier parameter, and penalty parameter.

Gue Myung Lee, Pohang National University (with Chieu Nguyen Huy)

On constraint qualifications for mathematical programs with equilibrium constraints

Mathematical program with equilibrium constraints (shortly, MPEC) has been the subject of intensive research during the last decades. We introduce a relaxed version of a constraint qualification for the MPEC formulated as optimization problems with complementarity constraints. We present that the relaxed version is a constraint qualification for \(M\)-stationarity. Using the limiting second-order subdifferential for \(C_{1,1}\)-functions, we show that the relaxed version is strong enough to ensure the validity of a local MPEC-error bound under a certain additional assumption.
that the constrained shortest path with a super additive objective function is indeed a challenging problem.

Himanshu Das, Kansai University (with Tatsuya Shigetou)

Finding the shortest cycle in directed graphs under some constraints on passing vertices and paths

In this research, we propose a problem to find the shortest cycle in directed graphs under some constraints on passing vertices and paths. The proposed problem is as follows: The origin and designated vertices are fixed. We seek to find the shortest cycle which starts from the origin and passes all the designated vertices. Also, the cycle has a state which depends on the path from the origin and the transition along the cycle changes it. Each vertex has acceptable states, and the path can reach a vertex when the current state is acceptable for it. This kind of problem occurs from the maintenance of large machinery for example, when an elevator is under maintenance, a worker has to do the predetermined operations. Also, he/she has to do some operations for ensuring his/her safety during the maintenance. However, he/she can skip some operations as long as the safety is ensured. Moreover, a state of an elevator is transitioning by operations. We can deal with such situations by our proposed problem. For this problem, we propose a method which is based on a method for the asymmetric traveling salesman problem. We will show computational results in our presentation.

Marina Kardosh, Zuse Institute Berlin

Approximation and min-max results for the Steiner connectivity problem

The Steiner connectivity problem is to connect a set of terminal nodes in a graph by a cost minimal set of paths; it generalizes the Steiner tree problem to hypergraphs. The problem is known to be approximable within a factor of $\log k$ if all nodes are terminals. We discuss its approximability if all paths contain at most k edges and provide, in particular, a $k + 1$ approximation if all paths contain at most k terminals.

The two terminal case gives rise to a TDI description; this yields a combinatorial companion theorem to Menger's theorem for hypergraphs and characterizes paths and cuts in hypergraphs as a blocking pair.

Tue.1H 3008

LP based approximation algorithms for location and routing

Organizer/Chair Vneshaurth Nagarajan, IBM Research - Invited Session

Jaroslaw Byrka, University of Wrocław (with Arindam Sinhaan, Chaitanya Swamy)

Fault-tolerant facility location: A randomized dependent LP-rounding algorithm

We give a new randomized LP-rounding 1.725-approximation algorithm for the metric Fault-Tolerant Uncapacitated Facility Location problem. This improves on the previously best known 2.076-approximation algorithm of Swamy & Shmoys. To the best of our knowledge, our work provides the first application of a dependent-rounding technique in the domain of facility location. The analysis of our algorithm benefits from, and extends, methods developed for Uncapacitated Facility Location; it also helps uncover new properties of the dependent-rounding approach. An important concept that we develop is a novel, hierarchical clustering scheme. Typically, LP-rounding approximation algorithms for facility location problems are based on partitioning facilities into disjoint clusters and opening at least one facility in each cluster. We extend this approach and construct a laminar family of clusters, which then guides the rounding procedure: this allows us to exploit properties of dependent rounding, and provides a quite tight analysis resulting in the improved approximation ratio.

Anna Blasiak, Cornell University (with Aaron Archer)

Improved approximation algorithms for the minimum latency problem via prize-collecting paths

The minimum latency problem (MLP) is a well-studied variant of the traveling salesman problem. In it, the server’s goal is to minimize average latency of clients prior to being served, rather than total latency of the server. Unlike most combinatorial optimization problems, the MLP is NP-hard even on trees (Sitters 2001). Furthermore, all MLP approximation algorithms known for general metrics are based on trees, and the best ratio known for both cases was 3.59, prior to our work. We give a 3.03-approximation algorithm for trees, the first improvement since 1996. Our 3.03-approximation algorithm works for any class of graphs in which the related prize-collecting path problem is solvable in polynomial time, like graphs of constant treewidth. More generally, for any class of graphs that admit a Lagrangian-preserving β-approximation for the prize-collecting path problem, we can use our algorithm as a black box to achieve a 3.03β-approximation for the MLP. Our analysis uses a solution of an infinite-dimensional linear program to analyze a finite-dimensional factor-revealing linear program.

Zachary Friggstad, University of Waterloo (with Mohammad R. Salavatipour, Zoya Svitkina)

A logarithmic approximation for the directed latency problem

In the directed latency problem, we are given an asymmetric metric and a start node s. The goal is to find a Hamiltonian path starting at s that minimizes the average distance of the nodes from the start of the path. An $O(\log n)$ approximation for this problem will be presented whose analysis also bounds the integrality gap of an LP relaxation by the same factor. This improves on the previous best approximation of $O(n^{1/2+\epsilon})$ by Nagarajan and Ravi. Our approach requires bounds on integrality gaps of LP relaxations for the asymmetric traveling salesman problem and a variant using two paths.
Combinatorial optimization

Scheduling III
Chair Sandra Bőse, ETH Zürich

Evgeny Galafur, École nationale supérieure des mines Saint Etienne (with Alexandre Dolgui, Alexander Lazarev)

Two-station single track railway scheduling problem with equal speed of trains
The single track railway scheduling problem with two stations and Q segments of the track is considered. Two subsets of trains N_1' and N_2' are given, where trains from N_1' go from the station 1 to the station 2, and trains from N_2' go in the opposite direction. The speed of trains over each segment is the same. A polynomial time reduction from the problem under consideration to a special case of the single machine equal-processing-time scheduling problem with setup times is presented. For this special case with different objective function under different constraints, polynomial time solution algorithms are presented.

Jens Poppenborg, Clausthal University of Technology (with Sigrid Knust)

Modeling the resource-constrained project scheduling problem with resource transfers using a graph approach
This presentation deals with the resource-constrained project scheduling problem (RCPSP) with resource transfers. Here, resource transfers are classified into two different categories: first- as well as second-tier resource transfers. While first-tier resource transfers include all resource transfers where resources are directly transferred from one activity to the next, second-tier resource transfers include all resource transfers where a resource is used to transport another resource between two successive activities, i.e., this other resource can not be transferred on its own.

The problem described here is modeled using a graph approach. For this, the activities are modeled as nodes while the resource transfers or resource flows between these activities are modeled as arcs such that an arc between two nodes corresponds to the transfer of a certain amount of units of a resource from one activity to another. Additionally, each arc is associated with the required transfer time such that schedules can be generated using longest path calculations. For this model, different neighborhood structures are introduced and some results are presented.

Sandro Bosio, ETH Zürich (with David Adjachelli, Kevin Zemmer)

Mailroom production planning
In a multi-feeder mailroom machine, folders (e.g., newspapers) run at high-speed through a line of independent feeders, receiving by each active feeder an advertising insert. A job is a subset of inserts to be bundled in a given number of copies, which requires a certain production time. Scheduling a job batch involves deciding the job order and, for each job, the assignment of the job inserts to the feeders.

Loading an insert on a feeder requires a given setup time, and can only be done while the feeder is idle. Given a schedule, violated setup requirements have to be resolved by stopping the machine, completing the loads, and restarting the machine. As the time needed to restart the machine dominates the setup time, minimizing the makespan is equivalent to minimizing the machine stops. Alternative objective functions are the minimization of the inserts loads (number of times each insert is loaded) and the minimization of the inserts splits (number of different feeders on which each insert is loaded). We study the complexity of the problem for each objective function, for both fixed and variable job sequence. We also consider lexicographic bi-objective optimization variants.

Trees and words
Chair Winfried Hochstättler, FernUniversität in Hagen

Winfried Hochstättler, FernUniversität in Hagen (with Stephan Andres)

Some heuristics for the binary paint shop problem and their expected number of colour changes
For the binary paint shop problem we are given a word on n characters of length $2n$ where each character occurs exactly twice. The objective is to color the letters of the word in two colors, such that each character receives both colors and the number of color changes of consecutive letters is minimized. Amini et. al proved that the expected number of color changes of the heuristic greedy coloring is at most $2n/3$. They also conjectured that the true value is $n/2$. We verify their conjecture and, furthermore, compute an expected number of $2n/3$ color changes for a heuristic, named red first, which behaves well on some worst case examples for the greedy algorithm. From our proof method, finally, we derive a new recursive greedy heuristic which achieves an average number of $2n/5$ color changes.

Marcin Kryszewski, Gdańsk University of Technology

An algorithm listing all minimal dominating sets of a tree
We provide an algorithm listing all minimal dominating sets of a tree of order n in time $O(1.4656^n)$. This leads to that every tree has at most 1.4656^n minimal dominating sets. We also give an infinite family of trees of odd and even order for which the number of minimal dominating sets exceeds 1.4167^n, thus exceeding $2^{n/2}$. This establishes a lower bound on the running time of an algorithm listing all minimal dominating sets of a given tree.

Yusaku Matsui, Tokai University (with Kenta Kikoci, Hiroki Yoshida)

An enumeration algorithm for the optimal cost vertex-colorings for trees
The cost vertex-coloring problem is to find a vertex-coloring of a graph such that the total costs of vertices is as small as possible. In 1997, Kroon et al. gave the problem can be solved in linear time for trees. In this talk, we first propose an enumeration algorithm for the optimal cost vertex-colorings for trees, if there exists. Our algorithm has a polynomial-time delay property and requires polynomial space.

Combinatorial optimization

Data structures and algorithms for VLSI routing
Organizer/Chair Tim Nieberg, University of Bonn - Invited Session

Dirk Müller, University of Bonn

Multi-flows and generalizations in VLSI routing
In the (global) routing of VLSI chips, limited space must be shared by different connections, so-called nets. In this context, multi-commodity flow problems arise naturally, and approximation schemes have been applied to them and their generalizations to fractional Steiner tree packing successfully for more than 15 years, the traditional objective being wire length minimization.

Technology scaling causes a growing need to extend global routing to directly consider other objectives and additional constraints, such as signal delays, power consumption and manufacturing yield. All these depend non-linearly on the spacing between wires. Because these dependencies are given by convex functions, we can show that a fractional relaxation of the extended global routing problem can be formulated as a block-angular min-max resource sharing problem. We present a simple approximation scheme for this problem which generalizes and improves various previous results, and can be parallelized very efficiently. Further, we show experimental results on recent industrial chips with millions of nets and resources.

Christian Schute, University of Bonn (with Michael Gestler, Dirk Müller, Tim Nieberg, Christian Panten, Jens Vygen)

Efficient algorithms and data structures in VLSI detailed routing
We present the core elements of detailed routing in BonnRoute. Long-distance connections are computed by a fast, interval based path search algorithm using efficient data structures for routing space representation. With advanced pin access strategies we avoid local conflicts in dense pin configurations. BonnRoute is able to handle complex design rules in modern technologies, and is used in practice on current, real world designs. Compared to an industrial routing tool it is much faster and gives better results in terms of total connection length and number of detours.

Michael Gestler, University of Bonn (with Dirk Müller, Tim Nieberg, Christian Panten, Christian Schute, Jens Vygen)

New challenges in chip design driven by technology scaling
While structures on modern computer chips are getting smaller and smaller, e.g., by the use of more sophisticated lithography techniques, the design rules which chip design software has to respect are increasing in number and are getting more and more complex. This leads to various new algorithmic challenges in chip design. We discuss some of the most important challenges from a practical and from a theoretical perspective. Special emphasis is put on double patterning lithography. Here all structures on a single chip layer are assigned to two different sign rules in modern technologies, and is used in practice on current, real world designs. Compared to an industrial routing tool it is much faster and gives better results in terms of total connection length and number of detours.
Complementarity & variational inequalities

Complementarity properties of linear transformations on Euclidean Jordan algebras
Organizer/Chair Jiyuan Tao, Loyola University Maryland - Invited Session

Jiyaraman Inaplappasamy, The Institute of Mathematical Sciences

P and semimonotonicity properties of linear transformations on Euclidean Jordan algebras
Let $(V, \cdot, \{\cdot, \cdot\})$ be a Euclidean Jordan algebra with the symmetric cone $K = \{x \in V : x = x^\bullet\}$. Given a linear transformation $L: V \to V$ and $q \in V$, the linear complementarity problem over the symmetric cone, LCP(L, q), is to find a vector $x \in V$ such that $x \in K$, $q \coloneqq L(x) + q \in K$, and $(x, q) = 0$. This problem includes the standard, semidefinite and second order linear complementarity problems. To study the existence and uniqueness of solution of the standard linear complementarity problem, several matrix classes have been introduced which includes P and semimonotone matrices. Motivated by these concepts, the rest of the talk will be extended to linear transformations on S^n, the space of all $n \times n$ real symmetric matrices, and further extended to Euclidean Jordan algebras. In this talk, we introduce various P and semimonotonicity properties and describe some interconnections between them. We also discuss how these concepts are significant in the study of LCP(L, q).

Jiyuan Tao, Loyola University Maryland

The completely-Q property for linear transformations on Euclidean Jordan algebras
In this talk, we present a characterization of the completely-Q property for linear transformations on Euclidean Jordan algebras and show the completely-Q property and related properties on Euclidean Jordan algebras.

Raman Srinijder, Bowie State University (with M. Setharama Gowda, Jiyuan Tao)

Complementarity properties of linear transformations on product spaces via Schur complements
In this paper we extend, in a natural way, the notion of the Schur complement of a sub-transformation of a linear transformation defined over a convex cone subject to linear constraints to linear transformations on product spaces via Schur complements. We also investigate some relationships with dynamical systems.

Tue. 1 MA 041

Matrix classes for linear complementarity problems
Organizer/Chair Todd Munson, Argonne National Laboratory - Invited Session

Todd Munson, Argonne National Laboratory

Preprocessing with composite matrices
In this talk, I present a class of matrices called composite matrices that include nonnegative matrices with positive diagonals and P-matrices, and form a subset of the strictly semi-monotone matrices. These matrices have interesting properties that are useful when preprocessing linear complementarity problems to improve the model for numerical simulation. In particular, we can easily include implied bounds on the variables for subproblems identified by finding diagonal composite matrix blocks.

Richard Cottle, Stanford University (with Ilan Adler)

Lemke’s algorithms and matrix classes for the linear complementarity problem
This survey paper deals with the algorithms of Carleton E. Lemke for the linear complementarity problem. Special attention is paid to the matrix classes for which these algorithms are known to be applicable. The algorithms were not designed to obtain more than one solution, although in some cases, repeated application of a variant of the algorithm will yield several solutions. Nevertheless, there are instances where some solutions are “elusive” or “inaccessible” by the algorithm in question. We review efforts that have been made to overcome this limitation. We also examine other equivalent problems and investigate a different (perhaps novel) algorithm for exposing “elusive” equilibrium points.

Gabriele Uchida, University of Vienna (with Immanuel Bomze, Werner Schachinger)

Think completely (positive)! Algebraic properties of matrices belonging to the copositive or related cones
In the context of conic programming (optimizing a linear functional over a convex cone subject to linear constraints) properties of, and relations between, corresponding matrix classes play an important role. A well known subclass of this problem family is semi-definite programming and, to a quickly expanding extent, copositive programming. Therefore the cones of copositive matrices and the dual cone, all completely positive matrices, are studied and structural algebraic properties provided. Several (counter-)examples demonstrate that many relations familiar from semidefinite optimization may fail in the copositive context, illustrating the transition from polynomial-time to NP-hard worst-case behaviour.
semidefinite and a nonnegative matrix whereas this is possible for every copositive $n \times n$-matrix with $n \leq 4$.

Cristian Odore, University of Groningen (with Mirjam Duer, Frank Vallentin)

Infinite dimensional semidefinite programming

In this talk we investigate the infinite dimensional analogue of the primal and dual semidefinite matrix cones. Whereas in the finite case the cone of positive semidefinite matrices is self-dual this is no longer true in infinite dimensions. We introduce the suitable infinite dimensional objects, formulate the pair of primal–dual semidefinite programs and characterize the extremal rays of the dual infinite semidefinite cone.

The technique we use employs the theory of reproducing kernels. Applying the same technique to the finite case gives a new proof and interesting new insights on the extremal semidefinite matrices.

Juan Vera, Tilburg University (with Cristian Odore)

Exploiting symmetry in copositive programming

We study the solution of copositive programs using a sequence of improving relaxations, as the ones used by Gudder-Vera-Anjos for polynomial programs. This method consists of using interactively a master-subproblem scheme; the master solves a conic-relaxation of the original problem, while the subproblem improves the cone used in the relaxation using dual information from the master.

We show how symmetry of the original copositive formulation can be used to reduce both the master and subproblem. To reduce the master, techniques to exploit symmetry in semidefinite programming – which are becoming standard nowadays – are used; reducing the subproblem requires exploiting the symmetry of Polya-like representations for copositive polynomials in a novel manner.

Pierre L’Écuyer)

An exact penalty method for constrained Lipschitz optimization

In this work we consider the minimization of a real function subject to inequality constraints along with bound constraints on the variables. In the latter problem we assume that both the objective function and the constraints are Lipschitz continuous. We first study the solution of a bound constrained minimization problem and propose a line search type derivative free method for its solution. Then, to take into account the presence of nonlinear constraints, we consider the minimization of a new Lipschitz continuous exact penalty function subject to bound constraints. We prove the equivalence of the original inequality constrained problem with the penalized problem subject to bound constraints. In particular, we show that using our derivative free line search approach, global convergence to Clarke-stationary points is guaranteed for the penalized problem. Then, convergence to Clarke-stationary points is also guaranteed for the original constrained problem. We complete our work with a numerical experience on significant test problems, showing the reliability of our proposal.

Kevin Kofler, University of Vienna (with Arnold Neumaier, Hermann Schichl)

Derivative-free optimization with equality constraints using data analysis

This talk will present an algorithm (BBOWDA – Black Box Optimization with Data Analysis) we developed to solve constrained black box optimization problems globally. Our techniques do not require gradients nor direct derivative approximations. Instead, we approximate the functions by a quadratic version of covariance models from data analysis. A particular focus is on constraints: In addition to bound constraints, we also handle black box inequality and equality constraints. In particular, we support equality constraints given in implicit form $f(x) = 0$ where f is a black box function and x a vector of one or more variables. That is achieved by bounding those implicit equality constraints by quadratic approximations using linear programming. We thus obtain surrogate models which we can solve by derivative-based optimization software. Finally, we attempt a heuristic global search by another method from data analysis: We use Gaussian mixture models to locate holes in the search space to fill with sample points. Our approach is particularly tuned for problems where function evaluations are expensive; it requires significantly fewer function evaluations than evolutionary algorithms.

Mid Powell, University of Cambridge

On derivative-free optimization with linear constraints

The current research of the speaker is on optimization without derivatives when there are linear constraints on the variables. Many features of his NEUOA software for unconstrained optimization are retained, but it is necessary to include the linear constraints in the subproblem that minimizes the current quadratic model approximately within a trust region. Truncated conjugate gradients is still chosen for solving this subproblem, a restart being made if the usual steepest of an iteration has to be reduced in order to prevent a constraint violation. Each restart gives a smaller subproblem that is regarded as unconstrained after using active constraints to eliminate some of the variables. The active set of the first of these subproblems is chosen carefully, so that the steplength of the first conjugate gradient iteration cannot be made arbitrarily small by the need for feasibility. The progress of this work will be reported, with some preliminary numerical results.
the complexity of large scale portfolio selection problems using some concordance measures. We first analyze the large scale static problem and then we discuss a first extension to the dynamic portfolio problem. Finally we propose an empirical application to the large scale portfolio problem.

Jun-Ya Gotob, Chuo University (with Keita Shinzakui, Akiko Takeda)

Robust portfolio techniques for coherent risk minimization

Coherent measures of risk have gained growing popularity in financial risk management during the first decade of this century. However, optimal solutions to their minimization are highly susceptible to estimation error of the risk measure because the estimate depends only on a portion of sampled scenarios. In this talk, by employing robust optimization modeling for minimizing coherent risk measures, we present a class of ways for making the solution robust over a certain range of estimation errors. Specifically, we show that a worst-case coherent risk minimization leads to a penalized minimization of the empirical risk estimate. Besides, inspired by Konno, Waki and Yuuki (2002) we examine the use of factor model in coherent risk minimization. In general, the factor model-based coherent risk minimization along the lines of Goldfarb and Iyengar (2003) is shown to be intractable, and we present a global optimization algorithm for solving the intractable case. Numerical experiment shows that robust approaches achieve better out-of-sample performance than the empirical minimization and market benchmarks.

Romy Stütz, Aixima (with Antoine Saune, Robert Shubel)

Factor alignment problem in quantitative portfolio management

The underestimation of risk of optimized portfolios is a consistent criticism about risk models and optimization. Quantitative portfolio managers have historically used a variety of ad hoc techniques to overcome this issue in their investment processes. In this talk, we construct a theory explaining why risk models underestimate the risk of optimized portfolios. We show that the problem is not necessarily with a risk model, but is rather the interaction between alphas, constraints, and risk factors in the risk model. We develop an optimization technique that incorporates a dynamic Alpha Alignment Factor (AAF) into the factor risk model during the optimization process. Using actual portfolio manager backtests, we illustrate both how pervasive the underestimation problem can be and the effectiveness of the proposed AAF in correcting the bias of the risk estimates of optimized portfolios.

Page 1

Tue.1.MA 043

Game-theoretic models in operations

Organizer/Chair Ian Lobel, New York University - Invited Session

Ian Lobel, New York University (with Omar Besbes)

Intertemporal price discrimination: Structure and computation of optimal policies

We consider the problem of a firm selling goods over time to customers with heterogeneous patience levels. We let customer valuations be correlated with their willingness-to-wait and look for a dynamic pricing policy that maximizes the long-term revenue of the firm. We prove that the optimal pricing policy is composed of cycles with a period that is at most twice the maximum willingness-to-wait. We also prove that the prices typically follow a nonmonotonic cyclic behavior. Finally, we show that optimizing over dynamic pricing policies can be accomplished in time that is polynomial on the maximum willingness-to-wait among all customers.

Hamid Nazerzadeh, Marshall School of Business

Buy-it-now or take-a-chance: A mechanism for real-time price discrimination

I present a simple sequential mechanism to allocated online advertisement space. The mechanism is motivated by increasingly sophisticated consumer tracking technology that allow advertisers to reach narrowly targeted consumer demographics. Such targeting enhances advertising efficiency by improving the matching quality between advertisers and users, but can also result in thin markets for particular demographic groups.

Georgia Perakis, MIT (with Pavithra Harsha, Zachary Leung)

Markdown optimization for a fashion e-tailer: The impact of returning customers

We study a model for markdown optimization, i.e., how to set prices to maximize expected revenue when selling a fashion good in the context of an e-tailer. Due to the convenience of Internet shopping, a significant proportion of customers may wait for the price of a fashion item to decrease, strategically returning multiple times to check on the price. This is an important issue that e-tailers need to account for when pricing their products. In this talk, we propose a model that incorporates returning customer behavior. We focus on the case of a monopolist e-tailer selling a single product over a finite horizon. For classes of demand functions, we develop convex reformulations that are tractable. We derive general insights on pricing strategies in the presence of returning customers. We compare the prices and revenue of a myopic pricing policy, which treats returning customers the same as first-time customers, to the optimal pricing policy. This allows us to estimate the value of smart pricing.

Tue.1.I 1058

Convex optimization approaches to polynomial optimization problems

Organizer/Chair Miguel Anjos, École Polytechnique de Montréal - Invited Session

Amélie Lambert, CEGIR-Can (with Alain Billionnet, Soufiane Eloumi)

Convex reformulations of integer quadratically constrained problems

We consider a general integer program (IQIP) where both the objective function and the constraints are quadratic. We show that the quadratic convex reformulation approach can be extended to that case. This approach consists in designing a program, equivalent to IQIP, as a quadratic convex objective function and linear or quadratic convex constraints. The resulting program is then solved by a standard solver. We start by dealing with the objective function. For this, we solve a semi-definite program from which we deduce a reformulation of IQIP as an equivalent problem (P) having a convex quadratic objective function. We then handle the quadratic constraints of (P). We propose and compare linear and quadratic convex reformulations of these constraints. Finally, we give some numerical results comparing our different approaches.

Fritz Rendl, AU Kagernfurt (with Philipp Hungerlander)

Active set methods for convex quadratic optimization with simple bounds

A primal-dual active set method for quadratic problems with bound constraints is presented which extends the infeasible active set approach of Kunisch and Rendl [SIOPT 2003]. Based on a guess on the active set, a primal-dual pair is computed that satisfies the first order optimality condition and the complementary condition. Primal-variables outside their bounds are added to the active set until a primal feasible solution is reached. Then a new active set is generated based on the feasibility information of the dual variables. Strict convexity of the quadratic problem is sufficient for the algorithm to stop after a finite number of steps with an optimal solution. Computational experience indicates that this approach also performs well in practice.

Jianxun Pe, Faculty of information studies in Nuo ments (with Gabriele Eichfelder)

On the set-semidefinite representation of nonconvex quadratic programs over arbitrary feasible sets

In the talk we show that any nonconvex quadratic problem over some set $K \subseteq \mathbb{R}^n$ with additional linear and binary constraints can be rewritten as a linear problem over the cone, dual to the cone of K-semidefinite matrices. We show that when K is defined by one quadratic constraint or by one concave quadratic constraint and one linear inequality, then the resulting K-semidefinite problem is actually a semidefinite programming problem. This generalizes results obtained by Sturmf and Zhang (On cones of nonnegative quadratic functions, 2003). Our result also generalizes the well-known completely positive representation result from Burer (On the copositive representation of binary and continuous nonconvex quadratic programs, 2009), which is actually a special instance of our result with $K = \mathbb{R}_+^n$. In the last part of the talk we present new approximation hierarchies for the cone of copositive matrices based on the completely positive moment matrices.

Implementations & software
strategies of searching in the branch and bound tree. These solvers are run as blackbox-solvers on parallel threads, exchanging potential information as primal solutions or dual bounds via callbacks at runtime. We apply the above on the MIPLIB data-sets and show a promising speed-up in computation for many instances.

Michael Joswig, TU Darmstadt (with Eugene G. Garrow)

polymake for integer linear programming

polymake is a software tool for experiments in polytope theory and related areas. More recently, new functionality useful for integer linear programming was added. This includes Hilbert bases (via interface to Normaliz), Gomory-Chvátal closures, point enumeration, standard contractions, and more.

The system has been developed since 1997 and continuously expanded. Many people contributed over the years, see http://www.polycode.org/doku.php/team for the complete list.

See also a new tutorial related to optimization by Marc E. Pfetsch and Sebastian Pokutta: http://www.polycode.org/doku.php/tutorial/optimization

Frédéric Gardi, LocalSolver (with Thierry Benoist, Julien Darlay, Bertrand Estellier, Romain Megel, Karim Nouioua)

LocalSolver: A mathematical programming solver based on local search

We present LocalSolver 2.0 (http://www.localsolver.com), a mathematical programming solver founded on local-search techniques. LocalSolver offers simple APIs as well as an efficient modeling language for fast prototyping. Actually it is designed to tackle combinatorial problems that is, models with 0-1 decision variables only. LocalSolver can handle very large nonlinear problems with millions of binary decisions in minutes of running times only. Its practical performance relies on innovative autonomous moves coupled with a highly-optimized incremental evaluation machinery. In this way, LocalSolver is able to explore millions of feasible solutions in minutes of running times, ensuring a fast convergence toward high-quality solutions. It has been tested on classical benchmarks and succeeded the first phase of the Google ROADFE/EURO Challenge (ranked 25th among 80 participating teams). Moreover, LocalSolver is used in several real-life applications: TV media planning, maintenance planning, energy optimization, mobile network partitioning, car sequencing, project management. For the next version, we plan to extend its capabilities to deal with mixed-variable models.

Int. Conf. on Mathematics and Computer Science (IMCSC) 2013

MILP formulations III

Chair: Magnus Önnheim, Chalmers University of Technology

Ramin Torres, Escuela Politécnica Nacional (with Diego Recalde, Polo Vaca)

Optimizing the Ecuadorian football league third division.

In this work, a real-world application arising in the Ecuadorian football league third division is considered. Currently, this league is played by a set of teams which is empirically partitioned by a geographical criterion. After identifying such partition, teams on each group play an independent double round robin tournament. The problem consists in partitioning the set of teams into groups such that the distance travelled by each team in away-matches is minimized. Moreover, the number of teams in a group is fixed by regulations of the football league. Balanced groups, according to football level, are maximized. Moreover, the number of teams in a group is fixed by regulations of the football league. Balanced groups, according to football level, are maximized. LocalSolver is able to explore millions of feasible solutions in minutes of running times, ensuring a fast convergence toward high-quality solutions. It has been tested on classical benchmarks and succeeded the first phase of the Google ROADFE/EURO Challenge (ranked 25th among 80 participating teams). Moreover, LocalSolver is used in several real-life applications: TV media planning, maintenance planning, energy optimization, mobile network partitioning, car sequencing, project management. For the next version, we plan to extend its capabilities to deal with mixed-variable models.

Kosuke Hotta, Bunkyo University

Enumeration and characterization of the electoral districting for the decision support

In Japan, 300 members of the House of Representatives, the Lower House, are elected by the single-seat constituency system. Each elected district is made by the apportionment to the 47 prefectures and the redistricting in each prefecture. The apportionment gives the lower bound of the gap in the value of individual votes. Because of the density of population in an urban area, the lower bound of the ratio is close to 2 times. As a result, the gap is more than 2 by the redistricting. In Japan, the state of the same condition has been continuing for over ten years. By optimizing both the apportionment problem and the redistricting problems respectively, the limit of the disparity is 1.939 for the population in 2010 and the provinces in 2011. The 0–1 IP model to optimize the redistricting was studied by Nemoto and Hotta in 2003. The optimal district gives the limit of the disparity, but it is not always practical. So, it is better to enumerate some practical districts, to point out the similarity to the current district, and to characterize the district candidates. This research provides them for the decision support.

Magnus Önnheim, Chalmers University of Technology (with Tanguy Almgren, Niclas Andrénsson, Michael Patriksson, Ann-Brith Strömberg, Adam Wojcieszowski)

The opportunistic replacement problem: Model, theory and numerics

We present a 0–1 integer linear programming (ILP) model for determining optimal opportunistic maintenance schedules for a system of components with maximum replacement intervals; it is a natural starting point for modelling replacement schedules of more complex systems. We show that this problem is NP-hard and that all the necessary inequalities induce facets. We further present a new class of facets defined by $\{0, \frac{1}{2}\}$-Chvátal–Gomory cuts. For costs monotone with time a class of elimination constraints, allowing for maintenance only when replacement is necessary for at least one component, is defined. For fixed maintenance occasions the remaining linear program is solvable by a greedy procedure. Results from a case study on aircraft engine maintenance illustrate the advantage of the $0–1$ ILP model over simpler policies. We include the new class of facets in a branch&cut framework and note a decrease in number of branch&bound nodes and simplex iterations for most instances classes with time dependent costs. For instance classes with time independent costs and few components the elimination constraints are used favourably.

120 Tue.1

Trends in mixed integer programming II

Organizers: Charis Andrea Lodi, University of Bologna, Robert Weismantel, ETH Zurich - Invited Session

Gustavo Angulo, Georgia Institute of Technology (with Shabbir Ahmed, Santanu Dey)

Semi-continuous network flow problems

We consider network flow problems where some of the variables are restricted to be semi-continuous. We introduce the single-node semi-continuous network flow set with variable upper bounds as a relaxation. Two particular cases of this are set, for which we present complete descriptions of the convex hull in terms of linear inequalities and extended formulations. We study the efficacy of the polyhedral results on a class of semi-continuous transportation problems.

Domenico Salvagnin, University of Padova (with Matteo Fischetti, Michele Monaci)

Randomness and tree search

Many mixed integer linear programs exhibit a high performance variability when solved with current state-of-the-art solvers, meaning that seemingly performance-neutral changes in the environment or in the input format have a great influence in the actual solution process. Such variability is intrinsic in the enumerative nature of the branch-and-cut methods used to solve MIP instances and is mainly due to the fact that many decisions taken during the tree search (e.g., branching strategies, primal heuristics) are just heuristics and are subject to imperfect tie-breaking (degeneracy of the instance at hand further complicates the picture).

We investigate whether randomness can be a useful tool to overcome the issue of performance variability and to actually take advantage of it to speed up the solution process. Preliminary computational results show that the proposed approach is promising.

Stefano Smriglio, University of L’Aquila (with Andrea Lodi, Ted Ralphs, Fabrizio Rossi)

Interdiction branching

Interdiction branching is a branching method for binary integer programs that is designed to overcome some difficulties that may be encountered by branching on a variable dichotomy. Unlike traditional methods, the branching disjunction is selected taking into account the best feasible solution found so far. In particular, the method computes an improving solution cover, which is a set of variables of which at least one must be nonzero in any improving solution. From an improving solution cover, we can obtain a branching disjunction. For instance, each child node is guaranteed to contain at least one improving solution. Computing a minimal improving solution cover amounts to solving a discrete bilevel program, which is difficult in general. In practice, a solution cover, although not necessarily minimal nor improving, can be found using a heuristic that achieves a profitable trade-off between the size of the enumeration tree and the computational burden of computing the cover. An empirical study shows that such an implementation of the method reduces significantly the size of the enumeration tree compared to branching on variables.
Non-standard optimization methods
Chair Dennis Egbers, Technische Universität Braunschweig

Roman Polyak, George Mason University

Nonlinear equilibrium for optimal resource allocation

When linear programming (LP) is used for optimal allocation limited resources the prices for goods and the resources availability are given priory and independent on the production output and prices for the resources. Nonlinear equilibrium (NE) eliminates this basic drawback of LP allowing finding prices for goods and resources availability consistent with the production output and prices for the resources. Finding NE is equivalent to solving a variation inequality (VI) on the Cartesian product of the primal and dual non negative octants, projection on which is a very simple operation. We consider two methods: projected pseudo-gradient (PPG) and extra pseudo-gradient (EPG), for which the convergence is established. Both PPG and EPG are based on the simplicity of the first and the high performance of the second one.

Dennis Egbers, Technische Universität Braunschweig (with Saturo Fujishige, Uwe Zimmermann)

Some remarks on the LP–Newton method

Nowadays it is well known that linear programming problems can be solved in weakly polynomial time. Still unresolved is the question whether there exists a strongly polynomial algorithm for linear programming or not. In 2009 Fujishige discussed some alternative approaches inspired by successful application in submodular optimization in order to achieve some advancement in this direction which stimulated our research. As shown, for example, by Papadimitriou and Stèglitz, linear programming problems may w.l.o.g. be considered to be bounded. It is possible to reduce bounded LP to a sequence of LPs on zonotopes which can easily be solved by a greedy algorithm. The approach presented is based on the zonotope formulation and can be described as a Newton-type algorithm using a sequence of minimum norm point calculations iterating to the optimum. Based on previous work by Fujishige et al. we will present theoretical as well as practical results on the performance of the algorithm. In particular, different approaches for calculating the minimum norm point will be compared with respect to certain drawbacks in a previously applied algorithm of Wolfe.

Juan Otero, Havana University (with Erick Lanford)

A hybrid evolutionary approach for solving the vehicle routing problem with time windows (VRPTW)

In this paper an evolutionary strategy for solving the VRPTW is proposed. The main idea of this approach is to use routing constructive heuristics for generating the initial population and for designing the genetic operators. Modifications of the push forward insertion heuristic [2] and of an efficient insertion heuristic proposed by Campbell and Savelsbergh [1] are introduced. Both algorithms are used in an adequate proportion, depending on the number of customers, in order to combine the simplicity of the first and the high performance of the second one. In order to analyze the behavior of the proposed approach, it was programmed in C++. Computational tests were performed, using ten problems of the Gehring/Homburger library. The results were very similar to the best solutions reported in the literature and, for some problems, the obtained solutions are the best known so far.

Tiago Montanher, Mathematics and Statistics Institute of University of São Paulo

An integer programming model for the oil transference in refineries under time window constraints

Programmers of oil refineries often face the problem of moving their commodities between tanks. The transference is made through a shared pipeline network. Each pipeline can take only one transference at a time which has costs due to degradation and safety issues. The programmer also needs to consider delivery times at each destination which is usually expressed in terms of a time window. We model this scenario as the problem to find k-vertex disjoint paths in a graph under time window constraints. Here k is the number of transferences. Each edge (pipeline) has a cost and a transfer time depending on the commodity transferred. We ask for independent paths to satisfy time constraints while minimizing total transference costs. Our formulation leads to a branch and price algorithm which combines an integer programming model with a Dantzig Wolfe decomposition reformulation in order to treat time constraints. We show numerical results in a real but simplified plant with 117 equipments, 230 pipelines and a variable number of simultaneous transferences.

Paul Sturborg, TU München (with Rene Brandenberg, Michael Ritter)

Vehicle routing with flexible load carriers

In many Vehicle Routing applications, using containers allows to shorten loading times and compose (potentially more efficient) tours more flexibly. We examine the optimization problem that occurs in settings, where a small number of containers is used to fulfill transportation tasks on a graph. To derive an ILP model, we consider a graph, where each task is represented by a vertex and arcs correspond to tasks directly succeeding each other. Now, the problem is related to the Vehicle Routing Problem with Time Windows, but constraints added to account for container usage render common decomposition approaches more or less useless. Instead, we can embed the problem into a broader framework which encompasses applications from routing on a multi-graph to Airline Crew Scheduling. The framework uses of a number of independent transportation layers which passengers can travel on and change between to fulfill certain objectives. This approach motivates a new model which treats containers as passengers in the described framework, thus circumventing major deficiencies of the original model, significantly decreasing its size and allowing a number of new instances to be solved to optimality.
the basis of the conventional analysis tools vis-a-vis a fuzzy forecasting HS and LS fuel prices. Moreover, forecasting issues are discussed on time series, as well as to present the analysis of the differential of the statistical analysis of the currently available LS and HS marine fuels dertocomplywiththenewlimits.Thispaperaimstoprovideat thorough representation of operators for alternative technical means, such as scrubbers, in or-
price difference between HS and LS might also determine the decision isalmost similartothe fluctuation of high-sulphur (HS) fuels. The low-sulphur (LS) marine fuelshave a higher price, and their fluctu-
ations, that determine the limits of sulphur content in marine fuels. The cost of SOx limits to marine operators: Results from exploring
minimizing voyage cost and maximizing profit.

Separation of valid inequalities for multilinear functions

Efficient solvers for mixed integer nonlinear optimization problems

Mixed-integer nonlinear programming

Separation of valid inequalities for multilinear functions

Methods for nonlinear optimization IV

Nonlinear programming

Multiobjective optimization II

Multiobjective optimization

A branch & cut algorithm for bi-objective TSP

Decision support for multi-attribute multi-item reverse auctions

Non-radial models to define the preference measure for convex cone-based strict partial orders

Speed optimization in a ship pickup and delivery problem: balancing economic and environmental performance

Scheduling and environmental routing of maritime vessels in a multibjective environment

The cost of SOx limits to marine operators: Results from exploring marine fuel prices

Stefan Vigerske, GAMS Software GmbH

Harilaos Psaraftis, National Technical University of Athens (with Christos Stefanakos)
The cost of SOx limits to marine operators: Results from exploring marine fuel prices

Marine operators are confronted with the new air emissions reg-
ulations, that determine the limits of sulphur content in marine fuels. The low-sulphur (LS) marine fuels have a higher price, and their fluctu-
ation is almost similar to the fluctuation of high-sulphur (HS) fuels. The price difference between HS and LS might also determine the decision of operators for alternative technical means, such as scrubbers, in or-
der to comply with the new limits. This paper aims to provide a thorough statistical analysis of the currently available LS and HS marine fuels time series, as well as to present the analysis of the differential of the HS-and LS fuel prices. Moreover, forecasting issues are discussed on the basis of the conventional analysis tools vis-a-vis a fuzzy forecasting methodology. The results of the comparison could guide the next steps of research.

Pietro Belotti, Clemson University

Separation of valid inequalities for multilinear functions

Efficient solvers for mixed integer nonlinear optimization problems

Multiobjective optimization

A branch & cut algorithm for bi-objective TSP

Decision support for multi-attribute multi-item reverse auctions

Non-radial models to define the preference measure for convex cone-based strict partial orders

Multiple Criteria Decision Making (MCDM) is an important field in applied mathematics. The main goal in MCDM is finding the most pre-
ferred solution among a set of alternatives or to rank order them. We consider the problem of finding a strict partial order for a finite set of multi-criteria alternatives. We assume an unknown quasi-concave value function and the DM’s preferences are available in the form of pair-wise comparisons. Then, a polyhedron and a convex cone are constructed such that the vertex of the cone is an inferior alternative. To produce a rank order, we determine the status of an arbitrary alternat-
measures, especially in the case that the data are large, the results would not be much infor-
matical. Also, the radial measure is unstable when small changes occur in the data set of the problem. Therefore, the new non-radial models solves the drawbacks and concludes more reliable results.

Charlotte Tanner, University of Namur (FUNDP) (with Daniel Ruiz, Amick Sartene)

Block diagonal preconditioners using spectral information for saddle-point systems

Pietro Belotti, Clemson University

Separation of valid inequalities for multilinear functions

Efficient solvers for mixed integer nonlinear optimization problems

Multiobjective optimization

A branch & cut algorithm for bi-objective TSP

Decision support for multi-attribute multi-item reverse auctions

Non-radial models to define the preference measure for convex cone-based strict partial orders

Multiple Criteria Decision Making (MCDM) is an important field in applied mathematics. The main goal in MCDM is finding the most pre-
ferred solution among a set of alternatives or to rank order them. We consider the problem of finding a strict partial order for a finite set of multi-criteria alternatives. We assume an unknown quasi-concave value function and the DM’s preferences are available in the form of pair-wise comparisons. Then, a polyhedron and a convex cone are constructed such that the vertex of the cone is an inferior alternative. To produce a rank order, we determine the status of an arbitrary alternat-
measures, especially in the case that the data are large, the results would not be much infor-
matical. Also, the radial measure is unstable when small changes occur in the data set of the problem. Therefore, the new non-radial models solves the drawbacks and concludes more reliable results.

Charlotte Tanner, University of Namur (FUNDP) (with Daniel Ruiz, Amick Sartene)
block, we consider the case where the saddle-point system is very badly conditioned due to the combined effect of very small eigenvalues of the \((1,1)\) block and of very small singular values of the off-diagonal block. Under the assumption that spectral information related to these very small eigenvalues/singular values can be extracted separately, we propose a strategy that approximates the “ideal” block diagonal preconditioner of Murphy, Golub and Wathen (2000) with exact Schur complement, based on an approximation of the Schur complement that combines the available spectral information. We also derive a practical algorithm to implement the proposed preconditioners within a standard minimum residual method and illustrate the performance through numerical experiments on a set of saddle-point systems.

Hans-Berndt Dör, University of Stuttgart [with Christian Ebenbauer]

Continuous-time saddle point algorithms with applications in control

We present some recent results on a novel class of smooth optimization algorithms that compute saddle points which arise in convex optimization problems. In contrast to many related results, we are dealing with optimization algorithms which are formulated as ordinary differential equations, i.e. as smooth continuous-time vector fields, which we analyze from a dynamical systems theory perspective. The idea of using a differential equations to find a saddle point of a Lagrangian function goes back to K. J. Arrow, L. Hurwicz and to H. Uzawa. They proposed a gradient-like system for finding a saddle point with a non-smooth objective and a smooth vector field. An alternative vector field for saddle point problem is presented in this work. Like the AHU-flow, its trajectories are converging to the saddle point of the Lagrangian. However, this vector field has two distinct features. First, we proof that the flow also converges for linear programs, which is not the case for the AHU-flow, and second, the vector field is smooth which can be exploited in control theory to design distributed feedback laws for multi-agent systems. Furthermore, the convergence of a continuous-time Nesterov-like fast gradient variant is proved.

JaroSav Fonkes, University of Edinburgh [with Coralia Cartis, Chris Farmer, Nicholas Gould]

Global optimization of Lipschitz continuous functions

We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularization techniques to a radial-basis model of the objective over balls that form an overlapping covering of the feasibility domain. Numerical results for both serial and parallel implementations will be provided.

Roger Fletcher, Dundee University

On trust regions and projections for an SLCP algorithm for NLP

The speaker has recently developed a first derivative trust region filter algorithm for NLP (SIPLT Darmstadt 2011) based on successive linear constraint programming (SLCP) (Robinson’s method). Open source code is available through COIN-OR. Numerical evidence suggests that it is comparable in run time to the second derivative code filterSQP. An important feature of the code is the occasional use of projection steps to control feasibility violations, which can significantly improve the speed of (global) convergence on some highly nonlinear problems.

Discussions with other researchers have identified a possible area for improvement in that these projection steps take no account of the objective function value, in contrast say to second order correction (SOC) steps. The speaker has been investigating the possibility of replacing projection steps by additional LCP calculations. New insight is provided as to how a trust region might be designed to operate in an NLP context. Early indications are that significant gains in both speed and reliability may be possible, both in feasibility restoration and in finding local optima. There are also indications for proving global convergence.

Jennifer Enway, Wake Forest University

Quasi-Newton methods for solving the trust-region subproblem

In this talk, we consider quasi-Newton trust-region methods for large-scale unconstrained optimization. A new trust-region subproblem solver is proposed that is able to take advantage of the special structure of quasi-Newton approximations to Hessians. The method relies on a sequence evolving, low-dimensional subspaces. Numerical results compare the proposed method with other popular quasi-Newton trust-region methods in various trust-region settings.
and Talbot. This study gives a new insight on this approach and yields original a posteriori estimates.

Elías Heluiz, University of São Paulo (with Álvaro De Pierro)

Incremental subgradients for constrained convex optimization: A unified framework and new methods

We will present a unifying framework for nonsmooth convex minimization together with ε-subgradient algorithms and methods for the convex feasibility problem. This development is a natural step for ε-subgradient methods in the direction of constrained optimization since the Euclidean projection frequently required in such methods is replaced by an approximate projection, which is often easier to compute. The developments are applied to incremental subgradient methods, resulting in new algorithms suitable to large-scale optimization problems, such as those arising in tomographic imaging.

The flexibility of the framework will be demonstrated by the presentation of several operators, both for the optimality step and for the feasibility step of the prototypical algorithm.

Jerome Fehrenbach, ITAV

Stripes removal in images, applications in microscopy

In a number of imaging modalities, images are degraded by a noise composed of stripes. This is the case, e.g., in Atomic Force Microscopy, in nanotomography or in Selective Plane Illumination Microscope (which is an emerging imaging modality). This work aims at proposing an efficient method to restore these images. A model of stationary noise is presented, where the noise is defined as the convolution of a given pattern with a white noise. The denoising problem is then formulated using a Bayesian approach. It leads to a non-smooth convex optimization problem. The minimization is performed using a preconditioned primal-dual algorithm proposed by Chambolle and Pock in 2011. Our framework allows to take into account several components of noise, and the proposed algorithm on the certain-equivalent value of the optimal policy, and requires little modification of conventional algorithms. We provide a new convergence test for this class of risk-averse problems by considering the probability to build subproblems. We are going to present the algorithm and we are going to show how it behaves.

Vitor de Matos, Plan4 (with Erlon Finardi, Andrew Philpott)

On solving multistage stochastic programs with general coherent risk measures

In this work we discuss the solution of multi-stage stochastic linear programs with general coherent risk measures, using sampling-based algorithms. We describe a computational approach that changes the probability measure of the outcomes of next stage problems to compute the outer approximation of the future cost function (cuts in SDPD). This provides a lower bound on the certainty-equivalent value of the optimal policy, and requires little modification of conventional algorithms. We provide a new convergence test for this class of risk-averse problems by computing an upper bound on the certainty-equivalent value of the optimal policy, using an inner approximation algorithm. Finally, we show the results of computations on a large scale problem (the Brazilian long term hydrothermal scheduling problem), in which we compare the proposed implementation strategy with the one used previously by these authors.

Pierre Grig Verugia, EDF R&D – University of Auckland (with Andrew Philpott)

Modelling electricity prices and capacity expansions over a long-term horizon

We consider a power producer who wants to minimize in the long-term the sum of its production costs and investment costs. We make a distinction between two sorts of randomness: “day-to-day randomness” that affects the system, like power demand, water inflows, etc. and more “sporadic randomness” like political decisions (recently Germany decided to stop nuclear power production), long-term fuel prices trends, etc. These two kinds of randomness are treated differently.

Unlike most existing approaches which consider two-step problems, our model is a multi-stage stochastic MIP and thus allows us to obtain investment strategies rather than simple decisions. However, this program is too big to be solved directly by a commercial solver.

Hence we develop a specific Dantzig-Wolfe decomposition scheme that iterates over the interconnection flows. This scheme allows flexibility in building subproblems. We are going to present the algorithm and we are going to show how it behaves.

A quantities decomposition scheme for energy management

Each country in the European electricity market has its own way to cope with its electricity demand. The utilities perform strategies that minimize their production cost under technical constraints together with information constraints. They can use to supply consumer’s demand, various electricity generation units together with market offers. The problem for each actor is to schedule its generation and determine whether or not he has to import/export electricity. The countries are linked through the electricity grid, we propose a decomposition scheme that iterates over the interconnection flows. This scheme allows flexibility in building subproblems. We are going to present the algorithm and we are going to show how it behaves.

Kangy Bart, EDF R&D, ODSR dept. (with Anes Gallagi, Almud Lemou)

Optimization in energy systems

Nonlinear and combinatorial aspects in energy optimization

Elias Heluiz, University of São Paulo (with Álvaro De Pierro)

Prices stabilization in inexact unit-commitment problems

Unit-commitment (UC) problems in electricity production are well-suited for constraint (or price) decomposition techniques: by dualizing the linking constraints, the large-scale nonconvex problem decomposes into smaller independent subproblems. The dual problem consists then in finding the best Lagrangian multiplier (the optimal price); it is solved by a convex nonsmooth optimization method.

Realistic modeling of technical production constraints makes the Lagrangian subproblems themselves difficult to solve. It is possible for bundle algorithms to cope with inexact solutions of the subproblems. In this case however, the computed optimal dual variables show a noisy and unstable behaviour, that could prevent their use as price indicator.

In this talk, we present a way to stabilize dual optimal solutions by penalizing the noisy behaviour of the prices in the dual objective. After studying the impact of a general stabilization term on the model and the resolution scheme, we present total variation stabilization and its primal interpretation. We illustrate our approach on the real-life UC problem of Electricité de France (French Electricity Board).

Sofia Zourav, Inria Grenoble (with Jérôme Malick)

Exploiting structure in MIQP approaches to unit commitment problems

The unit commitment problem in electrical power production is naturally formulated as a mixed-integer quadratic program; as such it could be solved with general-purpose MIQP tools, but direct application of this approach using the standard formulation is not efficient. Yet, the problem presents several (possibly nested) sources of structure, from the space-dense-duality usually exploited by Lagrangian Relaxation approaches (leading to smaller, very structured MIQP subproblems for which efficient specialized methods exist) to the presence of very many semicontinuous variables with convex nonlinear cost [which suggests the use of perspective reformulation techniques to strengthen the lower bound]. We discuss novel ways of exploiting some of these structures, possibly in combination, reporting computational results to help gauging their potential effectiveness.

Maria Teresa Vespucci, University of Bergamo (with Alberto Gelmini, Mario Innorta, Diana Moneta, Danis Sitake)

A procedure for minimizing variations of an initial operating point in medium-voltage AC network with distributed generation and storage devices

An optimization algorithm is described for the voltage control of medium voltage distribution networks in presence of distributed generation. Given the current operating point and the forecasted load and generation, the algorithm computes the changes to be requested to the controllable resources in order to ensure fulfillment of technical constraints (voltage at nodes, current in branches) with the lowest overall cost. Distributor’s redistributing costs, modelled by means of binary variables, are minimized while satisfying service security requirements and ensuring an adequate quality of service. Storage devices are modeled by means of constraints that relate adjacent time periods. The proposed two-step solution procedure is based on decoupling active and reactive variables. In step 1 a MILP model determines the active power production and the use of storage devices that minimize redispatching costs over all periods in the time horizon: in this step a DC network representation is used. In step 2, given the optimal active power productions computed in step 1, reactive variables in each time period are computed by solving an AC optimal power flow model.
where the treatment of solid cancer tumors with external radiation is typically planned based on information that is collected during the initial examination. The overall goal of the treatment is to eliminate the tumor, hence a certain evolution is anticipated. However, current optimized radiation delivery strategies do not vary over the course of the treatment, which typically spans over four to six weeks. We present novel methods that address this issue by taking the changes in the tumor into account and exploiting its evolution to both enhance the recovery and increase the success of the therapy. We demonstrate the performance of the method based on clinical cases, where a) the geometric shape of the tumor varies or b) the cell sensitivity to radiation and its effect changes over time. Moreover, the presented treatment plans are intrinsically robust to deviations from the assumed evolution path.
The aim is to specialize general linear programming computing techniques to these stochastic problems; and on the other hand, to work out LP computational techniques based on ideas originally developed for the handling of risk measures.

Andrzej Ruszczynski, Rutgers University (with Olim Cao)
Methods for solving risk-averse dynamic optimization problems
For risk-averse dynamic optimization problems with Markov risk measures, we present several computational methods for finding optimal policies. In particular, we extend to the risk-averse case the value iteration, policy iteration, and mathematical programming approaches. We illustrate the results on several applied problems.

Daria Dentscheva, Stevens Institute of Technology (with Gabriela Martinez, Eli Wolfhagen)
Decomposition methods for solving two-stage optimization problems with stochastic ordering constraints
We consider two-stage risk-averse stochastic optimization problems with a stochastic ordering constraint on the recourse function. We consider the usual stochastic order, the increasing convex order, and the multivariate stochastic dominance. We propose decomposition methods to solve the problems and prove their convergence. Additionally, new characterizations of the increasing convex order relation are provided. Our methods exploit the decomposition structure of the risk-neutral two-stage problems and construct successive approximations of the stochastic ordering constraints. Numerical results confirm the efficiency of the methods.

Recent advances in risk representation
Organizer/Chair Erick Delage, HEC Montréal
Recent advances in risk representation and empirical evidence
Erick Delage, HEC Montréal (with Benjamin Armbruster)
Decision making under uncertainty when preference information is incomplete
We consider the problem of optimal decision making under uncertainty but assume that the decision maker’s utility function is not completely known. Instead, we consider all the utilities that meet some criteria, such as preferring certain lotteries over other certain lotteries and being risk averse, s-shaped, or prudent. This extends the notion of stochastic dominance. We then give tractable formulations for such decision making problems. We formulate them as robust utility maximization problems, as optimization problems with stochastic dominance constraints, and as robust certainty equivalent maximization problems. We use a portfolio allocation problem to illustrate our results.

Dessislava Pachamanova, Babson College (with Cheekiat Low, Melvin Sim)
Skewness-aware asset allocation: A new theoretical framework and empirical evidence
This paper presents a new measure of skewness, skewness-aware deviation, that can be linked to prospective satisficing risk measures and tail risk measures such as Value-at-Risk. We show that this measure of skewness arises naturally also when one thinks of maximizing the certainty equivalent for an investor with a negative exponential utility function, thus bringing together the mean-risk, expected utility, and prospective satisficing measures frameworks for an important class of investor preferences. We generalize the idea of variance and covariance in the new skewness-aware asset pricing and allocation framework. We show via computational experiments that the proposed approach results in improved and intuitively appealing asset allocation when returns follow real-world or simulated skewed distributions. We also suggest a skewness-aware equivalent of the classical capital asset pricing model beta, and study its consistency with the observed behavior of the stocks traded at the NYSE between 1963 and 2006.

Chen Chen, Columbia University (with Gurud Jangamp, Cunmi Mouliem)
An axiomatic approach to systemic risk
Systemic risk is an issue of great concern in modern financial markets as well as, more broadly, in the management of complex systems. We propose an axiomatic framework for systemic risk. Our framework allows for an independent specification of (1) a functional of the cross-sectional profile of outcomes across agents in the system in a single scenario of nature, and (2) a functional of the profile of aggregated outcomes across scenarios of nature. This general class of systemic risk measures captures many specific measures of systemic risk that have recently been proposed as special cases, and highlights their implicit assumptions. Moreover, the systemic risk measures that satisfy our conditions yield decentralized decompositions, i.e., the systemic risk can be decomposed into risk due to individual agents. Furthermore, one can associate a shadow price for systemic risk to each agent that correctly accounts for the externalities of the agent’s individual decision-making on the entire economy.

Multistage stochastic mixed 0-1 optimization: Algorithms and applications
Organizer/Chair Laureano Escudero, Universidad Rey Juan Carlos
Invited Session
Ozlem Cavus, Stevens Institute of Technology (with Gabriela Martinez, Eli Wolfhagen)
Scenario cluster Lagrangian decomposition
We introduce four scenario cluster based Lagrangian decomposition (CLD) procedures for obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0-1 problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable representation over the set of scenarios, we propose to decompose the model into a set of scenario clusters. We compare the computational performance of the subgradient method, the volume algorithm, the progressive hedging algorithm and the dynamic constrained cutting plane scheme for different numbers of scenario clusters. Our computational experience shows that the CLD procedures outperform the traditional LD scheme for single scenarios both in the quality of the bounds and computational effort. Additionally, our CLD approach obtains very frequently the optimal solution of the problem outperforming the plain use of a state-of-the-art MIP solver. An extensive computational experience is reported.

Laureano Escudero, Universidad Rey Juan Carlos (with Juan Monge, Dolores Romero-Morales)
Stochastic tactical supply chain management under uncertainty
The uncertainty in the supply tactical chain management (STSM) is due to the stochasticity inherent in some parameters for dynamic (multi-period) planning problems, mainly, product demand and demand loss, production cost and resources availability, and it is treated via scenario analysis. We present a modeling framework for solving the multi-period stochastic mixed 0-1 STCM problem. A scenario tree based scheme is used to represent the parameters’ uncertainty and for designing the deterministic equivalent model (DEM) for risk management by implementing the risk averse strategies based on scenario immunization, average conditional value-at-risk and stochastic dominance constraints. Solving the huge DEM instances is not affordable by using plain MIP solvers. Instead of that, we present an extension of a stochastic dynamic programming metaheuristic, by including the handling of constraints linking variables from different scenarios and constraints that do have variables that do not belong to any specific scenario. Some computational experience is reported.

María Garín, Universidad del Basque Country, UPV/EHU (with Laureano Escudero, María Menina, Gloria Péril)
A BFC-MS algorithm for solving multistage mixed 0-1 stochastic problems with risk averse stochastic dominance constraints
In the context of stochastic optimization, the multistage mixed 0-1 deterministic equivalent model (DEM) use to be very large and difficult to solve. So, the plain use of even MIP state-of-the-art solvers for optimizing the related DEM requires an unaffordable computing effort or simply cannot be solved. The alternative is to use decomposition methods of the full model in smaller MIP submodels. Moreover, the general approach (so named risk neutral) has the inconvenience of providing a solution that ignores the variance of the objective value of the scenarios, and so, it ignores the occurrence of scenarios with an objective value below the expected one. In this work we present the optimization of the objective function expected value subject to stochastic dominance constraints for a set of profiles. The price to pay is that the DEM becomes much bigger, augmented by new variables and constraints. So, we present an improved version of our BFC that consider nonsymmetric scenario trees, where a special treatment is given to the constraints that link variables from different scenarios.
given lower bound (a minimum quantity). This problem has recently been shown to be weakly \text{NP}-complete even on series-parallel graphs.

We show that it is strongly \text{NP}-hard to approximate the maximum flow problem with minimum quantities \([\text{MFPMQ}]\) on general graphs within any positive factor. On series-parallel graphs, however, we present a pseudo-polynomial dynamic programming algorithm for the problem. Mainly due to this result, we show that the weakly \text{NP}-complete on general graphs for the case that the minimum quantity is the same for each arc in the network and we present a \((2−\frac{1}{n})\)-approximation algorithm for this case, where \(n\) denotes the common minimum quantity of all arcs.

Marco Senatore, University of Rome “Tor Vergata” [with David Adjuchashvili]

The online replacement path problem

We study a natural online variant of the replacement path problem. The replacement path problem asks to find for a given graph \(G = (V,E)\), two designated vertices \(s,t \in V\) and a shortest \(s-t\) path \(P\) in \(G\), a replacement path \(P^*\) for every edge \(e\) on \(P\). We adapt this problem to deal with the natural scenario that the identity of the failed edge only becomes available when the routing mechanism tries to cross the edge. This situation is motivated by applications in distributed networks, where information about recent changes in the network is only stored locally, and fault-tolerant optimization, where an adversary tries to delay the discovery of the materialized scenario as much as possible. Concerning the online replacement path problem, which asks to find a nominal \(s-t\) path \(Q\) and detours \(Q_e\) for every edge on \(Q\), such that the worst-case arrival time at the destination is minimized. Our main contribution is a label setting algorithm solving the problem in undirected graphs in time \(O(n \log n)\) and linear space for all sources and a single destination. We also present algorithms for extensions of the model to any bounded number of failed edges.

Jano Paulo Araújo, Pontificia Universidade Católica (PUC-Rio) [with Pascal Bertolmi, Madigione Dailandio, Fernanda Raupp]

An algorithm for the multi-terminal maximum flow

In the context of network flows, the multi-terminal maximum flow problem is an extension of the well known single source-single terminal maximum flow problem. In the multi-terminal case, the maximum flow is calculated between all pairs of nodes. Clearly, considering a symmetric network with \(n\) nodes, this problem can be solved by applying a maximum flow algorithm \(O(n-m)^2\) times, whereas the traditional method can solve it with only \(n-1\) applications. This work seeks to elaborate an algorithm able to solve the multi-terminal maximum flow problem with a computational complexity lower than the existing methods. The recent theory of sensitivity analysis, which studies the influence of an edge capacity variation on the multi-terminals maxima flows, is employed on the development of the algorithm. Techniques of the traditional methods, such as the contraction of nodes, are also part of the proposed method. Finally, the algorithm is computationally tested with all combined feature variations and heuristics. For a given instance, the algorithm showed efficiency very close to the traditional methods.

Vittorio Colao, Università della Calabria

Equilibrium problems in Hadamard manifolds

Equilibrium problems in linear spaces had been widely investigated in recent years and by several authors. It had been proved that a broad class of problems, such as variational inequality, convex minimization, fixed point and Nash equilibrium problems can be formulated as equilibrium problems. In this talk, I will deal with equilibrium problems in the setting of manifolds with nonpositional sectional curvature. An existence result will be presented, together with applications to variational inequality, fixed point for multivalued maps and Nash equilibrium problems. I will also introduce a firmly nonexpansive resolvent and discuss an approximation result for equilibrium points.

Laurentins Leustean, Simion Stoilow Institute of Mathematics of the Romanian Academy (with David Arco-Ricu, Genaro Lopez-Acedo)

Firmly nonexpansive mappings in classes of geodesic spaces

Firmly nonexpansive mappings play an important role in metric fixed point theory and optimization due to their correspondence with maximal monotone operators. In this paper we do a thorough study of fixed point theory and the asymptotic behaviour of Picard iterates of these mappings in different classes of geodesic spaces, as uniformly convex \(W^\ast\)-hyperbolic spaces, Busemann spaces and CAT(\(\delta\)) spaces. Furthermore, we apply methods of proof mining to obtain effective rates of asymptotic regularity for the Picard iterations.

Paul Oliveira, Federal University of Rio de Janeiro [with Gladston Bento, João Cruz Neto, Erik Quiróz]

Proximal and descent methods on Riemannian manifolds

This talk has two parts. In the first, it is analyzed the proximal point method applied in Hadamard manifolds, associated to the corresponding distance. The considered functions are locally Lipschitz quasiconvex. Under reasonable hypothesis, it is proved the global convergence of the sequence generated by the method to a critical point. In the second part, the concerned class is lower semicontinuous and satisfying Kurdyka-Łojasiewicz property. An abstract convergence analysis for inexact methods in Riemannian manifolds allows to obtain full convergence of bounded sequences applied to proximal method, associated to a quasi-distance (the usual distance without symmetry). The results are independent of the curvature of the manifold. A second application of the abstract theory is the convergence of inexact descent method for that class of functions on Hadamard manifolds. This extends known results for Riemannian manifolds with positive curvature. Finally, some applications are cited in related papers.
These are necessary for proving the approximation ratio and the inte-
mimax theorems of these subjects transformed to linear program-
or special kind of ear-decomposition using matching theory (theorems
spanning subgraph problem. The key ingredients are:

- matching to the subtour LP; they conjecture the ratio is at most
2

- shorter tours by nicer ears

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-
2-matching has no cut edge, we can further prove that an
2

optimal 2-matching is at most 3 times the cost of the fractional 2-
matching.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-

mimization connected T-join problem containing the graphic s → t-path TSP
and a 4/3-approximation algorithm for the smallest 2-edge-connected spanning subgraph problem. The key ingredients are:

- a special kind of ear-decomposition using matching theory (theorems

of Lovász and Frank),
- optimization of the used ear-decomposition using matroid intersec-
tion,
- minmax theorems of these subjects transformed to linear program-
ming weak duality.

The last make possible to deduce lower bounds for the graphic TSP.
These are necessary for proving the approximation ratio and the inte-
grality gap of some associated linear programs.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-
2-matching has no cut edge, we can further prove that an
2

optimal 2-matching is at most 3 times the cost of the fractional 2-
matching.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-

mimization connected T-join problem containing the graphic s → t-path TSP
and a 4/3-approximation algorithm for the smallest 2-edge-connected spanning subgraph problem. The key ingredients are:

- a special kind of ear-decomposition using matching theory (theorems

of Lovász and Frank),
- optimization of the used ear-decomposition using matroid intersec-
tion,
- minmax theorems of these subjects transformed to linear program-
ming weak duality.

The last make possible to deduce lower bounds for the graphic TSP.
These are necessary for proving the approximation ratio and the inte-
grality gap of some associated linear programs.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-
2-matching has no cut edge, we can further prove that an
2

optimal 2-matching is at most 3 times the cost of the fractional 2-
matching.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-

mimization connected T-join problem containing the graphic s → t-path TSP
and a 4/3-approximation algorithm for the smallest 2-edge-connected spanning subgraph problem. The key ingredients are:

- a special kind of ear-decomposition using matching theory (theorems

of Lovász and Frank),
- optimization of the used ear-decomposition using matroid intersec-
tion,
- minmax theorems of these subjects transformed to linear program-
ming weak duality.

The last make possible to deduce lower bounds for the graphic TSP.
These are necessary for proving the approximation ratio and the inte-
grality gap of some associated linear programs.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-
2-matching has no cut edge, we can further prove that an
2

optimal 2-matching is at most 3 times the cost of the fractional 2-
matching.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-

mimization connected T-join problem containing the graphic s → t-path TSP
and a 4/3-approximation algorithm for the smallest 2-edge-connected spanning subgraph problem. The key ingredients are:

- a special kind of ear-decomposition using matching theory (theorems

of Lovász and Frank),
- optimization of the used ear-decomposition using matroid intersec-
tion,
- minmax theorems of these subjects transformed to linear program-
ming weak duality.

The last make possible to deduce lower bounds for the graphic TSP.
These are necessary for proving the approximation ratio and the inte-
grality gap of some associated linear programs.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-

mimization connected T-join problem containing the graphic s → t-path TSP
and a 4/3-approximation algorithm for the smallest 2-edge-connected spanning subgraph problem. The key ingredients are:

- a special kind of ear-decomposition using matching theory (theorems

of Lovász and Frank),
- optimization of the used ear-decomposition using matroid intersec-
tion,
- minmax theorems of these subjects transformed to linear program-
ming weak duality.

The last make possible to deduce lower bounds for the graphic TSP.
These are necessary for proving the approximation ratio and the inte-
grality gap of some associated linear programs.

András Sebő, CNRS, Grenoble-INP, U.P.F (with Jens Vygen)

"Shorter tours by nicer ears"

I will sketch some ideas leading us to a 7/5-approximation algo-
rithm for the graphic TSP, a 3/2-approximation algorithm for the mini-

mimization connected T-join problem containing the graphic s → t-path TSP
and a 4/3-approximation algorithm for the smallest 2-edge-connected spanning subgraph problem. The key ingredients are:

- a special kind of ear-decomposition using matching theory (theorems

of Lovász and Frank),
- optimization of the used ear-decomposition using matroid intersec-
tion,
Combinatorial optimization

Tue.2.H 3005

Lift-and-project methods for combinatorial optimization problems

Organizer/Chair: Konstantinos Georgiou, University of Waterloo - Limited Session

Eden Chlamtac, Tel Aviv University

Reduced integrality gaps and improved approximations via lift-and-project methods

We consider natural convex relaxations of integer programs, such as linear programs (LP) and semi-definite programs (SDP), and examine how well they approximate various problems in combinatorial optimization. The "integrality gap" — the worst-case gap between the optimum of a convex relaxation and that of the integral program it approximates — can sometimes be reduced by considering a hierarchy of relaxations derived from lift-and-project methods.

We will look at different hierarchies, and some universal properties of the LP and SDP relaxations derived from them. Moreover, we will see how, for certain NP-hard optimization problems, we can achieve improved approximations using such strengthened relaxations while maintaining polynomial running time overall.

Monique Laurent, CWI, Amsterdam and U Tilburg (with Elisse de Klerk)

Error bounds for sums of squares relaxations of some polynomial optimization problems

We consider semidefinite programming relaxations for polynomial optimization problems based on sums of squares of polynomials and the dual relaxations based on moment matrices.

In particular, we discuss error bounds for optimization over the hypercube for the hierarchy of relaxations corresponding to the Positivstellensätze of Handelman and of Schmüder. These bounds are explicit and sharpen an earlier result of Schweighofer (2004). We also discuss links to error bounds for optimization over the simplex and for the Lasserre hierarchy.

Madhu Sudan, Toyota Technological Institute at Chicago

Effectiveness and limitations of local constraints

I will give an overview of various hierarchies which strengthen linear and semidefinite programs by adding increasingly larger local constraints. I will discuss some recent techniques for arguing about the quality of approximation achieved by these hierarchies. The focus of the talk will be on lower bounds and connections to other areas like proof complexity.

Tue.2.H 3008

Combinatorics and geometry of linear optimization I

Organizers/Chairs: Antoine Deza, McMaster University; Jesus De Loera, University of California, Davis - Invited Session

Francisco Santos, Universidad De Cantabria

Counterexamples to the Hirsch conjecture

About two years ago I announced the first counter-example to the (bounded) Hirsch conjecture: a 43-dimensional polytope with 86 facets and diameter (at least) 44. It was based on the construction of a 5-prismatoid of "width" 6, with 48 vertices. Since then, some improvements or related results have been obtained. S.-Stephen-Thomas showed that prismatoids of dimension 4 cannot lead to non-Hirsch polytopes, and S.-Matuchke-Weibel constructed smaller 5-prismatoids of length 6, now with only 25 facets. These produce counter-examples to the Hirsch conjecture in dimension 20.

But, all in all, the main problem underlying the Hirsch Conjecture remains as open as before. In particular, it would be very interesting to know the answer to any of the following questions:

(a) Is there a polynomial bound $f(n)$ for the diameter of n-faceted polytopes? ("Polynomial Hirsch Conjecture").

(b) Is there a linear bound? Is $f(n) = 2n$ such a bound? A conjecture of Hänle, suggested by the work of Eisenbrand et al. in the abstract setting of "connected layer sequences" would imply that nd is an upper bound.

Nicole Rubinstein, TU Berlin

An abstract view on the polynomial Hirsch conjecture

The question of whether a strongly polynomial algorithm for linear programming exists is one of the great mysteries of the field. It has motivated the polynomial Hirsch conjecture, which claims that the diameter of the vertex-edge graph of every polyhedron is bounded by a polynomial in its affine dimension and the number of facets.

The best known upper-bound on the diameter of polyhedra is a quasi-polynomial bound due to Kalai and Kleitman. What properties of polyhedra make this upper bound work? What techniques could be useful in improving it? We present a purely combinatorial abstraction of the graph of a polyhedron as a way of understanding these questions better. In particular, we present an abstraction in which an almost quadratic construction is known, while the Kalai-Kleitman bound still holds with essentially the same proof.

We made the conjecture that an upper bound of $d(n-1)$ holds for this abstraction. We present some evidence for and against this conjecture, and discuss open questions that could guide possible approaches to the polynomial Hirsch conjecture.

Yuriy Zinchenko, University of Calgary (with Antoine Deza, Tamas Terlaky)

Polytopes and arrangements: Diameter and curvature

We introduce a continuous analogue of the Hirsch conjecture and a discrete analogue of the result of Dedieu, Malajovich and Shub. We prove a continuous analogue of the result of Holt and Klee, namely, we construct a family of polytopes which attain the conjectured order of the largest total curvature, and a continuous analogue of a d-step equivalence result for the diameter of a polytope. Potential extensions of this work will be highlighted.

Tue.2.H 3012

Algorithms for transistor-level layout

Organizer/Chair: Stefan Hougardy, University of Bonn - Limited Session

Tim Nieberg, University of Bonn (with Stefan Hougardy, Jan Schneider)

Bonncell: Routing of leaf cells in VLSI design

In this talk, we present and discuss the routing engine of Bonncell. Given a placed leaf cell, the task at hand is to find an embedding of rectilinear Steiner trees which realizes a given netlist subject to various design rules. As a leaf cell is rather small compared to other structures usually present in VLSI design, all constraints have to be considered at the same time and as accurately as possible making leaf cell routing a very complicated problem in practice. The underlying algorithm of our solution uses a constraint generation approach based on a MIP model for packing Steiner trees in graphs and is extended to produce a problem specific formulation. While relaxing (some of) the constraints is not an option for the application, there are several ways to improve on the solution times. These include further strong valid inequalities and also some heuristic elements. Next to these, we also report on results for current real-world designs at the 22 nm chip production node.

Jan Schneider, University of Bonn (with Stefan Hougardy, Tim Nieberg)

Bonncell: Placement of leaf cells in VLSI design

The automatic layout of leaf cells in VLSI design requires significantly different algorithms than classical tools for the physical design of VLSI instances. While the number of placement objects in leaf cells is very small, at most a few dozen, the placement constraints are not covered by usual approaches. We present the placement engine of our tool Bonncell, which computes optimal placements for most real-world instances within seconds. Optimality is measured with respect to a target function that models the cell routability and proved to be very accurate in practice.

Stefan Hougardy, University of Bonn

Transistor level layout: Algorithms and complexity

In hierarchical VLSI design a leaf cell is a functional unit at the lowest level of the hierarchy. A leaf cell implements a specific function. It is built from a small number of transistors that are connected by wires.

The problem of automatically generating transistor level layouts of leaf cells has been studied for several decades. It requires the solution of hard problems as for example Steiner tree packing problems or linear arrangement problems. We give an overview of some of the algorithmic problems appearing in the transistor level layout of leaf cells and discuss why current VLSI technology requires new algorithms.

Kriszt Balcz, Egerszegyi Research Group, Eötvös Loránd University, Budapest

Restricted d-matchings

A C_d-free 2-factor is a 2-factor not containing cycles of length at most k. Cornuéjols and Pulleyblank showed that deciding the existence of such a subgraph is NP-complete for $k > 5$. On the other hand, Hartvigsen proposed an algorithm for the triangle-free case ($k = 3$). The existence of a C_4-free or C_4-free 2-matching is still open [in the latter, triangles are allowed]. Yet imposing the condition that the graph is subcubic (that is, the maximum degree of G is 3), these problems become solvable.

Tue.2.H 3013

Matching and related problems

Organizer/Chair: Gyula Pap, Eötvös University - Limited Session

Kristóf Bérczi, Egerszegyi Research Group, Eötvös Loránd University, Budapest

Restricted d-matchings

A C_d-free 2-factor is a 2-factor not containing cycles of length at most k. Cornuéjols and Pulleyblank showed that deciding the existence of such a subgraph is NP-complete for $k > 5$. On the other hand, Hartvigsen proposed an algorithm for the triangle-free case ($k = 3$). The existence of a C_4-free or C_4-free 2-matching is still open [in the latter, triangles are allowed]. Yet imposing the condition that the graph is subcubic (that is, the maximum degree of G is 3), these problems become solvable.
Considering the maximum weight version of the problems, there is a firm difference between triangle- and square-free 2-factors. Király showed that finding a maximum weight square-free 2-factor is NP-complete even in bipartite graphs with $0 – 1$ weights. On the other hand, for subcubic graphs, polynomial-time algorithms were given by Hartvigsen and Li, and recently by Kobayashi for the weighted C_3-free 2-factor problem with an arbitrary weight function. The former result implies that we should not expect a nice polynomial description of the square-free 2-factor polytope. However, the latter suggests that the triangle-free case may be solvable.

Kenjiro Takazawa, RIMS and G-SCOP (with Sylva Boyd, Saturo Iwata)

Covering cuts in bridgeless cubic graphs

In this talk we are interested in algorithms for finding 2-factors that are certain edge-cuts in bridgeless cubic graphs. We present an algorithm for finding a minimum-weight 2-factor covering all the 3-edge cuts in weighted bridgeless cubic graphs, together with a polyhedral description of such 2-factors and that of perfect matchings intersecting all the 3-edge cuts in exactly one edge. We further give an algorithm for finding a 2-factor covering all the 3- and 4-edge cuts in bridgeless cubic graphs. Both of these algorithms run in $O(n^3)$ time, where n is the number of vertices.

As an application of the latter algorithm, we design a $(6/5)$-approximation algorithm for finding a minimum 2-edge-connected subgraph in 3-edge-connected cubic graphs, which improves upon the previous best ratio of $5/4$. The algorithm begins with finding a 2-factor covering all 3- and 4-edge cuts, which is the bottleneck in terms of complexity, and thus it has running time $O(n^3)$. We then improve this time complexity to $O(n^2 \log^4 n)$ by relaxing the condition of the initial 2-factor and elaborating the subsequent processes.

David Hartvigsen, University of Notre Dame (with Tianjun Li)

A simple k-matching problem

A simple k-matching in a graph is a subgraph all of whose nodes have degree at most k. The problem of finding a simple k-matching with a maximum number of edges is well studied and results include a maximum theorem and polynomial-time algorithm. A simple k-matching is called j-restricted if each connected component has more than j edges. In this talk we consider the problem of finding j-restricted simple k-matchings that have a maximum number of edges. We present a maximum theorem and polynomial-time algorithm when $j < k$. Previous work on this problem considers the special case $j = k = 2$.

Zhiyi Huong, University of Pennsylvania (with Sampa Kannan, Sanjeev Khanna)

Algorithms for the generalized sorting problem

We study the generalized sorting problem where we are given a set of w elements to be sorted but only a subset of all possible pairwise element comparisons is allowed. The goal is to determine the sorted order using the smallest possible number of allowed comparisons. The generalized sorting problem may be equivalently viewed as follows. Given an undirected graph $G = (V, E)$ where V is the set of elements to be sorted and E defines the set of allowed comparisons, adaptively find the smallest subset $E' \subseteq E$ of edges to probe so that the graph induced by E' contains a Hamiltonian path.

When G is a complete graph, it is the standard sorting problem. Another well-studied case is the nuts and bolts problem where the allowed comparison graph is a complete bipartite graph between two equal-size sets. For these cases, it is known there are deterministic sorting algorithms using $O(n \log n)$ comparisons. However, when the allowed comparison graph is arbitrary, no bound better than the trivial $O(n^2)$ was known. Our main result is a randomized algorithm that sorts any allowed comparison graph using $O(n^{1.7})$ comparisons with high probability.

Sarah Miracle, Georgia Institute of Technology (with Prateek Bhakta, Dana Randall, Amanda Streib)

Mixing times of self-organizing lists and biased permutations

Mixing times from self-organizing lists and biased permutations

Sampling permutations from S_n is a fundamental problem from probability theory. The nearest neighbor transposition chain is known to mix in time $O(n \log n)$ in the unbiased case and $O(n^2)$ in the constant bias case. It was conjectured that the chain is always rapidly mixed when the transition probabilities are positively biased, i.e., put nearest neighbor pair $x < y$ in order with bias $1/2 \leq \rho_{xy} \leq 1$ and out of order with bias $1 - \rho_{xy}$. We prove the chain is rapidly mixing for two classes: 'Choose Your Weapon,' where we are given r_1, \ldots, r_n with $r_i \geq 1/2$ and $\rho_{xy} = r_i$ for all $x < y$ (the dominant player chooses the game, thus fixing their probability of winning), and "League hierarchies," where there are two leagues and players from the A-league have a fixed probability of beating players from the B-league, players within each league are divided into sub-leagues, and so forth recursively. Moreover, we also prove that the conjecture is false by exhibiting values for the ρ_{xy}, with $1/2 \leq \rho_{xy} \leq 1$ for all $x < y$, but for which the chain will require exponential time to converge.

Katarzyna Paluch, Institute of Computer Science, University of Wrocław (with Khaled Elbassioni, Anke van Zuylen)

Simpler approximation of the maximum asymmetric traveling salesman problem

We give a very simple approximation algorithm for the maximum asymmetric traveling salesman problem. The approximation guarantee of our algorithm is $2/3$, which matches the best known approximation guarantee by Kaplan, Lewenstein, Shafir and Sviridenko. Our algorithm is simple to analyze, and contrary to previous approaches, which need an optimal solution to a linear program, our algorithm is combinatorial and only uses maximum weight perfect matching algorithm.

Thomas Sumwec, Humboldt University of Berlin (with Michael Hintermüller)

A PDE-constrained generalized Nash equilibrium problem with pointwise control and state constraints

We formulate a class of generalized Nash equilibrium problems (GNEP) in which the feasible sets of each player’s game are partially governed by the solutions of a linear elliptic partial differential equation (PDE). In addition, the controls (strategies) of each player are assumed to be bounded pointwise almost everywhere and the state of the entire system (the solution of the PDE) must satisfy a unilateral lower bound pointwise almost everywhere. Under certain regularity assumptions (constraint qualifications), we prove the existence of a pure strategy Nash equilibrium. After deriving multiplier-based necessary and sufficient optimality conditions for an equilibrium, we develop a numerical method based on a non-linear Gauss-Seidel iteration, in which each respective player's game is solved via a nonsmooth Newton step. Convergence of stationary points is demonstrated and the theoretical results are illustrated by numerical experiments.

Carlos Rautenberg, Karl-Franzens-University of Graz (with Michael Hintermüller)

Hyperbolic quasi-variational inequalities with gradient-type constraints

The paper addresses a class of hyperbolic quasi-variational inequality (QVI) problems of first order and with constraints of the gradient-type. We study existence and approximation of solutions based on recent results of appropriate parabolic regularization, monotone operator theory and C_0-semigroup methods. Numerical tests, where the subproblems are solved using semismooth Newton methods, with several nonlinear constraints are provided.

Luís Zuluaga, Lehigh University (with Javier Peña, Juan Vera)

Positive polynomials on unbounded domains

Certificates of non-negativity are fundamental tools in optimization. A “certificate” is generally understood as an expression that makes the
Applications of semidefinite programming

The problem of whether certain simple or sparse solutions to linear systems of equations can be found or approximated efficiently can often be cast in terms of a convex feasibility problem. In particular, condition numbers introduced for the complexity analysis of conic optimization problems play an important role in the analysis of such problems. We present results and geometric methods from the probabilistic analysis of condition numbers for optimization problems, and indicate how this analysis can be used to obtain sparse and simple recovery thresholds for problems with noise.

Javier Pena, Carnegie Mellon University (with Negar Soheili)

A smooth primal-dual perceptron-von Neumann algorithm

We propose an elementary algorithm for solving a system of linear inequalities \(A^T y > 0 \) or its alternative \(A x \geq 0, x \neq 0 \). Our algorithm is a smooth version of the perceptron and von Neumann’s algorithms. Our algorithm retains the simplicity of these algorithms but has a significantly improved convergence rate.

Javier Pena, Carnegie Mellon University (with Negar Soheili)

Conic programming

Applications of semidefinite programming

Organizers/Chair Etienne de Klerk, Tilburg University - Invited Session

Amir Ali Ahmadil, MIT (with Raphael Jungers, Pablo Parrilo, Mardavi Rozdhan)

Joint spectral radius, path-complete graphs, and semidefinite programming

The joint spectral radius (JSR) of a finite set of square matrices—a natural generalization of the notion of the spectral radius of a single matrix—characterizes the maximal growth rate that can be obtained by taking products, of arbitrary length, of all possible permutations of the matrices. Despite several undecidability and NP-hardness results related to computation or approximation of the JSR, the topic continues to attract attention because of a wide range of applications, including computation of the capacity of codes, robust stability of uncertain linear systems, Leontief input-output model of the economy with uncertain data, convergence of consensus algorithms, and many others. In this talk, we present our novel framework of path-complete graph Lyapunov functions which produces several hierarchies of asymptotically exact semidefinite programming relaxations with provable approximation guarantees. Our algorithms are based on new connections between ideas from control theory and the theory of finite automata.

Uwe Tönscher, Tilburg University (with Etienne de Klerk, Renata Sotirov)

A “smart” choice of relaxation for the quadratic assignment problem within a branch-and-bound framework

The practical approach to calculate an exact solution for a quadratic assignment problem (QAP) via a branch-and-bound framework depends strongly on a “smart” choice of different strategies within the framework, for example the branching strategy, heuristics for the upper bound or relaxations for the lower bound. In this work, we compare different relaxations from the literature, in particular two promising semidefinite programming relaxations introduced by Zhao, Karisch, Rendl and Wolkowicz, and by Peng, Zhu, Luo and Toh respectively. The aim of our work is to generate and present a size-dependent choice of an appropriate relaxation that can be successfully used at a given node within a branch-and-bound framework.

Xuan Viet Doan, University of Warwick (with Stephen Tayasri)

Feature extraction and data clustering with SDP-representable norms

We propose a convex optimization formulation with some SDP-representable norms to find approximately rank-one submatrices of a given nonnegative matrix. It has several applications in data mining, which includes feature extraction and data clustering. We develop a first-order method to solve the proposed optimization problem and report some promising numerical results.

Tue.2 IL 2028

CP hybrids for scheduling

Organizers/Chair Chris Beck, University of Toronto - Invited Session

Michele Lombardi, University of Bologna (with Andrea Bartolini, Luca Benini, Michela Milano)

Hybrid off-line/on-line workload scheduling via machine learning and constraint programming

Advances in combinatorial optimization in the last two decades have enabled their successful application to an extensive number of industrial problems. Nevertheless, many real-world domains are still impervious to approaches such as constraint programming (CP), mathematical programming or metaheuristics. In many cases, the difficulties stem from formulating an accurate declarative model of the system to be optimized. This is typically the case for systems under the control of an on-line policy: even when the basic rules governing the controller are well known, capturing its behavior in a declarative model is often impossible by conventional means. Such a difficulty is at the root of the classical, sharp separation between off-line and on-line approaches.

In this work, we investigate a general method to combine off-line and on-line optimization, based on the integration of machine learning and combinatorial optimization technology. Specifically, we use an artificial neural network (ANN) to learn the behavior of a controlled system and plug it into a CP model by means of so-called neuron constraints.

Chris Beck, University of Toronto (with Ti-Fong, Wen-Yang Ku, Jean-Paul Watson)

Loosely coupled hybrids: Tabu search, constraint programming and mixed integer programming for job shop scheduling

Since their introduction, metaheuristic algorithms have consistently represented the state of the art in solution techniques for the classical job-shop scheduling problem. This dominance is despite the availability of powerful search and inference techniques for scheduling problems developed by the constraint programming (CP) community and substantial increase in the power of commercial mixed integer programming (MIP) solvers. Building on observations of the performance characteristics of metaheuristic, CP, and MIP solvers, we investigate simple, loosely coupled hybrid algorithms for job-shop scheduling. Our hypothesis is that the fast, broad search capabilities of modern tabu search algorithms are able to very quickly converge on a set of very good, but likely sub-optimal, solutions. CP or MIP can then be seeded with these solutions to improve them and search for optimality proofs.

Thibaut Feydy, NIC blown (with Andreas Schütz, Peter Stuckey)

Lazy clause generation for RCPSP

Lazy clause generation (LCG) is a recent generic method for solving constraint problems. LCG solvers integrate tightly finite domain propagation (FD) with the conflict analysis features of Boolean satisfaction (SAT) solvers. This technology is often of order of magnitudes faster than traditional finite domain propagation on some hard combinatorial problems. In particular, we have used methods based on lazy clause generation to solve the resource constrained project scheduling problem (RCPSP) as well as the more general resource constrained project scheduling problem with generalized precedence relations (RCPSP- Max). These scheduling models have applications areas such as project management and production planning. Our experiments show the benefit of lazy clause generation for finding an optimal solution and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. Our methods is able to find better solution faster on hard RCPSP and RCPSP- MAX benchmarks. We were able to close many open problems instances and generates better solutions in most of the remaining instances.

Margaret Wright, Courant Institute of Mathematical Sciences

Defining non-montone derivative-free methods

Non-monotone strategies in optimization avoid imposing a monotonicity requirement at every iteration with the goal of achieving rapid convergence from an alternate descent strategy over a longer sequence of iterations. We consider how to define non-monotone derivative-free methods in, broadly, this same spirit, especially in light of recent worst-case complexity results that are closely tied to monotonicity requirements.

Genetha Gray, Sandia National Labs (with Ethan Chan, John Guenther, Herbie Lee, John Sirola)

Calculating and using sensitivity information during derivative-free optimization routines

The incorporation of uncertainty quantification (UQ) into optimiza-
tion routines can help identify, characterize, reduce, and possibly eliminate uncertainty while drastically improving the usefulness of computational models and optimal solutions. Current approaches are in that they first identify optimal solutions and then, perform a series of UQ runs using these solutions. Although this approach can be effective, it can be computationally expensive or produce incomplete results. Modelers that take advantage of intermediate optimization iterates can reduce the expense, but the sampling done by the optimization algorithm is not ideal. In this talk, we discuss a simultaneous optimization and UQ approach that combines Bayesian statistical models and derivative-free convex optimization in order to monitor and use sensitivity information throughout the algorithm’s execution.

Satyajith Amaran, Carnegie Mellon University (with Scott Bury, Nikolaos Sahinidis, Bikram Sharda)
A comparison of software and algorithms in unconstrained simulation optimization problems

Over the last few decades, several algorithms for simulation optimization (SO) have appeared and, along with them, diverse application areas for these algorithms. The algorithmic approaches proposed in the literature include ranking and selection, sample average approximation, metaheuristics, response surface methodology and random search. Application areas range from urban traffic control to investment portfolio optimization to operation scheduling. However, a systematic comparison of algorithmic approaches for simulation optimization problems from the literature is not available. At this juncture in the evolution of SO, it is instructive to review the size and kinds of problems handled as well as the performance of different classes of algorithms, both in terms of quality of solutions and number of experiments (or function evaluations) required. In this work, we use a library of diverse algorithms, and propose a method to assess their performance under homogeneous and heterogeneous variances on a recently-computed simulation optimization test set. Discussions follow.

Yuying Li, University of Waterloo (with Thomas Coleman, Jiong Xi)
A novel method for computing an optimal VaR portfolio

Computing an optimal portfolio with minimum value-at-risk (VaR) is computationally challenging since there are many local minimizers. We consider a nonlinearly constrained optimization formulation directly based on VaR definition in which VaR is defined by a probabilistic inequality constraint. We compute an optimal portfolio using a sequence of smooth approximations to the nonlinear inequality constraint. The proposed sequence of smooth approximations gradually becomes more nonconvex in an attempt to track the global optimal portfolio. Computationally effective comparisons will be presented to illustrate the accuracy and efficiency of the proposed method.

QiHang Lin, Carnegie Mellon University (with Javier Pena)
First-order algorithms for optimal trade execution with dynamic risk measures

We propose a model for optimal trade execution in an illiquid market that minimizes a coherent dynamic risk of the sequential transaction costs. The prices of the assets are modeled as a discrete random walk perturbed by both temporal and permanent impacts induced by the trading volume. We show that the optimal strategy is time-consistent and deterministic if the dynamic risk measure satisfies a Markov property. We also show that our optimal execution problem can be formulated as a convex program, and propose an accelerated first-order method that computes its optimal solution. The efficiency and scalability of our approaches are illustrated via numerical experiments.

Saeedeh Moazeni, Princeton University (with Thomas Coleman, Yuying Li)
Regularized robust optimization for optimal portfolio execution

An uncertainty set is a crucial component in robust optimization. Unfortunately, it is often unclear how to specify it precisely. Thus it is important to study sensitivity of the robust solution to variations in the uncertainty set, and to develop a method which improves stability of the robust solution. In this talk, we focus on uncertainty in the price impact parameters in the optimal portfolio execution problem. We illustrate that a small variation in the uncertainty set may result in a large change in the robust solution. We then propose a regularized robust portfolio optimization formulation which yields a solution with a better stability property than the classical robust solution. In the approach, the uncertainty set is regularized through a regularization constraint. The regularized robust solution is then more stable with respect to variations in the uncertainty set specification, in addition to being more robust to estimation errors in the price impact parameters. We show that the regularized robust solution can be computed efficiently using convex optimization. We also study implications of the regularization on the solution and its corresponding execution cost.

Laurent Bourque, CNRS (with Bruno Escoffier, Jerome Monnot)
On the price of anarchy of the set cover game

Given a collection of overlapping subsets of a ground set E, the set cover problem is to find a minimum weight subset of E which covers all elements of E. We study a strategic game defined upon this classical optimization problem. Every element of E is a player who chooses one set of E where it appears. Following a public tax function, every player is charged a fraction of the weight of the set that it has selected. Our motivation is to design a tax function having the following features: it can be implemented in a distributed manner, existence of an equilibrium is guaranteed and the social cost for these equilibria is minimized.

Rudolf Müller, Maastricht University (with Birgit Heydenreich, Marc Uetz)
Mechanism design for decentralized online machine scheduling

Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that—assuming rational behavior of jobs—results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Rudolf Müller, Maastricht University (with Birgit Heydenreich, Marc Uetz)
Mechanism design for decentralized online machine scheduling

Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that—assuming rational behavior of jobs—results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.

Martin Gairing, University of Liverpool (with Giorgos Christodoulou)
Coordination mechanisms for congestion games

In a congestion game, we are given a set of resources and each player selects a subset of them (e.g., a path in a network). Each resource has a univariate cost (or utility) function that only depends on the load induced by the players that use it. Each player aspires to minimise (maximise) the sum of the resources’ cost (utilities) in its strategy given the current system performance. This is only slightly worse than state-of-the-art algorithms with central coordination.
In our talk we discuss finding global robust solutions of robust optimization problems having a quadratic cost function and quadratic inequality constraints. The uncertainties in the constraint coefficients are represented using either universal or existential quantified parameters and interval parameter domains. This approach allows to model non-controlled uncertainties by using universally quantified parameters and controlled uncertainties by using existentially quantified parameters. While existentially quantified parameters could be equivalently considered as additional variables, keeping them as parameters allows maintaining the quadratic problem structure, which is essential for our algorithm.

The branch and bound algorithm we present handles both universally and existentially quantified parameters in a homogeneous way without branching on their domains, and uses some dedicated numerical constraint programming techniques for finding the robust, global solution. The algorithm's worst-case complexity is exponential with respect to the number of variables only, even in the case of many and/or large parameters uncertainties.

Arnold Neumaier, University of Vienna (with Ferenc Domes, Mihaly Markot, Hermann Schichl)

Projective methods for constraint satisfaction and global optimization

Many constraint satisfaction problems and global optimization problems contain some unbounded variables. Their solution by branch and bound methods poses special challenges as the search region is infinitely extended. Most branch and bound solvers add artificial bounds to make the problem bounded, or require the user to add these. However, if these bounds are too small, they may exclude a solution, while when they are too large, the search in the resulting huge but bounded region may be very inefficient. Moreover, global solvers that provide a rigorous guarantee cannot accept such artificial bounds.

We present methods based on compactification and projective geometry to cope with the unboundedness in a rigorous manner. Two different versions of the basic idea, namely (i) projective constraint propagation and (ii) projective transformation of the variables, are implemented in the rigorous global solvers COCONUT and GlopLab.

Numerical tests demonstrate the capability of the new technique, combined with standard pruning methods, to rigorously solve unbounded global problems.

Peter Nightingale, University of St Andrews (with Ian Gent, Christopher Jefferson, Ian Miguel)

Watched literals and generating propagators in constraint programming

Many modern constraint solvers interleave constraint reasoning (propagation) with a complete search. In systems like these, the efficiency of propagation is vital, because the solver spends almost all of its time doing propagation. In this talk I will present a number of techniques developed at St Andrews to improve the efficiency of propagation, in some cases by orders of magnitude.

Watched literals are used in SAT (propositional satisfiability) solvers where they are helpful in dealing with the huge number of long constraints generated by conflict learning. I will discuss porting watched literals to CP, and when this is useful. I will also talk about automatic generation of propagation algorithms, and when this can outperform even hand-optimised algorithms.

Most of the techniques are implemented in the Minion solver. I will give an overview of Minion's features, strengths and weaknesses.

Guido Tack, MICTA / Monash University (with Sebastian Brand, Mark Brown, Thibaud Feydy, Julien Fischer, Maria Garcia de la Banda, Peter Stuckey, Mark Wallace)

Towards MiniZinc 2.0

MiniZinc is a language for modelling combinatorial problems. It aims at striking the right balance between expressiveness on the one hand, and support for different solvers on the other. To this end, MiniZinc provides a library of predicates defining global constraints, and a generic translation to FlatZinc, a low-level language that is easy to support by different solvers.

Since its inception in 2006, MiniZinc has gained considerable momentum. In its current version 1.5, the G12 MiniZinc distribution provides a complete, stable, usable toolchain for modelling and solving combinatorial problems. Its library contains definitions of over 150 global constraints, and there are backends for a variety of different solvers, from constraint programming, to mathematical programming, to SAT and SMT.

The next major milestone will conservatively extend the language with features from full Zinc, add more control over the search, and open up the toolchain to allow for customisation of the translation and easier integration into existing software.

This presentation gives an overview of the MiniZinc system, what is planned for version 2.0, and the techniques required to implement it.
function by studying MCCNFP over a grid network with a general non-negative separable concave function. We show that this problem is polynomial solvable when all source nodes are at the first echelon and all sink nodes are at the last echelon. The polynomiality argument relies on a combination of a particular dynamic programming formulation and a careful investigation of the extreme points of the underlying flow polyhedron. We derive an analytical formula for the inflow of any node for all extreme points, which generalizes Zangwill’s result for the multi-echelon lot-sizing problem.

Tomáš Kis, MTA SZTAKI

Strengthening the MIP formulation of a bilevel lot-sizing problem

In the talk, I will introduce the bilevel lot-sizing problem, and show how to formulate it as a MIP. In addition, I will present problem specific bounds and cuts, as well as mixed integer disjunctive cuts derived from two rows of the simplex tableau, one corresponding to an integer variable, the other to a continuous variable. I will also discuss the computational merits of the various strengthening methods.

Fabio Furini, Università di Bologna (with Manuel Iori, Silvano Martello, Mutsumi Yagura)

Heuristic and exact algorithms for the interval min-max regret knapsack problem

We present a generalization of the 0-1 knapsack problem in which the profit of each item can take any value in a range characterized by a minimum and a maximum possible profit. A set of specific profits is called a scenario. The interval min-max regret knapsack problem (MRKP) is then to find a feasible solution such that the maximum regret over all scenarios is minimized. The problem is extremely challenging both from a theoretical and a practical point of view. Its recognition version is complete for the complexity class \(\sum_2 \) hence it is most probably not in \(\mathcal{NP} \). In addition, even computing the regret of a solution with respect to a scenario requires the solution of an \(\mathcal{NP} \)-hard problem. We examine the behavior of classical combinatorial optimization approaches when adapted to the solution of the MRKP. We introduce an iterated local search approach and a Lagrangian-based branch-and-cut algorithm, and evaluate their performance through extensive computational experiments.

Christiaan Hoogenboom, CWI (with Albouy, van der Poort, Volgeling)

Biophysics

Protein hypernetworks

Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functionalities. The complexity and functionality of such systems emerge not only from the protein interactions themselves but mainly from the dependencies between these interactions, e.g., due to allosteric regulation or steric hindrance. Therefore, a comprehensive approach for integrating and using information about such dependencies is required. We present an approach for encoding protein networks with interactions depending on propositional logic, thereby obtaining protein hypernetworks. As can be expected, this framework straightforwardly improves the prediction of protein complexes. We find that modeling protein perturbations in hypernetworks, rather than in networks, allows to better infer also the functional necessity and synthetic lethality of proteins in yeast.

Gunnar Klau, CWI (with Stefan Cancer, Mohammed El-Kebir, Khalid Elbassioni, Daan Geerke, Alpesh Malde, Alan Mark, René Poul, Leen Stougie)

Charge group partitioning in biomolecular simulation

Molecular simulation techniques are increasingly being used to study biomolecular systems at an atomic level. Such simulations rely on the classical force fields, each based on the intermolecular interactions. Different set of assumptions and thus requiring different parametrization procedures. Recently, efforts have been made to fully automate the assignment of force-field parameters, including atomic partial charges, for novel molecules. In this work, we focus on a problem arising from the automated parametrization of molecules for use in combination with the GROMOS family of force fields: namely, the assignment of atoms to charge groups such that for every charge group the sum of the partial charges is ideally equal to its formal charge. In addition, charge groups are required to have size at most \(k \). We show \(\mathcal{NP} \)-hardness and give an exact algorithm capable of solving practical problem instances to provable optimality in a fraction of a second.

Rumen Andonov, INRIA and University of Rennes 1 (with Gunnar Klau, Inken Wohlers)

Optimal DALI protein structure alignment

We present a mathematical model and exact algorithm for optimally aligning protein structures using DALI score, which is an \(\mathcal{NP} \)-hard prob-lem. DALI score is based on comparing the inter-residue distance matrices of proteins, and is the scoring model of a widely used heuristic. We extend an integer linear programming approach which has been previously applied for the related, but simpler, contact map overlap problem. To this end, we introduce a novel type of constraint that handles negative score values and relax it in a Lagrangian fashion. The new exact algorithm is thus applicable to any distance matrix-based scoring scheme. Using four known data sets of varying structural similarity, we compute many provably optimal alignments. Thus, for the first time, we evaluate and benchmark the popular heuristic in sound mathematical terms. The results indicate that usually the heuristic computes optimal or close to optimal alignments. However, we detect an important subset of small proteins for which DALI fails to generate any significant alignment, although such alignments do exist.
Logistics and network optimization: New problems and new approaches
Organizers/Chairs: Fieda Granot, University of British Columbia; Daniel Granot, Sauder School of Business - Invited Session

Alexander Richter, TU-Berlin (with Tobias Harks, Felix König, Jannik Matuschke, Jens Schulz)

An integrated approach to tactical logistics network optimization
In global logistics operations, tactic planning aims at laying the groundwork for cost-efficient day-to-day operation by deciding on transport modes, routes, and delivery frequencies between facilities in the network. We consider a fixed charge multi-commodity network flow model to optimize supply chains on the tactical level, that is, the infrastructure is already in place and we seek cost optimal transport and storage modes. Model characteristics include a frequency pattern expansion to capture the tradeoff between inventory costs and economies of scale for transportation, as well as reallocations and other complex tariff structures. We devise local search type and combinatorial heuristics that can be combined with mixed integer programming techniques. To evaluate the quality of these approaches, we present a computational study on a set of large-scale real-world instances provided by our industrial cooperation partner. The model and the obtained results are part of the MultiTrans project, a cooperation between the COGA group at TU Berlin and 4flow AG, a market leader in logistics and supply chain management consulting.

Michal Penn, Technion (with N. Drucker, O. Strichman)

Cyclic routing of unmanned aerial vehicles
Developing autonomous monitoring systems for Unmanned Aerial Vehicles (UAVs) can facilitate scanning a set of targets on the ground is of growing interest in security applications. These monitoring systems have to support complex tasks that include multiple UAVs that should scan and monitor multiple distant predefined targets, with a known distance matrix, in cyclic routes. Each target is associated with a temporal constraint, namely, a relative deadline, that is, the maximum permitted time interval between two successive scanning of the target. Our aim is to determine the minimum number of UAVs required for suitable cyclic route that visits, under the temporal constraints all targets. We formulate the problem as a MILP and as a Satisfiability Modulo Theories (SMT) problem. We use several solving strategies, such as Mosek, Z3 and DFS and demonstrate their numerical results.

Tal Ravev, Tel Aviv University (with G. Fery)

Optimal control of battery switching stations
We introduce a new on-line scheduling problem motivated by the business model of Better Place Ltd. The company sells electric vehicles (EV) with replaceable Lithium Ion batteries and provides battery replacement services in Battery Switching Stations (BSS). The BSS Scheduling Problem is defined as follows: a stream of requests for battery switches to be fulfilled is governed by a known, non-homogenous, stochastic process. The disassembled batteries are recharged and used to fulfill future requests. Partly charged batteries can be supplied at a penalty cost that depends on their charging level. The charging duration and power consumption during the process varies depending on the battery and charging technologies. The cost of electricity and the maximum allowed power consumption varies during the planning horizon. The operational goal is to establish a charging policy so as to minimize the expected total electricity and penalty costs. We develop an on-line heuristic for the BSS problem, based on an efficient algorithm for a deterministic version of this problem, and demonstrate its efficiency by an extensive numeric experiment in a realistic setting.

Mixed-integer nonlinear programming

Advances in MINLP
Organizer/Chair: Sarah Drewes, T Systems International GmbH - Invited Session

Tamás Terlaky, Lehigh University (with Tobias Harks, Felix König, Jannik Matuschke, Jens Schulz)

Logistics, traffic, and transportation

Interactive Pareto Navigator method for nonconvex multiobjective optimization
Organizer/Chair: Kaisa Miettinen, University of Jyvaskyla and KTH Royal Institute of Technology - Invited Session

Martin Geiges, Helmut-Schmidt-University (with Thibault Barthélemy, Marc Sevaux)

Multi-objective inventory routing: Reference-point-based search, representations, and neighborhoods
The talk considers a multi-objective generalization of the inventory routing problem, a problem arising in transportation/the physical distribution of goods. In our problem formulation, inventory levels and routing costs are not combined into an overall evaluation function but treated separately. The problem is solved by the use of metaheuristics, and numerical results are computed and reported. Particular emphasis has been laid on the representation of solutions from a practical point of view. In detail, individual frequency values are derived for each customer, implementing a recurring delivery policy. On the one hand, this leads to a relatively easy, understandable encoding of delivery policies. On the other hand however, the possibilities of the optimization approach are depending on the chosen representation, and interrelations with the chosen neighborhoods and search/optimization-strategies become apparent. Our findings show that there is great potential for tradeoffs between the two objectives. Especially in tactical planning situations, this problem extension can provide useful insights. A DSS making use of multiple reference points has thus been realized.

Kaisa Miettinen, University of Jyvaskyla and KTH Royal Institute of Technology (with Markus Hartikainen, Kothrin Klammth)

Interactive Pareto Navigator method for nonconvex multiobjective optimization
This talk describes a new interactive method called Nonconvex Pareto Navigator which extends the convex Pareto Navigator method for nonconvex multiobjective optimization problems. In the new method, a piecewise linear approximation of the Pareto optimal set is first generated using a relatively small set of Pareto optimal solutions. The decision maker (DM) can then navigate on the approximation and direct the search for interesting regions in the objective space. In this way, the DM can conveniently learn about the interdependencies between the conflicting objectives and possibly adjust one’s preferences. Besides nonconvexity, the new method contains more versatile options for directing
the navigation. The Nonconvex Pareto Navigator method aims at supporting the learning phase of decision making. It is well-suited for computationally expensive problems because the navigation is computationally intensive to perform on the approximation. Once an interesting region has been found, the approximation can be refined in that region or the DM can ask for the closest actual Pareto optimal solution.

Hans Triebkraut, Fraunhofer ITWM
Multi criteria decision support in real-time
Integration of Project, Process and Knowledge Management. The business processes observed here affect various organizational units during evolving in successive phases. A few examples to that: surveillance and maintenance of ship equipment, transport logistics of wind wheel parts, and innovation of OLED technology. At certain stations of those processes several things have to be done: knowledge retrieval and storage, working out of prescribed context relevant documents or performing situation dependent programs, and exploring and evaluating various feasible scenarios. Again some examples: time- or cost-optimal remedying of a ship’s defect, selecting, assimilating and tracking of conveyor chains, and designing and simulating product or shop floor prototypes. In finding “best paths” through such dynamic processes two tools, addressing the outstanding visual cognition of man, assist: “process-Board”, for designing, adapting, monitoring and controlling processes on a virtual board, and “knowCube”, for getting balanced decisions by using graph algorithms, applicable by non-experts, too. Both tools are combined in a web portal.

Nonlinear programming
Tue.2.H 0110
Nonlinear optimization V
Organizers/Chairs Frank E. Curtis, Lehigh University; Daniel Robinson, Johns Hopkins University - Invited Session
Denis Ridzal, Sandia National Labs (with Miguel Aguiló, Joseph Young)
A matrix-free trust-region SQP algorithm for large-scale optimization
We present an inexact trust-region sequential quadratic programming (SQP) method for the matrix-free solution of large-scale nonlinear programming problems. First, we discuss recent algorithmic advances in the handling of inequality constraints. Second, for optimization problems governed by partial differential equations (PDEs) we introduce a class of preconditioners for optimality systems that are easily integrated into our matrix-free trust-region framework and that efficiently reuse the available PDE solvers. We conclude the presentation with numerical examples in acoustic design, material inversion in elastodynamics and optimization-based failure analysis.

Anders Forsgren, KTH Royal Institute of Technology
Inexact Newton methods with applications to interior methods
Newton’s method is a classical method for solving a nonlinear equation. We discuss how Jacobian information may be reused without sacrificing the asymptotic rate of convergence of Newton’s method. In particular, we discuss how inexact Newton methods might be used in the context of interior methods for linear and convex quadratic programming.

Wenwen Zhou, SAS Institute Inc. (with Joshua Griffin)
Numerical experience of a primal-dual active set method and its improvement
SAS has recently developed and implemented a multi-threaded Krylov-based active set method based on the exact primal dual augmented Lagrangian merit function of P. E. Gill and D. Robinson [1] for large-scale nonconvex optimization. The merit function has several attractive properties, including a dual regularization term that effectively relaxes restrictions for what preconditioner types can be used with the corresponding Newton equations. Numerical experience and strategies for improving convergence for this approach will be reported in this talk.

Nonlinear programming
Tue.2.H 0112
Real-time optimization II
Organizers/Chairs Victor Zavala, Argonne National Laboratory; Sebastian Sager, Universität Magdeburg - Invited Session
Mihai Anitescu, Argonne National Laboratory (with Victor Zavala)
Scalable dynamic optimization
In this talk, we discuss scalability issues arising in dynamic optimization problems such as model predictive control and data assimilation. We present potential strategies to avoid them, where we focus on scalable algorithms for methods that can track the optimal manifold with even one quadratic program per step. This builds on recent work of the authors where we proved using a generalized equations framework that such methods stabilize model predictive control formulation even when they have explicit inequality constraints. In particular, we present alternatives to fast active-set detection and matrix-free implemenations.

Christian Kirchen, University of Chicago / University of Heidelberg (with Hans-Georg Bock, Sebastian Sager)
A real-time iteration scheme for mixed-integer nonlinear model predictive control
A class of nonlinear model predictive control problems with both continuous and binary controls is considered. Partial outer convexification and relaxation is used to obtain a continuous model predictive control problem with possibly increased control dimension. The problem then be solved by combining a direct method for optimal control with a rounding scheme. Feasibility and optimality certificates hold, while numerical computations typically do not involve an exponential runtime effort. It is argued that the idea of real-time iterations proposed by Diehl et al. can be used to devise a new mixed-integer real-time iteration scheme for this problem class. To this end, it is shown that adding a rounding step to one iteration of the scheme can be interpreted as carrying out a step of an perturbed Newton-type method. Sufficient conditions for local contractivity of such a perturbed type method are derived. Based on this local contractivity argument, a proof of locally
asymptotic convergence of the proposed scheme on a receding horizon is given for the nonlinear discrete-time case. An upper bound on the allowable sampling time of the scheme and on the loss of optimality is derived.

Francesco Borrelli, UC Berkeley (with Matsuzo Jadbabaie, Yudong Ma)

Real-time stochastic predictive control applied to building control systems

The presentation will focus on the solution of linear stochastic model predictive control (SMPC) subject to chance constraints. A tailored interior point method is proposed to explore the special structure of the resulting SMPC problem computing the input sequence and the risk allocation. In the sample-based approach, a large number of stochastic samples is used to transform the SMPC problem into a deterministic one with the original constraints evaluated in every sample. The proposed methods are applied to a building control problem which minimizes energy usage while keeping zone thermal comfort by using uncertain prediction of thermal loads and ambient temperature. Extensive numerical and experimental tests are used to analyze the conservatism and the effectiveness of the proposed approaches.

Cosmin Petra, Argonne National Laboratory (with Mikhail Anitescu, Miles Lubin)

Scalable stochastic optimization of power grid energy systems

We present a scalable approach for solving stochastic programming problems with application to the optimization of power grid energy systems with supply and demand uncertainty. Our framework, PIPS, has parallel capabilities for both continuous and discrete stochastic optimization problems. The continuous solver uses an interior-point method and a Schur complement technique to obtain a scenario-based decomposition. With an aim of providing a scalable solution for problems with integer variables, we also developed a linear algebra decomposition strategy for simplex methods that is used in a parallel branch-and-bound framework.

We will also discuss application-specific algorithmic developments and computational results obtained on a ‘Intrepid’ Blue Gene/P system at Argonne when solving unit commitment problems with billions of variables.

Diego Klabjan, Northwestern University (with Frank Schneider, Ulrich Thonemann)

Day ahead stochastic unit commitment with demand response and load shifting

High costs for fossil fuels and increasing shares of intermittent energy sources are imposing big challenges on power grid management. Uncertainty in generation as well as in demand for electric energy call for flexible generation capacity and stochastic optimization of generation schedules. Emerging smart grid technology is one component believed to be a successful tool to increase efficiency in power generation and mitigate effects of increasing uncertainty. We focus on the potential of demand side resources (DSRs) that can be dispatched to reduce load at peak times. We present a stochastic dynamic programming model for the unit commitment problem in a day ahead market and include dispatch decisions for DSRs. We model the effect of load shifting to previous and subsequent periods that must be taken into account when making dispatch decisions. We also present an approximate dynamic programming algorithm embedded in a decomposition algorithm that enables us to capture effects of DSR dispatch on previous periods and to solve both problems concurrently. Lower bounds on the optimal solution are developed.

Boris Defourny, Princeton University (with Ethan Fang, Warren Powell, Hugo Simao)

A quantile-based approach to unit commitment with wind

Handling higher levels of uncertainty in the unit commitment problem (UC) is an important issue for the independent system operator (ISO) who is dealing with an increasing level of variable energy resources (VERs), and specifically energy from wind. Here, we focus on approximations that plan for uncertainty by adding to the original problem new penalties or constraints, and then view the weights of the new terms as tunable parameters. We investigate methods where the wind energy seen by the UC problem is a certain quantile of the forecasted wind distribution. The quantiles are then tuned based on a simulation of the recourse costs. The work is motivated by an analogy with newsvendor-type problems where the overage and underage costs of wind energy forecasts have to be estimated, given a day-ahead schedule.

Christopher Hendrich, Chemnitz University of Technology (with Radu Balisa)

A double smoothing technique for solving nondifferentiable convex optimization problems

This paper deals with variational inclussions of the form $0 \in (f(x) + g(x) + F(x))$ where f is a Fréchet differentiable function, g is a Lipschitz function and F is a set-valued map acting in R^n. In a first time in this talk, we recall some existing results in relation with metric regularity. In a second time, we focus on the case where the set valued map F is a cone and in this case we introduce different algorithms to approximate a solution x^* of the variational inclusion. Different situations are considered: the case where g is smooth, the case where g is semi-smooth (existence of differences divided, …) and the case where g is only Lipschitz. We show the convergence of these algorithms without the metric regularity assumption.

Emil Gustavsson, Chalmers University of Technology (with Michael Patriksson, Ann-Britt Strömberg)

Primal convergence from dual subgradient methods for convex optimization

When solving a convex optimization problem through a Lagrangian dual reformulation, subgradient optimization methods are favourably utilized, since they often find near-optimal dual solutions quickly. However, an optimal primal solution is generally not obtained directly through such a subgradient approach. We construct a sequence of convex combinations of primal subproblem solutions, a so called ergodic sequence, which is shown to converge to an optimal primal solution when the convexity weights are appropriately chosen. We generalize previous convergence results from linear to convex optimization and present a new set of rules for constructing the convexity weights defining the ergodic sequence of primal solutions. In contrast to previous proposed, they exploit more information from later subproblem solutions than from earlier ones. We evaluate the proposed rules on a set of nonlinear multicommodity flow problems and demonstrate that they clearly outperform the previously proposed ones.
ing the benefits and gains derived from their usage that all allowed TEM to be pioneer among others Latin America’s ISOs.

Raphael Gonçalves, UFSE – LatPlan (with Edwin de Silva, Eiren Fimaru)

Analyzing multistage stochastic optimization methods to solve the operation planning problem of hydrothermal systems

The operation planning of hydrothermal systems is, in general, divided into coordinate steps which have different horizons and prioriterizes distinct details of the modeling. The medium-term operation planning (MOTP) problem, one of the operation planning steps of hydrothermal systems and the focus of this work, aims to define the weekly generation for each plant, regarding the uncertainties related to water inflows to reservoirs, to obtain the minimum expected operational cost over a specific period. Solving this problem requires a high computational effort and, consequently, the use of multistage stochastic programming algorithms. Therefore, the main purpose of this work is to present a comparative study about the performance of different multistage stochastic optimization methods applied to the MOTP: Nested decomposition (ND) and the progressive hedging (PH) method. With respect to PH method, the algorithm properties and the problem features are studied to assess suitable decomposition schemes to obtain lower CPU time. To evaluate the performance of the both algorithm regarding its particularities, the Brazilian hydrothermal system is studied.

Michel Gendreau, École Polytechnique de Montréal (with Fabian Bastin, Pierre-Luc Cornelier)

Midterm hydro generation scheduling under inflow uncertainty using the progressive hedging algorithm

Hydro-Quebec is one of the largest electricity utilities in North America, generates virtually all of its power supply using hydro plants. A key problem faced by planners is the midterm generation scheduling problem (MGSP), solved on a weekly basis, in which generation targets must be set for controllable hydro plants in order to manage reservoir energy storage efficiently over the coming months. Reservoir inflows are the main source of uncertainty to account for in the decision-making process. In this paper, we model reservoir inflow uncertainty through scenario trees. We tackle the MGSP using the progressive hedging algorithm (PHA) (Rockafellar and Wets 1991). In our model, hydroelectric generation is given by convex piecewise-linear functions of the upstream reservoir storage and of water release. A key feature of our implementation of the PHA is a new penalty parameter update formula. We assess our model and algorithm on Hydro-Québec’s power system (21 large reservoirs and 170 hydro plants) over a 93-week planning horizon with several load levels. Reservoir inflow uncertainty is modeled by a 16-scenario tree. Computational results show that the proposed approach is promising.

PDE-constrained opt. & multi-level/multi-grid meth.

Optimization applications in industry I

Organizer/Chair: Dietmar Hömberg, Weierstrass Institute for Applied Analysis and Stochastics – Invited Session

Jürgen Sprekels, WIAS Berlin

Optimal control problems arising in the industrial growth of bulk semiconductor single crystals

The industrial growth of bulk semiconductor crystals is a challenging technological problem that leads to control problems with pointwise state constraints for an extremely difficult system of nonlinearly coupled partial differential equations. Turbulent fluid flows, magnetic fields and quasilinear heat conduction problems with both nonlinear and quasilinear radiation boundary conditions occur. We report on recent progress that has been made in the treatment of such problems.

Simon Singelin, Endress+Hauser Flowtec AG (with Fredi Tröltzsch)

Applications of optimal control in electromagnetic flow measurement

Electromagnetic flow measurement has been in use around the world for more than 50 years, as witnessed by the popularity of these meters that continues unabated in virtually all sectors of industry. Electromagnetic flowmeters can be used to measure all electrically conducive liquids (>5 µS/cm) with or without solids. The volumetric flow rate measurement is performed differentially with a pulsed magnetic field to suppress noise voltages as efficiently as possible. The key question in the talk is: How should the coil voltage be controlled to switch as fast as possible from one field state to another?

Because we want to control the voltage in a induction coil, this question leads us to the optimal control of an odd nonlinear control problem coupled with an ordinary differential equation for the electrical current. The ordinary differential equation is derived from the induction law. In the talk we present the necessary first order optimality conditions of the control system and mention the well-posedness. Then we discuss numerical methods used to calculate the optimal coil voltage. Finally we present computations based on industrial flow meter geometries.

Oliver Toe, TU Kaiserslautern (with René Pinnau)

Optimal boundary control of natural convection-radiation model in melting furnaces

In this paper we present a comprehensive analysis of an optimal boundary control for a combined natural convection-radiation model, which has applications in the design of combustion chambers or for the control of melting processes in glass production or crystal growth. The model under investigation consists of the transient Boussinesq system coupled with a nonlinear heat equation and the SP$_A$ model for radiation. We present existence, uniqueness and regularity results of bounded states. We further state an analysis of an optimal control problem where we show the existence of an optimal control, derive the first-order optimality system and analyze the adjoint system. To underline the feasibility of the approach, we present numerical results based on a descent method using adjoint information.

Applications of robust optimization I

Organizer/Chair: Dick Den Hertog, Tilburg University – Invited Session

Ihsan Yankılıç, Tilburg University (with Dick Den Hertog)

Robust simulation-based optimization with Taguchi regression models

A Taguchi way to deal with uncertain environmental parameters in simulation-based optimization is to create a regression model in both the optimization variables and the uncertain parameters, and then formulate the explicit optimization problem in terms of expectations and variances, or chance constraints. The disadvantages of this approach are that one has to assume that the distribution function for the uncertain parameters is normally distributed, and that both the mean and variance are known. The final solution may be very sensitive to these assumptions. We propose a Robust Optimization approach that does not need these assumptions. Based on historical data, uncertainty regions for the distribution is generated, and tractable robust counterparts are generated. This approach can be used for many types of regression models: polynomials, Kriging, etc. The novel approach is illustrated through numerical examples. Finally, for those simulation-based optimization problems that contain ‘wait-and-see’ variables, we describe how to apply Adjustible Robust Optimization.

Yudong Chen, The University of Texas at Austin (with Constantine Caramanis, Shie Mannor)

Robust sparse regression and orthogonal matching pursuit

We consider support recovery in sparse regression, when some number n_1 of $n+n_1$ total covariate/response pairs are arbitrarily corrupted. We are interested in understanding how many outliers n_1, we can tolerate, while identifying the correct support. As far as we know, neither standard outlier rejection techniques, nor recently developed robust regression algorithms [that focus only on corrupted response variables] provide guarantees on support recovery. Perhaps surprisingly, we also show that the natural brute force algorithm that searches over all subsets of n covariate/response pairs, and all subsets of possible support coordinates in order to minimize regression error, is remarkably poor, unable to correctly identify the support with even $n_1 = O(n/k)$ corrupted points, where k is the sparsity, and p is the dimension of the signal to be recovered. In this setting, we provide a simple algorithm that gives stronger performance guarantees, recovering the support with up to $n_1 = O(n/(\sqrt{T \log p}))$ corrupted points. Moreover, we compare our formulation with robustification, and demonstrate interesting connection and difference between them.

Tao Sheng Ng, National University of Singapore (with Sy Charlie, Myoungseok Cheong, Melyn Sim, Lu Ai)

Target-oriented robust optimization for gas field development planning

Gas field development projects involve both investment and operation decisions, including field infrastructure installation, capacity expansions, and gas extraction planning. Many of these decisions are very expensive, difficult to reverse, and have long-term impacts on the company’s profitability. In this work we consider an offshore gas field development planning problem to achieve a target net present value at the end of the planning horizon as well as possible. This problem is severely plagued by endogenously uncertain that is found in the efficacy of gas wells. Moreover, the optimal solution that maximizes the robustness of the development plan against uncertainty. The characteristics of the problem lead us to identify an equivalent deterministic mixed integer programming model of polynomial size, which enables us to obtain solutions to realistic size problems. Our computa-
A distributional interpretation of robust optimization, with applications in machine learning

Motivated by data-driven decision making and sampling problems, we investigate an interpretation of Robust Optimization (RO). We establish a connection between RO and Distributionally Robust Stochastic Programming (DRSP), showing that the solution to any RO problem is also a solution to a DRSP problem. Specifically, we consider the case where multiple uncertain parameters belong to the same fixed dimensional space, and find the set of distributions of the equivalent DRSP. The equivalence we derive enables us to construct RO formulations for sampled problems (as in stochastic programming and machine learning) that are statistically consistent, even when the original sampled problem is not. In the process, this provides a systematic approach for tuning the uncertainty set. Applying this interpretation in machine learning, we showed that two widely used algorithms – SVM and Lasso are special cases of RO, and establish their consistency via the distributional interpretation.

Boris Hausska, Imperial College London (with Moritz Diehl, Oliver Stein, Paul Steuermann)

Lifting methods for generalized semi-infinite programs

In this talk we present numerical solution strategies for generalized semi-infinite optimization problems (GSIP), a class of mathematical optimization problems which occur naturally in the context of design centering problems, robust optimization problems, and many fields of engineering science. GSIPs can be regarded as bilevel optimization problems, where a parametric lower-level maximization problem has to be solved in order to check feasibility of the upper level minimization problem. In this talk we discuss three strategies to reformulate a class lower-level convex GSIPs into equivalent standard minimization problems by exploiting the concept of lower level Wolfe duality. Here, the main contribution is the discussion of the non-degeneracy of the corresponding formulations under various assumptions. Finally, these non-degenerate re-formulations of the original GSIP allow us to apply standard nonlinear optimization algorithms.

Wolfram Wiesemann, Imperial College London (with Daniel Kuhn, Berc Rustem)

Robust Markov decision processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider robust MDPs that offer probabilistic guarantees in view of the unknown parameters. To this end, we assume that an observation history of the MDP is available. Based on this history, we derive a confidence region that contains the unknown parameters with a pre-specified probability $1 - \beta$. Afterwards, we determine a policy that attains the highest worst-case performance over this confidence region. By construction, this policy achieves or exceeds its worst-case performance with a confidence of at least $1 - \beta$. Our method involves the solution of tractable conic programs of moderate size.

Petr Lachout, Charles University in Prague

Robustness in stochastic programs with risk and probabilistic constraints

Due to their frequently observed lack of convexity and/or smoothness, these programs are rather demanding both from the computational and robustness point of view. Under suitable conditions on the structure of the problem, we exploit the contamination technique to analyze the resistance of optimal value with respect to the alternative probability distribution. We apply this approach to mean-risk models and portfolio efficiency testing with respect to stochastic dominance criteria.

Martin Takac, University of Edinburgh (with Jakob Mann, Peter Richtarik)

Parallel block coordinate descent methods for block-structured problems

In this work we show that randomized block coordinate descent methods can be accelerated by parallelization when applied to the problem of minimizing the sum of a partially block separable smooth convex function and a simple block separable convex function. We give a generic algorithm and several variants thereof, and illustrate the gains on the way parallelization is performed. In all cases we prove iteration complexity results, i.e., we give bounds on the number of iterations sufficient to approximately solve the problem with high probability. Our results generalize the intuitive observation that in the separable case the theoretical speedup caused by parallelization must be equal to the number of processors. We show that the speedup increases with the number of processors and with the degree of partial separability of the smooth component of the objective function. Our analysis also works in the mode when the number of blocks being updated at each iteration is random, which allows for modelling situations with variable (busy or unreliable) number of processors. We conclude with some encouraging computational results applied to huge-scale LASSO and sparse SVM instances.

Silvia Vogel, TU Ilmenau

Confidence regions for level sets: Sufficient conditions

Real-life decision problems usually contain uncertainties. If a probability distribution of the uncertain quantities is available, the successful models of stochastic programming can be utilized. The probability distribution is usually obtained via estimation, and hence there is the need to judge the goodness of the solution of the ‘estimated’ probability distribution. Confidence regions for constraint sets, optimal values and solution sets of optimization problems provide useful information. Recently a method has been developed which offers the possibility to derive confidence sets employing a quantified version of convergence in probability of random sets instead of the whole distribution of a suitable statistic. Uniform concentration-of-measure inequalities for approximations of the constraint and/or objective functions are crucial conditions for the approach. We will discuss several methods for the derivation of such inequalities, especially for functions which are expectations of a random function.

Martin Takac, University of Edinburgh (with Jakob Mann, Peter Richtarik)

Stochastic optimization – Confidence sets, stability, robustness

We are concerned with very large scale convex optimization problems and an application of the Block Coordinate Descent (BCD) algorithm to determine their solution. We assume that the problems display block-structure and show how this structure may be exploited to accelerate the BCD algorithm. At every iteration of the algorithm, the direction in each block-coordinate must be determined. We discuss the linear algebra techniques employed to accelerate this step. We also present a convergence analysis and a complexity result, which provide a linear algebra insight into the standard convex optimization techniques.

Peter Richtarik, University of Edinburgh (with Jakob Mann, Peter Richtarik)

Distributed block coordinate descent method: Iteration complexity and efficient hybrid implementation

In this talk we present solving huge-scale instances of regularized convex minimization problems using a distributed block coordinate descent method. We analyze the iteration complexity of the (synchronous) algorithm and show how it depends on the way the problem data is partitioned to the nodes. Several variations of the basic method are obtained based on the way updates are handled (P2P, broadcasting, asychronically). Finally, we report encouraging numerical results for an efficient hybrid MPI + Open MP implementation applied to LASSO and sparse support vector machine instances.

Rachael Tappeson, University of Edinburgh (with Jakob Mann, Peter Richtarik)

Block coordinate descent method for block-structured problems

The paper presents robustness results for stochastic programs with risk and probabilistic constraints. The paper presents robustness results for stochastic programs with risk and probabilistic constraints. Due to their frequently observed lack of convexity and/or smoothness, these programs are rather demanding both from the computational and robustness point of view. Under suitable conditions on the structure of the problem, we exploit the contamination technique to analyze the resistance of optimal value with respect to the alternative probability distribution. We apply this approach to mean-risk models and portfolio efficiency testing with respect to stochastic dominance criteria.

Milos Kopa, Charles University in Prague (with Jirka Dupacova)

Robustness in stochastic programs with risk and probabilistic constraints

The paper presents robustness results for stochastic programs with risk and probabilistic constraints. Due to their frequently observed lack of convexity and/or smoothness, these programs are rather demanding both from the computational and robustness point of view. Under suitable conditions on the structure of the problem, we exploit the contamination technique to analyze the resistance of optimal value with respect to the alternative probability distribution. We apply this approach to mean-risk models and portfolio efficiency testing with respect to stochastic dominance criteria.
We develop a flexible framework for nonparametric estimation of probability density functions that systematically incorporates soft information from human sources and experiences. The framework results in infinite dimensional stochastic optimization problems that are replaced by finite dimensional approximations based on exponential epi-splines. We show consistency of approximations as the order of the epi-spline grows as well as the sample size tends to infinity. We also discuss asymptotics and the implementation of soft information that dramatically improves the quality of the estimates.

David Morton, The University of Texas at Austin

Rapidly detecting an anomaly spreading stochastically on a network

We consider an anomaly that spreads according to stochastic dynamics on a network. Subject to a budget constraint, we install sensors on nodes of the network to maximize the probability we detect the anomaly by a time threshold. Using a Monte Carlo approximation of a stochastic integer program, we solve large-scale problem instances using data from a cellphone service provider.

Raghu Pasupathy, Virginia Tech (with Soumyadip Ghosh)

On interior-point based retrospective approximation methods for solving two-stage stochastic linear programs

We consider two-stage stochastic linear programs, the foundational formulation for optimization under uncertainty. The most general form lets the underlying distributions have infinite support. Approximate solutions to such problems are obtained by the sample average approximation approach of solving the program for a finite sample from the distribution. A recent thread of literature focuses on using interior point methods to efficiently solve two-stage programs for finite support random variables. Our contribution generalizes this formulation by incorporating it into a retrospective approximation (RA) framework. What results is an implementable interior-point solution paradigm that can be incorporated into a branch-and-cut approach based on Benders decomposition and a branch-and-price heuristic, that uses the special structure of the problem by alternating price and size optimization. In all tested cases we obtain very small violation of the optimality gaps (< 0.03 %). In a field study we show that a distribution of supply over branches and sizes based on ISPO solutions leads to better results in terms of realized return than a one-stage optimization of the distribution ignoring the possibility of optimal pricing.

Konrad Schade, Volkswagen AG

The stochastic guaranteed service model

Order policies are crucial in supply chain management. This talk is about the two-stage stochastic guaranteed-service-model (SGSM) and its usefulness in finding cost-minimizing orderpoints within a multi-echelon inventory system applying the (s,S)-strategy. The guaranteed-service-model (GSM) provides such orderpoints under the assumption of reliable internal lead times and bounded total demand. We introduce the SGSM – a two-stage stochastic MILP – that extends the GSM and enables recourse actions. To solve the SGSM we generate scenarios with the sample average approximation. We reduce the number of scenarios considered in the solution algorithm through a scenario reduction technique, the fast forward selection. We get the best results using an asymmetric distance based on the objective function of the SGSM we want to solve between the scenarios. Simulation based on real world data of a large german car manufacturer show the improvement of applying the SGSM. The results are compared to the GSM, a decent solution without optimization within the network and another stochastic optimization method.

Subramanian Raghavan, University of Maryland (with Eduardo Alvarez Miranda, Ivana Ljubic, Paolo Toth)

Recoverable robust two level network design

In this problem one of two available technologies can be installed on each edge and all customers of the network need to be served by at least one of the two.
least the lower level (secondary) technology. We are confronted with uncertainty regarding the set of primary customers, i.e., the set of nodes that need to be served by the higher level (primary) technology. A set of discrete scenarios associated to the possible realizations of primary customers is available. The network is built in two stages. One may decide to install the primary technology on some of the edges in the first stage, or one can wait to see which scenario will be realized, in which case, edges with the installed secondary technology may be upgraded to primary technology, but at higher recovery cost. The goal is to build a spanning tree in the first stage that serves all customers by at least the lower level technology, and minimizes the first stage installation cost plus the worst-case cost needed to upgrade the edges of that tree, so that the primary customers of each scenario can be served using the primary technology. We study the complexity of the problem on trees and provide MIP models and a branch-and-cut approach.

control and optimization of impulsive systems I

Dmitry Karamzin, Computing Centre RAS (with Aram Arutyunov, Fernando Pereira)

Existence theorems and Pontryagin's Maximum Principle for impulsive control problems

This report addresses existence theorems and Pontryagin's Maxi- mum Principle for constrained impulsive control problems with a new concept of impulsive control. This concept enables extra controls (conventional bounded controls) which act on the discontinuities of the impulsive system. Such type of impulsive controls can be encountered in different engineering applications in which, for example, it might be necessary to take into account rapid variations in mass distribution of a mechanical system during the short time when the impulse is being applied. These are, of course, many other applications. We provide a detailed example showing how these controls could be useful.

Geraldo Silva, UNESP - Universidade Estadual Paulista (with Valeriano Oliveira)

Optimal impulsive control problems under uncertainty

This work provides an approach to treat optimal impulsive control problems with uncertain parameters and provides necessary conditions in the form of a maximum principle. The uncertain parameter is a vector in the objective function and is chosen from a set which is taken to be a compact metric space. The necessary conditions obtained here is a generalization of the minimax maximum principle derived earlier for non-impulsive optimal control problems [Vinter04].

Valeriano de Oliveira, State University of São Paulo (with Geraldo Silva)

An Inexty Type Condition on Impulsive Optimal Control Systems

We discuss several techniques for getting Fermat rules for set-valued unconstrained optimization. Among these techniques which are, in a sense, equivalent, we focus on a method based on the incompatibility between the metric regularity (or openness at linear rate) of set-valued maps and the optimality in the sense of Pareto. We describe technically how the well known contradiction between regularity and optimality could be successfully transposed into a set-valued context and then we identify several metric regularity/openness results which serve our final purpose. We observe that in order to get good Fermat rules (i.e. under mild conditions) one should have to derive new specific

Regularity and sensitivity in multicriteria optimization

Marius Durea, Al. I. Cuza University of Iasi

Metric regularity and Fermat rules in set-valued optimization

We discuss several techniques for getting Fermat rules for set-valued unconstrained optimization. Among these techniques which are, in a sense, equivalent, we focus on a method based on the incompatibility between the metric regularity (or openness at linear rate) of set-valued maps and the optimality in the sense of Pareto. We describe technically how the well known contradiction between regularity and optimality could be successfully transposed into a set-valued context and then we identify several metric regularity/openness results which serve our final purpose. We observe that in order to get good Fermat rules (i.e. under mild conditions) one should have to derive new specific openness results which could be of interest for its own. Several possi- abilities in this direction are investigated, each one giving a specific final outcome. Moreover, some applications to vector equilibrium problems are envisaged. Since, in general, our method allows to firstly deduce approximate Fermat rules for set-valued optimization problems in the setting of general Banach spaces, through this presentation we will have the possibility to underline several regularity and stability issues.

Radu Strugariu, Gh. Asachi Technical University of Iasi, Romania

Metric regularity and subdifferentials of set-valued mappings with applications to vector optimization

This presentation is devoted to the investigation of different types of regularity for set-valued mappings, with applications to the study of the well-posedness of the solution mappings associated to paramet- rized functional systems. We present some general theorems concerning chain rules for linear openness of multifunctions and we obtain, as par- ticular cases, some classical and also some new results in this field of research, including the celebrated Lysternik Graves Theorem. Also, we classify the at-point regularities (or subregularities) of set-valued mapp- ings into two categories and then we analyze their relationships, and that, we show how to use the subregularity properties to deduce implicit theorems for set-valued maps. Finally, we present some applications to the study of multicriteria optimization problems.

Constantin Zalinescu, University Alexandru Ioan Cuza Iasi

Variational principles for multifunctions and applications

The usefulness of the Ekeland Variational Principle (EVP) is well known. Nonlinear Analysis. In the last thirty years many variants for vector-valued functions were established. In our talk we present several versions of the EVP in which the usual (minimized) function as well as the distance function are replaced by multifunctions. Then we present an application to error bounds.

Mohit Singh, Microsoft Research (with Shayon Oveis Gharan, Amin Saberi)

A randomized rounding approach to the traveling salesman problem

For some positive constant \(t \), we give a \(\frac{2}{\sqrt{3}}(1 - t) \)-approximation algorithm for the following problem: given a graph \(G = (V, E) \), find the shortest tour that visits every vertex at least once. This is a special case of the metric traveling salesman problem when the underlying metric is defined by shortest path distances in \(G \). The result improves on the \(\frac{2}{\sqrt{3}} \)-approximation algorithm due to Christofides for this special case. Similar to Christofides, our algorithm finds a spanning tree whose cost is upper bounded by the optimum, it finds the minimum cost Eulerian augmentation of that tree. The main difference is in the selection of the spanning tree. Except in certain cases where the solution of LP is nearly integral, we select the spanning tree rather than sampling from the optimum entropy distribution defined by the linear programming relaxation. Despite the simplicity of the algorithm, the analysis builds on a variety of ideas such as properties of strongly Rayleigh measures from probabil- ity theory, graph theoretical results on the structure of near minimum cuts, and the integrality gap of the T-join polytope from polyhedral theory.

Tobias Mömke, KTH Royal Institute of Technology (with Ola Svensson)

Approximation graphic TSP by matchings

We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges in order to make a given graph Eulerian, whereas our approach also allows for the removal of certain edges leading to a decrease in cost. For the TSP on graphic metrics, the proposed approach yields a \(1.461 \)-approximation algorithm with respect to the Held-Karp lower bound. For graph-TSP restricted to a class of graphs that contains degree three bounded and claw-free graphs, we show that the integrality gap of the T-joint polytope is \(4/3 \).

Marcin Mucha, University of Warsaw

13th Approximation Graphic TSP

The Travelling Salesman Problem (TSP) is one of the most fundamen- tal and most studied problems in approximation algorithms. For more than 30 years, the best algorithm known for general metrics has been Christofides’s algorithm with approximation factor of \(\frac{3}{2} \), even though the so-called Held-Karp LP relaxation of the problem is conjectured to have the integrality gap of only \(\frac{4}{3} \).

In the so-called graphic version of TSP we assume that \((V, \delta) \) is a shortest path metric of an unweighted, undirected graph. The reason why this special case is interesting is that it seems to include the diffi-
cuit inputs of TSP. Not only is it APX-hard, but also the standard examples showing that the Held-Karp relaxation has a gap of at least $\frac{1}{2}$ are in fact graph.

Very recently, significant progress has been made for the graphic TSP, first by Oveis Gharan et al., and then by Mömke and Svensson. In this paper, we provide an improved analysis of the approach used by the latter yielding a bound of $\frac{1}{2} + \varepsilon$ on the approximation factor. We also provide improved bounds for the related graphic TSP path problem.

Combinal optimization

Extended formulations in discrete optimization I
Organizers/Chairs Samuel Fiorini, Université libre de Bruxelles (ULB); Gaetan Stauffer, University Bordeaux 1 – INRIA - Limited Session
Seminar on Combinatorial Optimization

On linear programming formulations of the TSP polytope
We solve a 20-year old problem posed by M. Yannakakis and prove that there are $\Omega(n^2)$ LP formulations that do not admit a compact LP formulation. More precisely we show that for every n there is a set $X \subseteq \{0, 1\}^n$ such that $\text{conv}(X)$ must have extension complexity at least $2^n \left(1 - \varepsilon\right)^n$. In other words, every polyhedron Q that can be linearly projected on $\text{conv}(X)$ must have exponentially many facets.

Theorem Rothvoß, M.I.T.

Some 0/1 polytopes need exponential size extended formulations
We prove that there are 0/1 polytopes $P \subseteq \mathbb{R}^n$ that do not admit a compact LP formulation. More precisely we show that for every n there is a set $X \subseteq \{0, 1\}^n$ such that $\text{conv}(X)$ must have extension complexity at least $\Omega(n^2)$. In other words, every polyhedron Q that can be linearly projected on $\text{conv}(X)$ must have exponentially many facets.

The paper is available under: http://arxiv.org/abs/1105.0036

Roland Grappe, LIPN - équipe AOC (with Yuni Faenza, Samuel Fiorini, Twyman Hans Raj)
Extended formulations, non-negative factorizations, and randomized communication protocols
We show that the binary logarithm of the non-negative rank of a non-negative matrix is, up to small constants, equal to the minimum complexity of a randomized communication protocol computing the matrix in expectation.

We use this connection to prove new conditional lower bounds on the sizes of extended formulations, in particular, for perfect matching polytopes.

Combinal optimization

Matroid parity
Organizer/Chair Tamás Király, Eötvös University, Budapest - Limited Session
Ho Yee Cheung, University of Southern California (with Lap Chi Lau, Kai Man Leung)

Algebraic algorithms for linear matroid parity problems
We present faster and simpler algorithms for the linear matroid parity problem and its applications. For the linear matroid parity problem, we obtain a simple randomized algorithm with running time $O(mr^2)$, which improves the $O(m^2 r)$-time algorithm by Gabow and Stallmann. We also present a very simple alternative algorithm with running time $O(m^2 r^2)$. We further improve the algebraic algorithms for some specific graph problems of interest. We present faster randomized algorithms for the Mader’s disjoint S-path problem and the graphic matroid parity problem.

The techniques are based on the algebraic programming framework developed by Mucha, Sankowski and Harvey. While linear matroid parity and Mader’s disjoint S-path challenge generalizations for the design of combinatorial algorithms, our results show that both the algebraic algorithms for linear matroid intersection and graph matching can be extended nicely to more general settings. All algorithms are still faster than the existing algorithms even if fast matrix multiplications are not used. These provide simple algorithms that can be easily implemented.

Satoru Iwata, Kyoto University
Weighted linear matroid parity
The matroid parity problem was introduced as a common generalization of matching and matroid intersection problems. In the worst case, it requires an exponential number of independence oracles calls. Nevertheless, the problem is solvable if the matroid in question is represented by a matrix. This is a result of Lovász (1980), who discovered a min-max theorem as well as a polynomial time algorithm. Subsequently, more efficient algorithms have been developed for this linear matroid parity problem.

This talk presents a combinatorial, deterministic, strongly polynomial algorithm for its weighted version. The algorithm builds on a polynomial matrix formulation of the problem using Pfaffian and an augmenting path algorithm for the unweighted version by Gabow and Stallmann (1986).

Independently of this work, Gyula Pap has obtained the same result based on a different approach.

Gyula Pap, Eötvös University

Weighted linear matroid parity - A primal-dual approach
In the matroid parity problem we are given a matroid partitioned into pairs – subsets of cardinality 2. A set of pairs is called a matching if their union is an independent set. The (unweighted) matroid parity problem is to maximize the cardinality of a matching. This problem is solvable in polynomial time for linear matroids by Lovász’ famous result – a generalization of graphical matching, and (linear) matroid intersection, both of which are solvable also in the weighted version. Thus one suspects the natural weighted version of linear matroid matching to also be tractable: consider a linear matroid whose elements are assigned weights, and partitioned into pairs – find a matching whose total weight is maximal. A solution to this problem would generalize both of Edmonds’ algorithms, for matching, and for (linear) matroid intersection as well. In this talk a primal-dual algorithm is presented to solve weighted linear matroid matching in strongly polynomial time. A different solution to this problem has been found independently by Iwata.

TAMON STEPHEN, Simon Fraser University (with Francisco Santos, Hugh Thomas)

The width of 4-prismatoids
Santos’ construction of a counterexample to the Hirsch conjecture highlights a particular 5-dimensional “prismatoid” polytope. We use the Euler characteristic to prove that there is no 4-dimensional prismatoid.

David Bremer, University of New Brunswick (with Yan Cai)

Minimum norm points on the boundary of convex polytopes
Given two sets of vectors in $P, Q \subseteq \mathbb{R}^d$ the maximum margin hyperplane is defined by the solution to the following

$$\text{margin}(P, Q) = \sup_{w \in \text{conv}(P \cup \mathbb{R})} \inf_{p \in P, q \in Q} \langle w, p - q \rangle$$

where B is the relevant unit ball.

In the case where $\text{margin}(P, Q) > 0$, the problem of finding the minimum norm point in the Minkowski sum $P + Q$ of $P \cap Q$ and conv can be solved efficiently.

When $0 \in \text{int}(P \cap Q)$, margin is dual to finding the smallest translation that makes the two sets separable. It turns out this is defined by the minimum norm point on the boundary of $P \cap Q$. In this case the feasible is just piecewise convex, and the problem is NP-hard.

In this talk I will discuss experimental results from two approaches to the non-separable case. The first approach solves one convex min-

Combinatorial optimization

Combinatorics and geometry of linear optimization II
Organizers/Chairs Jesus De Loera, University of California, Davis; Antoine Deza, McMaster University - Limited Session
Gabor Pataki, UNC Chapel Hill

Bad semidefinite programs: They all look the same
In the duality theory of semidefinite programming (SDP), unlike in LP, “pathological” phenomena occur: nonattainment of the optimal value, and positive duality gaps between primal and dual problems.

This research was motivated by the curious similarity of pathological SDP instances appearing in the literature. We find an exact characterization of semidefinite systems, which are badly behaved from the viewpoint of duality, i.e., show that “all bad SDPs look the same”. We also prove an excluded minor type result: all badly behaved semidefinite systems can be reduced in a well defined sense to a minimal such system with just one variable, and two by two matrices. Our characterizations imply that recognizing badly behaved semidefinite systems is in $\text{NP} \cap \text{coNP}$ in the real number model of computing.

The main result follows from a fairly general characterization of badly behaved conic linear systems, and hinge on a previous theorem on the closedness of the linear image of a closed convex cone. We show characterizations of badly behaved second order, and other conic systems as well.

Tamon Stephen, Simon Fraser University (with Francisco Santos, Hugh Thomas)

The width of 4-prismatoids
Santos’ construction of a counterexample to the Hirsch conjecture highlights a particular 5-dimensional “prismatoid” polytope. We use the Euler characteristic to prove that there is no 4-dimensional prismatoid.

David Bremer, University of New Brunswick (with Yan Cai)

Minimum norm points on the boundary of convex polytopes
Given two sets of vectors in $P, Q \subseteq \mathbb{R}^d$ the maximum margin hyperplane is defined by the solution to the following

$$\text{margin}(P, Q) = \sup_{w \in \text{conv}(P \cup \mathbb{R})} \inf_{p \in P, q \in Q} \langle w, p - q \rangle$$

where B is the relevant unit ball.

In the case where $\text{margin}(P, Q) > 0$, the problem of finding the minimum norm point in the Minkowski sum $P + Q$ of $P \cap Q$ and conv can be solved efficiently.

When $0 \in \text{int}(P \cap Q)$, margin is dual to finding the smallest translation that makes the two sets separable. It turns out this is defined by the minimum norm point on the boundary of $P \cap Q$. In this case the feasible is just piecewise convex, and the problem is NP-hard.

In this talk I will discuss experimental results from two approaches to the non-separable case. The first approach solves one convex min-
imization per facet of $P \odot Q$. The second approach [applicable only to polytopal norms] solves one LP per vertex of the unit ball B.

Combinatorial optimization

LP relaxations

Chair Dorit Hochbaum, UC Berkeley

Maria Teresa Godinho, IPBEja & CIO (with Luís Gouveia, Pierre Pesneau)

On a time-dependent formulation for the travelling salesman problem

In the past, several papers have produced a classification of formulations for the ATSP, in terms of the associated linear programming relaxations. Among others, we may consider the papers by Gouveia and Voorhoeve (1985), Lang et al (1990), Gouveia and Pires (1999), Orman and Williams (2007) and Oncan et al (2009). These papers fall among two classes. Either they produce new results between formulations known from the literature, or they use the fact that new formulations are also being presented in the paper in order to upgrade a classification already known from the literature. Our talks fall in the second category in the sense that we present an updated classification of formulations for the asymmetric travelling salesman problem (ATSP) where we contextualize, in terms of the ATSP, a new time-dependent formulation presented in Godinho et al (2010). The main feature of this formulation is that it uses, for each node, a stronger subproblem, namely a n-circuit sub problem with the additional constraint that the corresponding node is not repeated in the circuit.

Dorit Hochbaum, UC Berkeley

Flow-based algorithms that solve clustering problems related to graph expander, normalized cut and conductance better than the spectral method

We address challenging problems in clustering, partitioning and imaging including the normalized cut problem, graph expander, Cheeger constant problem and conductance problem. These have traditionally been solved using the “spectral technique”. These problems are formulated here as a particular ratio (Rayleigh ratio with discrete constraints and a single sum constraint). The spectral method solves a relaxation that omits the discreteness constraints. A new relaxation, that omits the sum constraint, is shown to be solvable in strongly polynomial time. It is shown, via an experimental study, that the bipartition achieved by the combinatorial algorithm often improve dramatically in terms of the objective value of the respective NP-hard problem, as well as in terms of the visual quality of the segmentation, compared to the spectral method in image segmentation and image denoising instances.

Yong-Hong Kuo, The Chinese University of Hong Kong (with Janny Leung)

On the mixed set covering, partitioning and packing problem

Set covering, set partitioning and set packing problems have already been studied for more than 40 years. However, researchers usually consider the problems individually and very few literatures have mentioned the mixed set covering, partitioning and packing problem, where the three kinds of constraints are present simultaneously in the formulation. The problems with such kind of structures play an important role in the real-life applications, e.g., staff scheduling problems. In this talk, we will discuss the polyhedral structure of the problem and present a way which we call “implicit edges generation” approach, to further tighten the feasible region and, as a result, makes the LP optimal closer to the IP optimal. We will also present some classes of facet-defining inequalities produced by this approach. Computational results show that, using our proposed methodology, a tighter formulation can be obtained and, consequently significant reductions of computational efforts are made.

Combinatorial optimization

Existence and uniqueness of equilibria for flows over time

Network flows that vary over time arise naturally when modeling rapidly evolving systems such as the Internet. In this paper, we continue the study of equilibria for flows over time in the single-source single-sink deterministic queuing model proposed by Koch and Skutella. We give a constructive proof for the existence and uniqueness of equilibria for the case of a piecewise constant inflow rate, through a detailed analysis of the static flows obtained as derivatives of a dynamic equilibrium.

Ronald Koch, TU Berlin (with Ebrahim Nasrabadi, Martin Skutella)

Continuous and discrete flows over time

Network flows over time form a fascinating area of research. They model the temporal dynamics of network flow problems occurring in a wide variety of applications. Research in this area has been pursued in two different and mainly independent directions with respect to time modeling: discrete and continuous time models.

In this talk we deploy measure theory in order to introduce a general model of network flows over time combining both discrete and continuous aspects into a single model. Here, the flow on each arc is modeled as a Borel measure on the real line (time axis) which assigns to each suitable subset a real value, interpreted as the amount of flow entering the arc over the subset. We motivate the usage of measures as a quite natural tool for modeling flow distributions over time. In particular, we show how static flow theory can be adopted to obtain corresponding results for this general flow over time model.

Combinatorial optimization

New insights for old problems

Organizer/Chair Andreas S. Schulz, MIT - Invited Session

Gautier Stauffer, University Bordeaux 1 – IRNA (with Jean-Philippe Gayon, Guillaume Massonnet, Christophe Ragot)

A simple and fast 2-approximation algorithm for the one-warehouse multi-retailer problem

The One-Warehouse Multi-Retailer (OWMR) problem, we want to optimize the distribution of a single item over a network composed of one warehouse and N different retailers over a discrete finite planning horizon of T periods. Each retailer is facing deterministic demands that have to be fulfilled on time by ordering those units from the warehouse, which in turn have to be ordered from an external supplier of infinite capacity. The objective of the OWMR problem is to find a planning for the orders at each location i.e., period and quantity that minimizes the sum of the fixed ordering costs and holding costs in the system. The cost of ordering is fixed, independent of the number of products, while a per-unit holding cost is paid at each location to keep an item in stock. This problem is NP-hard but efficient 1.8- and 2-approximation algorithms have been proposed in the literature. The corresponding algorithms are based on sophisticated LP techniques (randomized rounding and primal dual). In this talk we present a simple 2-approximation algorithm that is purely combinatorial and that can be implemented to run in linear time.

Danny Segev, University of Haifa

An approximate dynamic-programming approach to the joint replenishment problem

In this talk, I will present a high-level view of a very recent approach for approximating the joint replenishment problem, with stationary demands and holding costs. Based on synthesizing ideas such as commodity aggregation, approximate dynamic programming, and a few guessing tricks, it turns out that one can attain any required degree of accuracy in time $O((nT)^{(1+\log \log T)}$, where n denotes the number of given commodities, and T stands for the number of time periods.

Andreas S. Schulz, MIT (with Claudio Telha Cornejo)

The joint replenishment problem and the problem of clustering frequency-constrained maintenance jobs are integer-factorization hard

We present a new connection between certain sequencing problems involving the coordination of activities and the problem of integer factorization. We use this connection to derive hardness results for three well-known problems in operations management whose computational complexity has been open for more than two decades:
The joint replenishment problem with general integer policies.

The joint replenishment problem with correction factor.

The problem of finding an optimal clustering of frequency-constrained maintenance jobs.

Our hardness results imply that no polynomial-time algorithm exists for either problem, unless integer factorization is solvable in polynomial time.

Complementarity & variational inequalities

Differential variational inequalities

Organizer/Chair: Mihai Antitescu, Argonne National Laboratory - Invited Session

Lei Wang, Argonne National Lab (with Shirang Abhaykumar, Mihai Antitescu, Jungho Lee, Lois McInnes, Todd Munson, Barry Smith)

Large-scale differential variational inequalities for phase-field modeling

Recent progress on the development of scalable differential variational inequality multigrid-based solvers for the phase-field approach to mesoscale materials modeling is described. We have developed a reduced space method, augmented reduced space method, and semismooth method for variational inequalities in PETSc, leveraging experience by the optimization community in TAo. A geometric multigrid solver in PETSc is developed to solve the resulting linear systems. We present strong and weak scaling results for 2D coupled Allen-Cahn/Cahn-Hilliard systems.

Michael Hintermüller, Humboldt-Universität zu Berlin (with Thomas Surowiec)

A bundle-free implicit programming approach for MPECs in function space via smoothing

Using a standard first-order optimality condition for nonsmooth optimization problems, a general framework for a descent method is developed. This setting is applied to a typical class of mathematical programs with equilibrium constraints in function space from which a new algorithm is derived. Global convergence of the algorithm is demonstrated in function space and the results are illustrated by numerical experiments.

Mohammad Hassan Farshbaf-Shaker, Universität Regensburg (with Claudia Hecht)

Optimal control of vector-valued elastic Allen-Cahn variational inequalities

A vector-valued elastic Allen-Cahn-MPEC problem is considered and a penalization technique is applied to show the existence of an optimal control. We show that the stationary points of the penalized problems converge to some stationary points of the limit problem, which however are weaker than C-stationarity conditions.

MPECs in function space II

Organizer/Chairs: Christian Meyer, TU Dortmund; Michael Hintermüller, Humboldt-Universität zu Berlin - Invited Session

Stanislaw Migorski, Jagiellonian University, Faculty of Mathematics and Computer Science

An optimal control problem for a system of elliptic hemivariational inequalities

In this paper we deal with a system of two hemivariational inequalities which is a variational formulation of a boundary value problem for two coupled elliptic partial differential equations. The boundary conditions in the problem are described by the Clarke subdifferential of multivalued and nonmonotone laws. First, we provide the results on existence and uniqueness of a weak solution to the system. Then we consider an optimal control problem for the system, we prove the continuous dependence of a solution on the control variable, and establish the existence of optimal solutions. Finally, we illustrate the applicability of the results in a study of a mathematical model which describes the static frictional contact problem between a piezoelectric body and a foundation.

Juan Carlos De los Reyes, Escuela Politécnica Nacional Quito

Optimality conditions for control problems of variational inequalities of the second kind

In this talk we discuss optimality conditions for control problems governed by a class of variational inequalities of the second kind. Applications include the optimal control of Bingham viscoplastic materials and simplified friction problems. If the problem is posed in \mathbb{R}^n an optimality system has been derived by J. Outrata [2000]. When considered in function spaces, however, the problem presents additional difficulties.

We propose an alternative approximation approach based on a Huber type regularization of the governing variational inequality. By using a family of regularized optimization problems and performing an asymptotic analysis, an optimality system for the original optimal control problem (including complementarity relations between the variables involved) is obtained.

Optimal control of quasistatic plasticity

An optimal control problem is considered for the variational inequality representing the stress-based (dual) formulation of quasistatic elastoplasticity. The linear kinematic hardening model and the von Mises yield condition are used. By showing that the VI can be written as an evolutionary variational inequality, we obtain the continuity of the forward operator. This is the key step to prove the existence of minimizers.

In order to derive necessary optimality conditions, a family of time discretized and regularized optimal control problems is analyzed. By passing to the limit in the optimality conditions for the regularized problems, necessary optimality conditions of weakly stationary type are obtained.

We present a solution method which builds upon the optimality system of the time discrete and regularized problem. Numerical results which illustrates the possibility of controlling the springback effect.

Gerd Wachsmuth, TU Chemnitz (with Roland Herzog, Christian Meyer)

First-derivative and interior methods in convex optimization

Organizer/Chair: Stephen Vavasis, University of Waterloo - Invited Session

Miguel A. Aguiar, École Polytechnique de Montréal (with Alexandre Engau)

Convergence and polynomiality of a primal-dual interior-point algorithm for linear programming with selective addition of inequalities

We present the convergence proof and complexity analysis for an interior-point framework that solves linear programming problems by dynamically selecting and adding inequalities. First, we formulate a new primal–dual interior-point algorithm for solving linear programs in nonstandard form with equality and inequality constraints. The algorithm uses a primal–dual path-following predictor–corrector short-step interior-point method that starts with a reduced problem without any inequalities and selectively adds a given inequality only if it becomes active on the way to optimality. Second, we prove convergence of this algorithm to an optimal solution at which all inequalities are satisfied regardless of whether they have been added by the algorithm or not. We thus provide a theoretical foundation for similar schemes already used in practice. We also establish conditions under which the complexity of the algorithm is polynomial in the problem dimension.

Olivier Devolder, Université Catholique de Louvain (UCL) (with François Glineur, Yurii Nesterov)

Intermediate gradient methods for smooth convex optimization problems with inexact oracle

Between the slow but robust gradient method and the fast but sensitive to errors fast gradient method, we develop new intermediate gradient methods for smooth convex optimization problems. We show, theoretically and on numerical experiments, that these new intermediate first-order methods can be used in order to accelerate the minimization of a smooth convex function when only inexact first-order information is available.

Jose Herskovits, COPPE / Federal University of Rio de Janeiro (with Miguel Ancteguazu, Jean Roche)

A feasible direction interior point algorithm for nonlinear convex semidefinite programs

The present method employs basic ideas of FDIPA [1], the Feasible Direction Interior Point Algorithm for nonlinear optimization. It generates a descent sequence of points at the interior of the feasible set, defined by the semidefinite constraints. The algorithm performs Newton-like iterations to solve the first order Karush–Kuhn–Tucker optimality conditions. At each iteration, two linear systems with the same coefficient matrix must be solved. The first one generates a descent direction. In the second linear system, a precisely defined perturbation in the left hand side is done and, as a consequence, a descent feasible direction is obtained. An inexact line search is then performed to ensure that the new iterate is interior and the objective is lower. A proof of global convergence of is presented. Some numerical are described. We also present the results with structural topology optimization problems employing a mathematical model based on semidefinite programming. The results suggest efficiency and high robustness of the proposed method.

Conic programming

Tue.3.1 2038

Conic and convex programming in statistics and signal processing I
Organizer/Chair Panichkit Shah, University of Wisconsin - Invited Session

Bamdev Mishra, University of Liege (with Rodolphe Sepulchre)

Fixed-rank matrix factorizations and the design of invariant optimization algorithms

Optimizing over fixed-rank matrices is a fundamental problem arising in many modern machine learning applications. One way of handling the rank constraint is by fixing the rank a priori resulting in a fixed-rank factorization model. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian framework of the search space in the design of gradient descent and trust-region algorithms.

We focus on the invariance properties of certain metrics. Specifically, we seek to develop algorithms that can be made invariant to linear transformation of the data space. We show that different Riemannian geometries lead to different invariance properties and we provide numerical evidence to support the effect of invariance properties on the algorithm performance.

We make connections with existing algorithms and discuss relative usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with the state-of-the-art and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix.

Lieuven Vandenberghe, UCLA (with Martin Andersen)

Multifrontal barrier computations for sparse matrix cones

We discuss conic optimization problems involving two types of convex matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern, and its dual cone, the cone of matrices with the same sparsity that have a positive semidefinite completion. We describe efficient algorithms for evaluating the values, gradients, and Hessians of the logarithmic barrier functions for the two types of cones. The algorithms are based on techniques used in multifrontal and supernodal sparse Cholesky factorization methods. The results will be illustrated with applications in covariance selection and semidefinite programming.

Venkit Chandrasekaran, Caltech (with Michael Jordan)

Computational and sample tradeoffs via convex relaxation

In modern data analysis, one is frequently faced with statistical inference problems involving massive datasets. In this talk we discuss a computational framework based on convex relaxation in order to reduce the computational complexity of an inference procedure when one has access to increasingly larger datasets. Essentially, the statistical gains from larger datasets can be exploited to reduce the runtime of inference algorithms.

Alexander Scheln, University of Vienna (with Richard Hartl)

The impact of the predefined search space on recent exact algorithms for the RCPSP

The problem of assigning starting times to a number of jobs subject to resource and precedence constraints is called the resource-constrained project scheduling problem (RCPSP). This presentation deals with exact algorithms for the standard version of the RCPSP assuming a single mode, non-preemption and renewable resources. Recent exact algorithms for this problem combine a branch and bound-based optimization search with principles from constraint programming, boolean satisfiability solving and mixed-integer programming for the branching and the fathoming of the search space. In our presentation, we analyze and enhance two recent exact algorithms by a parallel solving procedure. The latter consists of running the exact algorithm in parallel on an instance with different variable domains which are determined through a preprocessing step based on activity lists. Our results on instances with 60, 90 and 120 jobs show that the efficiency of the exact algorithms strongly varies depending on the predefined search space. Moreover, when employing the best found search space (which is not the smallest), we can improve two recent exact algorithms from the literature.

Burak Gokgur, Bilkent University of Economics (with Ibrahim Hacht, Selin Ozpynencin)

Mathematical modelling and constraint programming approaches for operation assignment and tool loading problems in flexible manufacturing systems

This study presents mathematical programming and constraint programming models that aim to solve scheduling and tool assignment problems in flexible manufacturing systems. In our problem setting, there is a number of jobs to be processed on parallel computer numerically controlled machines. Each job requires a set of tools and the number of tools available in the system is limited due to economic restrictions. The problem is to assign the jobs and the required tools to machines and determine the schedule so that the makespan is minimized. A mathematical model and three constraint programming models for this problem are developed and the results of the experimental study are reported. Our empirical study reveals that the constraint programming approach leads to more efficient models when compared to mathematical programming model in terms of solution quality and computation time. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBITAK).

Tue.3.3 3082

Derivative-free & simulation-based opt.

Novel approaches in derivative-free optimization

B. Borchers, University of Arizona

Organizers/Chairs: Luis Nunes Vicente, University of Coimbra; Stefan Wild, Argonne National Laboratory - Invited Session

Yuri Nesterov, UCL

Random gradient-free minimization of convex functions

In this talk, we prove the complexity bounds for methods of Convex Optimization based only on computation of the function value. The search directions of our schemes are normally distributed random Gaussian vectors. It appears that such methods usually need at most α times more iterations than the standard gradient methods, where α is the dimension of the space of variables. This conclusion is true both for nonsmooth and smooth problems. For the later class, we present also an accelerated scheme with the expected rate of convergence $O(\sqrt{k})$, where k is the iteration counter. For Stochastic Optimization, we propose a zero-order scheme and justify its expected rate of convergence $O(\sqrt{k})$. We give also some bounds for the rate of convergence of the random gradient-free methods to stationary points of nonconvex functions, both for smooth and nonsmooth cases. Our theoretical results are supported by preliminary computational experiments.

Miklos Balog, Princeton University (with Katya Scheinberg, Luis Nunes Vicente)

On sparse Hessian recovery and trust-region methods based on probabilistic models

In many application problems in optimization, one has little or no correlation between problem variables, and such (sparsity) structure is unknown in advance when optimizing without derivatives. We will show that quadratic interpolation models can be used to cover the Hessian sparsity of the function being modeled, when using random sample sets. Given a considerable level of sparsity in the unknown Hessian of the function, such models can achieve the accuracy of second order Taylor ones with a number of sample points (or observations) significantly lower than $O(n^2)$. The use of such modeling techniques in derivative-free optimization led us to the consideration of trust-region methods where the accuracy of the models is given with some positive probability. We will show that as long as such probability of model accuracy is over 1/2, one can en-
Regret minimization with zeroth order information

The problem of stochastic convex optimization with the noisy zeroth order oracle can be seen as a generalization of the classical multi-armed bandit problem, if the goal is to minimize regret rather than the final value of the objective function. Regret is defined as the difference between the optimal function value and the function value achieved by the algorithm. In this talk, we present a regret-minimization algorithm that is based on the zeroth order algorithm of Nemirovskii and Yudin from the 70’s. We also briefly discuss regret minimization in a more difficult scenario of online linear optimization, where the linear function costs are changing adversarially at every step. While we only have one shot at getting any information about the cost function per step, a randomized method which exploits according to the Dikin ellipsoid is shown to enjoy a near-optimal regret bound.

Applications and algorithms
Chair Galina Yakaulina, Oral State University of Railway Transport

Emilie Jeanneau-poulos, Université de Sherbrooke (with François Dubeau, Jean-Pierre Dussault, Candido Pomal)

Cost optimization of several diet formulations and environmental impact in the swine industry

The diet formulation is a classic example of mathematical programming. We present several new models applied to the swine industry, where feed represents more than 70% of the total production cost, and compare the cost and environmental impact with the traditional feeding solution. Modern producers feed pigs with a 3 phases system with fixed energy rate. First, we will explain the classic and multiphase feeding methods. This last one is a more practical in practice so we introduce two formulation, one so called fixed and the other so called free. The so called free premix model depart from the traditional linear programming formulation in tackling simultaneously the diet's premix contents and the daily proportions, resulting in a bi-linear formulation. Just by using a daily phase feeding system and two premixes, producers already save. Deeper analysis of the problem revealed that the cost of a premix increases with its energy rate. So we finally present the unfixed energy rate model and show how it is related to the previously presented models. The free energy rate free premix bi-linear model appears to give substantial improvements over more traditional solutions.

Takashi Satoishi, Graduate School of Systems and Information Engineering, University of Tsukuba (with Oschi Iwasaka, Malee Shigem, Takashi Takahashi, Noqui Watanabe)

2-approximation algorithms for the winner determination problem in VCG based single-item multi-unit auctions

This paper studies the winner determination problem in Vickrey-Clarke-Groves (VCG) based single-item multi-unit auctions: given a set of bids in such an auction, find an allocation of units of an item to bidders so as to maximize the seller’s revenue. (The seller can keep some units of the item.) This problem is known to be NP-hard. Thus, we first pose two simple 2-approximation algorithms for the problem. One is a linear time algorithm and the other is a greedy algorithm. Numerical experiments and human subject experiments were conducted to evaluate the computational efficiency and economic efficiency of these approximation algorithms. Our results are as follows. [1] Approximate ratios of the algorithms are at least 95% in numerical experiments. [2] Under-bidding was observed in human subject experiments although the VCG mechanism theoretically induces bidders to tell their valuation truthfully.

Gakina Akakulina, Oral State University of Railway Transport

Project risks analysis using approach of fuzzy sets theory

The report presents a method of analysis of the riskiness of the project using fuzzy sets. The net present value or NPV used as the main indicator of the effectiveness of the project. If the NPV takes value less than zero, the project is considered to be ineffective. The main objective of the work is describing a method to calculate the probability that the project will be ineffective. The method is to consider all the variables of the system as fuzzy numbers with certain characteristics. Function NPV can be represented as a combination of fuzzy parameters and is also a fuzzy number. Different versions of membership function can describe the parameters of the project and the number of NPV can be considered. The method is used in practice for the proposed business plan of the project.
epsilon-global optimality is introduced. Algorithmic components include: reformulating user input, detecting special mathematical structure, generating tight convex relaxations, dynamically generating cuts, partitioning the search space, bounding variables, and finding feasible solutions.

We also discuss computational experience with the global mixed-integer quadratic optimizer, GloMIQO. New components in GloMIQO include integrating a validated interval arithmetic library, dynamically adding alphaBB cuts and higher-order edge-concave cuts, addressing discrete/discrete and discrete/continuous products, selectively adding bilinear terms for RLT cuts, and eliminating bilinear terms based on knapsack constraint inferences. Data is presented for globally optimizing a range of MIQCQP including process networks, computational geometry, and quadratic assignment problems.

Angelas Tsoukalas, Massachusetts Institute of Technology (with Alexander Mitsos)

Extension of McCormick’s composition to multi-variate outer functions

G. P. McCormick [Math Prog 1976] provides the framework for the convex/concave relaxations of factorable functions involving functions of the form $F \circ f$, where F is a univariate function. We give a natural reformulation of McCormick’s Composition theorem which allows for a straightforward extension to multi-variate outer functions. In addition to extending the framework, we show how the result can be used in the construction of relaxation proofs. A direct consequence is an improved relaxation for the product of two functions which is at least as tight and some times tighter than McCormick’s result. We also apply the composition result to the minimum/maximum and the division of two functions yielding an improvement on the current relaxation. Finally we interpret McCormick’s Composition theorem as a decomposition approach to the auxiliary variable reformulation methods and we introduce some ideas for future hybrid variations.

NLP and MINLP software

Organizer/Chair Hande Benson, Drexel University - Invited Session

Hande Benson, Drexel University (with Umit Saglam)

MILANO and mixed-integer second-order cone programming

In this talk, we present details of MILANO (mixed-integer linear and nonlinear optimizer), a Matlab-based toolbox for solving mixed-integer optimization problems. Our focus will be on interior-point methods for second-order cone programming problems and their extensions to mixed-integer second-order cone programming problems and nonlinear programs with second-order cone constraints. Numerical results from portfolio optimization, supply chain management, and data mining will be presented.

Klaus Schittkowski, University of Bayreuth (with Oliver Exler, Thomas Lehmann)

MISQP: A TR-SQP algorithm for the efficient solution of non-convex, non-relaxable mixed-integer nonlinear programming problems

We present a new sequential quadratic programming (SQP) algorithm stabilized by trust-regions for solving nonlinear, non-convex and non-relaxable mixed-integer optimization problems. The mixed-integer quadratic programming subproblems are solved by a branch-and-cut algorithm. Second order information is updated by a modified quasi-Newton update formula (BFGS) applied to the Lagrange function for continuous, but also for integer variables. The design goal is to solve practical optimization problems based on expensive executions of an underlying simulation program. Thus, the number of simulations or function evaluations, respectively, is our main performance criterion to measure the efficiency of the code. Numerical results are presented for a set of 175 mixed-integer test problems and different parameter settings of MISQP. The average total number of function evaluations of the new mixed-integer SQP code is about 1,200 including those needed for approximating partial derivatives.

Robert Vanderbei, Princeton University

Fast fourier optimization

Many interesting and fundamentally practical optimization problems arising in signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. The fast Fourier transform (FFT) is a well-known recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this talk, we explain the main idea behind the fast Fourier transform and show how to adapt it so as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer discretization. As we shall show, in general, the “fast Fourier” version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem.

In modern MIP-solvers like the branch-cut-and-price-framework SCIP, primal heuristics play a major role in finding and improving feasible solutions at the early steps of the solution process. However, classical performance measures for MIP such as time to optimality or number of branch-and-bound nodes reflect the impact of primal heuristics on the overall solving process rather badly. Reasons for this are that they typically depend on the convergence of the dual bound and that they only consider instances which can actually be solved within a given time limit.

In this talk, we discuss the question of how the quality of a primal heuristic should be evaluated and introduce a new performance measure, the “primal integral”. It depends on the quality of solutions found during the solving process as well as on the point in time when they are found. Thereby, it assesses the impact of primal heuristics on the ability to find feasible solutions of good quality, in particular early during search.

Finally, we discuss computational results for different classes of primal heuristics that are implemented in SCIP.

Monfred Padberg, NYU

The rank of (mixed-) integer polyhedra

We define a purely geometrical notion of the rank of a mixed-integer polyhedra that differs substantially from the existing notions found in the literature. This talk will outline the notion and present some related results.

Felipe Serrano, ZIB (with Daniel Espinoza)

Some computational experiments with multi-row cuts.

We consider a general mixed integer problem (MIP). The topic we address is to derive cuts by combining two or more rows of the optimal simplex tableau of the linear relaxation of the MIP. A framework will be presented that allows to generate multi-row cuts using different relaxations over the main set possibly including bounds on the variables. Specifically, in this talk we present a numerical approach that allows to look into more complex relaxations than those previously considered in the literature. We propose an approximation scheme that may prove useful for practical implementations of multi-row cuts. Also, we incorporate a simple way to take advantage of the integrality of non basic variables.

Robert Vanderbei, Princeton University

Fast fourier optimization

Many interesting and fundamentally practical optimization problems arising in signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. The fast Fourier transform (FFT) is a well-known recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this talk, we explain the main idea behind the fast Fourier transform and show how to adapt it so as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer discretization. As we shall show, in general, the “fast Fourier” version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem.

In modern MIP-solvers like the branch-cut-and-price-framework SCIP, primal heuristics play a major role in finding and improving feasible solutions at the early steps of the solution process. However, classical performance measures for MIP such as time to optimality or number of branch-and-bound nodes reflect the impact of primal heuristics on the overall solving process rather badly. Reasons for this are that they typically depend on the convergence of the dual bound and that they only consider instances which can actually be solved within a given time limit.

In this talk, we discuss the question of how the quality of a primal heuristic should be evaluated and introduce a new performance measure, the “primal integral”. It depends on the quality of solutions found during the solving process as well as on the point in time when they are found. Thereby, it assesses the impact of primal heuristics on the ability to find feasible solutions of good quality, in particular early during search.

Finally, we discuss computational results for different classes of primal heuristics that are implemented in SCIP.

Monfred Padberg, NYU

The rank of (mixed-) integer polyhedra

We define a purely geometrical notion of the rank of a mixed-integer polyhedra that differs substantially from the existing notions found in the literature. This talk will outline the notion and present some related results.

Felipe Serrano, ZIB (with Daniel Espinoza)

Some computational experiments with multi-row cuts.

We consider a general mixed integer problem (MIP). The topic we address is to derive cuts by combining two or more rows of the optimal simplex tableau of the linear relaxation of the MIP. A framework will be presented that allows to generate multi-row cuts using different relaxations over the main set possibly including bounds on the variables. Specifically, in this talk we present a numerical approach that allows to look into more complex relaxations than those previously considered in the literature. We propose an approximation scheme that may prove useful for practical implementations of multi-row cuts. Also, we incorporate a simple way to take advantage of the integrality of non basic variables.

Maleflooding, Princeton University

Fast fourier optimization

Many interesting and fundamentally practical optimization problems arising in signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. The fast Fourier transform (FFT) is a well-known recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this talk, we explain the main idea behind the fast Fourier transform and show how to adapt it so as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer discretization. As we shall show, in general, the “fast Fourier” version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem.
The goal is a scalable methodology to plan healthcare-facility configuration for prescriptive models. Appropriate solution methods are proposed for the healthcare facility configuration problem and presents a framework to incorporate legislation. This presentation describes relevant practical features of expanding access to healthcare in underserved (e.g., rural) areas and through recent telemedicine. This topic is timely as countries seek to enhance access to healthcare services, including the U.S., which is working towards the goal of expanding access in underserved (e.g., rural) areas and through recent legislation. This presentation describes relevant practical features of the healthcare facility configuration problem and presents a framework for prescriptive models. Appropriate solution methods are proposed. The goals are scalable methodology to plan healthcare-facility configuration, adjusting, for example, to demand and demographic changes, emigration, immigration, mergers, and acquisitions.

Alexandra Newman, Colorado School of Mines (with Ed Klotz)

Practical guidelines for solving difficult linear and mixed integer programs

The advances in state-of-the-art hardware and software have enabled the inexpensive, efficient solution of many large-scale linear and integer programs previously considered intractable. However, a significant number of real-world linear and integer programs can still require hours, or even days, of run time and are not guaranteed to yield an optimal (or near-optimal) solution. In this talk, we present suggestions for diagnosing and removing performance problems in commercially available linear and mixed integer programming solvers, and guidelines for careful model formulation. We draw on examples from the mining and energy industries, among other areas.

Wilbert Wilhelm, Texas A&M University (with David Carmona, Xue Han, Brittany Tarin)

The stochastic healthcare facility configuration problem

The Discrete Ordered Median Problem (DOMP) has many discrete location problems as particular cases. Some examples are the p-median problem, the p-center problem, the k-centrum problem and several equitable location problems. In the DOMP, distances between medians and allocated points are sorted. The sorted distances are then multiplied times a vector of coefficients which determines the particular problem that is being solved. Sorting values of variables inside a linear integer programming formulation was an active area of past research. In this work we deal with an extension of the DOMP where the order in which the variables are multiplied by the coefficients is determined by a second set of variables. That is to say, pairs of variables are sorted with respect to the first component of the pair, and it is the second component which is multiplied by the coefficients. In this way, new problems can be modeled at the expense of increasing the difficulty of the formulation.

Alfredo Marín, Universidad de Murcia

Discrete ordered non-linear median problem with induced order

The Discrete Ordered Median Problem (DOMP) has many discrete location problems as particular cases. Some examples are the p-median problem, the p-center problem, the k-centrum problem and several equitable location problems. In the DOMP, distances between medians and allocated points are sorted. The sorted distances are then multiplied times a vector of coefficients which determines the particular problem that is being solved. Sorting values of variables inside a linear integer programming formulation was an active area of past research. In this work we deal with an extension of the DOMP where the order in which the variables are multiplied by the coefficients is determined by a second set of variables. That is to say, pairs of variables are sorted with respect to the first component of the pair, and it is the second component which is multiplied by the coefficients. In this way, new problems can be modeled at the expense of increasing the difficulty of the formulation.

We also show that non linear objective functions can be incorporated into the formulation without additional effort. The results of a preliminary computational study will be presented.

Wilbert Wilhelm, Texas A&M University (with David Carmona, Xue Han, Brittany Tarin)

The stochastic healthcare facility configuration problem

The stochastic healthcare facility configuration problem, which is essentially a supply chain design problem, is to prescribe the location and size of each facility, allowing openings, expansions, contractions, and closures; the healthcare services each is to offer; and the capacity to be allocated to each service – all given that patient needs are uncertain. This topic is timely as countries seek to enhance access to healthcare services, including the U.S., which is working towards the goal of expanding access in underserved (e.g., rural) areas and through recent legislation. This presentation describes relevant practical features of the healthcare facility configuration problem and presents a framework for prescriptive models. Appropriate solution methods are proposed. The goal is a scalable methodology to plan healthcare-facility configuration, adjusting, for example, to demand and demographic changes, emigration, immigration, mergers, and acquisitions.

Vladimir Deniko, Warwick Business School

A framework for vehicle routing

We consider the capacitated vehicle routing problem (CVRP) and various modifications of this problem. We suggest a general framework which is flexible enough to be used for all these modifications of the VRP. The main algorithm behind the framework is the well-known Held & Karp dynamic programming algorithm for the travelling salesman problem. Results of computational experiments on the known benchmark problems show the competitiveness of our approach with the best known heuristics.

Carlos Cardoso, IBM Research - Brazil (with Fabio Bernardino)

A fast solution method applied to the vehicle positioning problem and its multi-periodic, online, and robust extension

The Vehicle Positioning Problem (VPP) is a classical and challenging combinatorial optimization problem that deals with the assignment of vehicles of a transport company to parking positions. In this talk, we present an exact solution technique that explores partial knowledge about the likelihood of having certain variables in optimal solutions in order to produce feasible solutions for MIPs quickly. We present an exact algorithm for the VPP based on this method and show through computational experiments that it is able to provide optimal solutions for large-scale scenarios of the problem. We also show that some important extensions of the VPP – namely, its multi-periodic version, which was previously intractable, and its online version – can be solved efficiently with this method. Finally, we also discuss how one can apply the concept of robustness to the problem and how robust solutions can be efficiently computed for the VPP.

Stefan Ropke, Technical University of Denmark

Exact and heuristic solution methods for the generalized asymmetric vehicle routing problem and the capacitated arc routing problem

In the generalized asymmetric vehicle routing problem (GAVRP) one is given a set of nodes consisting of customer nodes and a depot. Customer nodes are partitioned into clusters and one must construct a number of routes, starting and ending at the depot, such that exactly one customer from each cluster is visited. Each cluster has a certain demand and routes must be constructed such that the total demand on a route is below a given threshold. We solve the GAVRP with an exact method based on the branch-and-cut-and-price paradigm, as well as with a parallel adaptive large neighborhood search heuristic. Furthermore, in [Baldacci, Bartolini and Laporte (2010)] it was shown how an instance of the capacitated arc routing problem (CARP) can be transformed into a GAVRP instance. We use this transformation in order to solve CARP instances with the proposed GAVRP algorithms and report on extensive computational experiments for both problem types.

Alexandra Newman, Colorado School of Mines (with Ed Klotz)

Approximation algorithms for supply chain management and logistics optimization models

Chair Retsef Levi, MIT Sloan School of Management - Limited Session

Tim Carnes, Link Analytics (with David Simons)

A primal-dual approximation algorithm for air ambulance routing and deployment

We present a primal-dual 2-approximation algorithm for the k-location routing problem, that models choosing k locations for vehicles and routing each vehicle in a tour to serve a set of requests, where the cost is the total tour length. This is the first constant approximation algorithm for this problem and has real-world applications; this is part of a broader effort for Ornge, which transports medical patients. Our work builds and improves upon work of Goemans, Williamson and Jain and Vazirani.

Gonzalo Romero, Massachusetts Institute of Technology (with Retsef Levi, Georgia Perakis)

Allocating subsidies to minimize a commodity’s market price - a network design approach

We study the problem faced by a central planner allocating subsidies to competing firms that provide a commodity, with the objective of minimizing its market price, subject to a budget constraint and possibly upper bounds on the total amount that can be allocated to each firm. We consider two types of subsidies, co-payments and technology subsidies. We use a network design under equilibrium flow approach to model an endogenous market response to the subsidy allocation, and obtain structural results and near optimal solutions in various important cases.

Anna Elmaleh, MIT (with Retsef Levi)

Supply chain management with online customer selection

We consider new online versions of supply chain management and logistics models, where in addition to production decisions, one also has to decide on which customers to serve. Specifically, customers arrive sequentially during a selection phase, and one has to decide whether to accept or reject each customer upon arrival. If a customer is rejected, then a lost-sales cost is incurred. Once the selection decisions are all made, one has to satisfy all the accepted customers with minimum possible production cost. The goal is to minimize the total cost of lost-sales.
and production. A key feature of the model is that customers arrive in an online manner, and the decision maker does not require any information about future arrivals. We provide several novel algorithms for online customer selection problems which are based on new variants of repeated optimization and interesting connections to cooperative game theory. For many important settings, our algorithms achieve competitive ratio guarantees that are close to best possible.

Mixed-integer nonlinear programming

Convex relaxations for nonconvex optimization problems
Organizer/Chair: Jeff Linderoth, University of Wisconsin-Madison - Invited Session
Kurt Anstreicher, University of Iowa (with Sam Burer)

Second-order-cone constraints for extended trust-region subproblems

The classical trust-region subproblem (TRS) minimizes a nonconvex quadratic objective over the unit ball. We consider extensions of TRS having additional constraints. It is known that TRS, and the extension of TRS that adds a single linear inequality, both admit convex programming representations. We show that when two parallel linear inequalities are added to TRS, the resulting nonconvex problem has an exact convex representation as a semidefinite programming (SDP) problem with additional linear and second-order-cone constraints. For the case where an additional ellipsoidal constraint is added to TRS, resulting in the well-known "two trust-region subproblem" (TTRS), we describe a new relaxation including second-order-cone constraints that significantly strengthens the usual SDP relaxation. Numerical experiments show that the strengthened relaxation provides an exact solution of TTRS in most instances, although the theoretical complexity of TTRS remains an open problem.

Jeff Linderoth, University of Wisconsin-Madison (with Jim Luedtke, Ashutosh Mahajan, Mahdi Namazifar)

Solving mixed integer polynomial optimization problems with MINOTAUR

We study methods for building polyhedral relaxations of multilinear terms that arise in nonconvex mixed integer optimization problems. The goal is to obtain a formulation that is more compact than the convex hull formulation, but yields tighter relaxations than the standard McCormick relaxation. We present computational results for an approach based on grouping the variables into subsets that cover all multilinear terms in the problem. The approach is combined with additional reformulation techniques and spatial branching in the software framework MINOTAUR to produce a solver for mixed integer polynomial optimization problems.

Jon Lee, University of Michigan

Global optimization of indefinite quadratic

I will talk on some methodology for global optimization of indefinite quadratics.

Applications of multiobjective optimization

Chair: Gennady Zabrodsky, Omek Branch of Sobolev Institute of Mathematics Siberian Branch of Russian Academy of Sciences
Ceren Tunencer Sakar, Middle East Technical University (with Murat Kik escalation)

Effects of multiple criteria and different planning horizons on portfolio optimization

Portfolio optimization is the problem of allocating available resources between different investments in the market. Following the pioneering work of Markowitz, Modern Portfolio Theory—which has two criteria of mean return and variance—has emerged and several approaches to the problem have been proposed. Incorporating multiple criteria to portfolio optimization and considering multi-period settings is important. Considering return, liquidity, variance and Conditional Value at Risk, we look into the effects of multiple criteria on the decision and objective spaces of portfolio optimization problems. We also employ Stochastic Programming to handle multi-period portfolio optimization and compare the effects of using different planning horizons. We demonstrate our results based on tests performed with stocks traded on Istanbul Stock Exchange.

Lino Alvarez-Vázquez, Universidad de Vigo (with Nestor Garcia-Chan, Aurora Martinez, Miguel Vazquez-Mendes)

Air pollution and industrial plant location: A multi-objective optimization approach

In this talk we deal with the problem of choosing the optimal location for a new industrial plant, considering the framework of numerical simulation and multi-objective optimal control of partial differential equations (PDE). We take into account both ecological and economic objectives, and we look not only for the optimal location of the plant but also for the optimal management of its emissions to atmosphere. With these purposes in mind, we propose a mathematical model (a system of parabolic PDE) to simulate air pollution and, based on this model, we formulate the problem in the framework of multi-objective optimal control. This problem is studied here from a cooperative point of view, looking for Pareto-optimal solutions. A numerical algorithm (via a characteristics-Galerkin discretization of the adjoint model) is proposed, and preliminary numerical results for a hypothetical situation in the region of Galicia (NW Spain) are also presented.

Gennady Zabrodsky, Omek Branch of Sobolev Institute of Mathematics Siberian Branch of Russian Academy of Sciences (with Igor Anjos)

Optimal location of rectangles on parallel lines

Facility location problems in the plane play an important role in mathematical programming. In the report is studied the problem of location rectangles on parallel lines such that a length and a width of rectangular cover were minimum. The problem is NP-hard. For the search of Pareto-optimal solutions we use models of integer linear programming and dynamic programming techniques. An algorithm for the search of the approximate solution of the problem with the minimum length is offered. We use IBM ILOG CPLEX package for the solution of integer linear programming problems. Results of computing experiment are presented.

Jeff Linderoth, University of Wisconsin-Madison (with Sam Burer)

A study of the dual affine scaling continuous trajectories for linear programming

In this talk, a continuous method approach is adopted to study both the entire process and the limiting behaviors of the dual affine scaling continuous trajectories for linear linear programming. Since the approach is different from any existing one, many new theoretical results on the trajectories resulted from the dual affine scaling continuous method model for linear programming are obtained.

Atsushi Kato, Tokyo University of Science (with Hironobu Yabe, Hironobu Yamashita)

An interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming

In this talk, we consider a primal-dual interior point method for nonlinear semidefinite programming problem:

\[
\begin{align*}
\min & \quad f(x), \\
\text{s.t.} & \quad g(x) = 0, \\
& \quad X(x) \succeq 0,
\end{align*}
\]

where functions \(f : \mathbb{R}^n \to \mathbb{R}, \ g : \mathbb{R}^m \to \mathbb{R}^m \) and \(X : \mathbb{R}^n \to \mathbb{S}^p \) are sufficiently smooth, and \(\mathbb{S}^p \) denotes the set of \(p \times p \) order real symmetric matrices.

Our method is consists of the outer iteration (SDPIP) and the inner iteration (SDPLS). Algorithm SDPIP finds a KKT point. Algorithm SDPLS also finds an approximate shifted barrier KKT point. Specifically, we apply the Newton method to the shifted barrier KKT conditions. To globalize the method, we propose a differentiable merit function in the primal-dual space within the framework of line search strategy. We show its global convergence property.

Mouna Hassan, Rey Juan Carlos University (with Javier Muguerza, Andrés Redchuk)

The \(\psi \) – Penalty Interior Point Method

The problem of general nonconvex, nonlinear constraint optimization is addressed, without assuming regularity conditions on the constraints, and the problem can be degenerate. We reformulate the problem by applying \(\psi \)-exact penalty function with shift variables to relax and regularize the problem. Then a feasible type line search primal–dual interior point method, approximately solve a sequence of inequality constraint penalty-barrier subproblems. To solve each subproblems, a Cauchy step would be computed beside to Newton step and the proposed algorithm would maintain a direction in the span of these two steps. The penalty parameter is checked at the end of each iteration as we do with the barrier parameter, since we do not need to update the penalty parameter before performing the line search. If the multipliers are finite, then the corresponding penalty parameter is finite. Global convergence properties do not require the regularity conditions on the original problem. The solution to the penalty-barrier problem converge to the optimima that may satisfy the Karush-Kuhn-Tucker point or Fritz-John point, and may satisfy a first-order critical point for the measure of the
Recent advances in nonlinear optimization
Organizer/Chair Andrew Conn, T. J. Watson Research Center - Invited Session

Nicholas Gould, STFC Rutherford Appleton Laboratory (with Sven Leyffer, Yueling Lib, Daniel Robinson)

SQP Filter methods without a restoration phase

We consider Filter SQP methods in which regularization is applied explicitly rather than via a trust-region, as suggested by Gould, Leyffer et al. in 2006. Our goal is to provide an alternative to the unattractive “restoration” phase that is needed to unblock iterates that become trapped by the filter. We will consider two alternatives. In the first, the model problem itself gives precedence to improving feasibility and this naturally leads to unblocking. In the second, the filter envelope is “tilted” to allow more room for improvement, and if this fails to unblock, the filter itself is disregarded and progress towards optimality guided by an overall merit function. All of this is somewhat speculative at this stage.

Philipp Gill, University of California, San Diego (with Daniel Robinson)

Regularization and convexification for SQP methods

We describe a sequential quadratic programming (SQP) method for nonlinear programming that uses a primal-dual generalized augmented Lagrangian merit function to ensure global convergence. Each major iteration involves the solution of a bound-constrained subproblem defined in terms of both the primal and dual variables. A convexification method is used to give a subproblem that is equivalent to a regularized convex quadratic program (QP).

The benefits of this approach include the following: (1) The QP subproblem always has a known feasible point. (2) A projected gradient method may be used to identify the QP active set when far from the solution. (3) The application of a conventional active-set method to the bound-constrained subproblem involves the solution of a sequence of regularized KKT systems. (4) Additional regularization may be applied by imposing explicit bounds on the dual variables. (5) The method is equivalent to the stabilized SQP method in the neighborhood of a solution.

Andreas Waechter, Northwestern University (with Travis Johnson)

A hot-started NLP solver

We discuss an active-set SQP method for nonlinear continuous optimization that avoids the re-factorization of derivative matrices during the solution of the step computation QP in each iteration. Instead, the approach uses hot-starts of the QP solver for a QP with matrices corresponding to an earlier iteration, or available from the solution of a similar NLP. The goal of this work is the acceleration of the solution of closely related NLPs, as they appear, for instance, during strong-branching or diving heuristics in MINLP.

Markus Kögel, OVG Universität Magdeburg (with Rolf Findeisen)

Real-time optimization III
Organizer/Chairs Victor Zavala, Argonne National Laboratory; Sebastian Sager, Universität Magdeburg - Invited Session

On real-time optimization for model predictive control using multiplier methods and Nesterov’s gradient method

Model predictive control is an optimization based approach in automatic control to control systems. It allows to take constraints explicitly into account while optimizing the performance. Model predictive control requires solving in real-time optimization problem each time a new measurement becomes available.

We focus on the important special case of linear plants, quadratic cost criteria and convex constraints, in which the optimization problems are quadratic programs with a special structure. Although, multiple efficient algorithms exist by now, model predictive control is still challenging for fast, large systems or on embedded systems with limited computing power.

Therefore we present approaches using multiplier methods and Nesterov’s gradient method, which allow efficient real-time optimization. In particular, we outline how the solution can be parallelized or distributed. This enables the use of multiple processor cores or even multiple computers to decrease the solution time. We illustrate the proposed algorithms using application examples.

Gabriele Pannocchia, Department of Chemical Engineering (DICCISM) - University of Pisa (with Mayne Dave & Rawlings James)

On the convergence of numerical solutions to the continuous-time constrained LQR problem

A numerical procedure for computing the solution to the continuous-time infinite-horizon constrained linear quadratic regulator was presented in [1], which is based successive strictly convex QP problems where the decision variables are the control input value and slope at selected grid points. Each QP generates an upper bound to the optimal cost, and the accuracy is increased by using gradually refined grids computed offline to avoid any online integration. In this work we propose an adaptive method to gradually refine the grid where it is most needed, still without having to perform integration online, and we address the convergence properties of such algorithm as the number of grid points is increased. By means of suitable optimality functions, at each iteration given the current upper bound cost, we compute: (i) a lower bound approximation of the optimal cost which can be used to stop the algorithm within a guaranteed tolerance; (ii) for each grid interval, an estimate of the cost reduction that can be obtained by bisecting it. Examples are presented.

Breaking away from double-precision floating-point in interior point solvers

We will show how one can modify interior point methods for solving constrained linear quadratic control problems in computing hardware with a fixed-point number representation or with significantly less bits than in single- or double-precision floating-point. This allows one to dramatically reduce the computational resources, such as time, silicon area and power, needed to compute the optimal input sequence at each sample instant. For fixed precision, we propose a simple preconditioner, which can be used with iterative linear solvers such as CG or MINRES, that allows one to compute tight bounds on the ranges of the variables in the Lanczos iteration, thereby allowing one to determine the best position of the radix point. To allow one to reduce the number of bits needed, we propose the use of the delta transform of Middleton and Goodwin in order to avoid numerical errors that would occur when using the usual shift transform to discretize the continuous-time optimal control problem. We also propose a Riccati method, tailored to the delta transform, for efficiently solving the resulting KKT systems that arise within an interior point solver.

Eric Kerrigan, Imperial College London (with George Constantinides, Shintaro Longo, Juan Jerez)

Large-scale structured optimization
Organizer/Chair Anatoli Juditsky, LJK, Université J. Fourier - Invited Session

Arkadi Nemirovski, Georgia Institute of Technology (with Anatoli Juditsky, Fatma Kilinc-Karzan)

Randomized first-order algorithms for bilinear saddle point problems and their applications to ℓ_1 minimization

In this talk, we propose new first-order algorithms for solving large-scale saddle point problems. Our developments are motivated by the need for sublinear time algorithms to solve large-scale parametric bilinear saddle point problems where cheap online assessment of solution quality is crucial. We present the theoretical efficiency estimates of our algorithms and discuss a number of applications, primarily to the problems of ℓ_1 minimization arising in sparsity-oriented Signal Processing. We demonstrate, both theoretically and by numerical examples, that when seeking for medium-accuracy solutions of large-scale ℓ_1 minimization problems, our randomized algorithms outperform significantly (and progressively as the sizes of the problems grow) the state-of-the-art deterministic methods.

Guanghui Lan, University of Florida (with Saeed Ghadimi)

Stochastic first- and zero-order methods for nonconvex stochastic programming

We present a new stochastic approximation (SA) type algorithm, namely the randomized stochastic gradient (RSG) method, for solving a class of nonlinear (possibly nonconvex) stochastic programming problems. We establish the rate of convergence of the method for computing an approximate stationary point of a nonlinear programming problem. We also show that this method can handle stochastic programming problems with endogenous uncertainty where the distribution of random variables depend on the solution variables. This is the case for the algorithms which consists of applying a post-optimization phase to evaluate a short list of solutions generated by several independent runs of the RSG method. We show that such modification allows to improve significantly the large-deviation properties of the algorithm. We also develop a special version of the method for solving a class of simulation-based optimization problems in which only stochastic zero-order information is available.

Sergiy Sipkina, Moscow Institute of Phys. & Tec. (with Yurii Nesterov)

Primary primal-subgradient method for huge-scale conic optimization problems and its applications in structural design

For huge-scale optimization problems, we suggest a new primal-

Nonlinear programming

Nonlinear optimization

Tue.3 I 0110

Large-scale structured optimization

Tue.3 I 1012

Stochastic first- and zero-order methods for nonconvex stochastic programming
dual subgradient method. It generates the minimal minimization sequence in the dual space. At the same time, it constructs an approximate primal solution. Our scheme is based on the recursive updating technique suggested recently by Nesterov. It allows a logarithmic dependence of the total cost of subgradient iteration in the number of variables.

As an application, we consider a classical problem of finding an optimal design of mechanical structures. Such a problem can be posed in a conic form, with high sparsity of corresponding linear operator.
design of electromagnetic meta-materials, and many others. In this talk, we discuss several PDE-constrained optimization problems involving time-harmonic eddy current equations as equality constraints. Recent theoretical and numerical results are presented.
approximate projections using conjugate gradients, and provides empirical evidence for the effectiveness of the proposed HOC.

Spartak Zikin, Linköping University (with Mats Andersson, Oleg Bundakov, Hans Knutsson)

Sparse optimization techniques for solving nonlinear least-squares problems with application to design of filter networks

The nonlinear least-squares (NLLS) problem is an extension of the linear least-squares problem. The difference is that a nonlinear operator is used in place of a matrix-vector product. The NLLS is typically a large-scale problem characterized by a large number of local minimizers. Each of the local minimizers is singular and non-isolated. The NLLS problem originates, for instance, from the design of filter networks.

For the design of filter networks, we consider the problem of finding the control constraints and actuator faults separately from the design of the main regulator, which uses virtual control input. Its dimension is usually quite low, while the number of physical actuators can be much higher. Using linearization, control allocation is equivalent to linear inverse problem with interval-constrained vector \(x \), which we need to recover from limited linear measurements: \(y = A x \). Depending on the particular application, one can seek a sparse solution (which minimizes number of physical actuators used for control) or optimize convex function of \(x \).

Note that if \(x \) constrained to a hypercube, then \(y \) is constrained to an image, a zonotope. We propose a new real-time method for calculating \(x \), which is based on interval analysis ideology. Its basic operations are hypercube bisection and explicit reconstruction of the zonotope as a system of linear inequalities.

Maxim Dementiev, Russian Academy of Sciences

Real-time linear inverse problem and control allocation in technical systems

Control allocation is a set of methods for control of modern overactuated mechanical systems (such as aircrafts, marine vehicles, electric cars), and deals with distributing of the total control demand among the individual actuators. The idea of control allocation allows to deal with control constraints and actuator faults separately from the design of the main regulator, which uses virtual control input. Its dimension is usually quite low, while the number of physical actuators can be much higher. Using linearization, control allocation is equivalent to linear inverse problem with interval-constrained vector \(x \), which we need to recover from limited linear measurements: \(y = A x \). Depending on the particular application, one can seek a sparse solution (which minimizes number of physical actuators used for control) or optimize convex function of \(x \).

Note that if \(x \) constrained to a hypercube, then \(y \) is constrained to an image, a zonotope. We propose a new real-time method for calculating \(x \), which is based on interval analysis ideology. Its basic operations are hypercube bisection and explicit reconstruction of the zonotope as a system of linear inequalities.

Angelos Georghiou, Imperial College London (with Daniel Kuhn, Wolfram Wiesemann)

A stochastic capacity expansion model for the UK energy system

Energy markets are currently undergoing one of their most radical changes in history. Both market liberalisation and the increasing penetration of renewable energy sources highlight the need to accommodate uncertainty in the design and management of future energy systems. This work aims to identify the most cost-efficient expansion of the UK energy grid, given a growing future demand for energy and the target to move towards a more sustainable energy system. To this end, we develop a multi-stage stochastic program where the investment decisions are made in two time stages and is therefore severely intractable. We develop a novel approach for approximately solving the problem. In our numerical experiments, a greedy-type sparse optimization algorithm is used for designing 2D and 3D filter networks.

The efficiency of our approach is illustrated by results of numerical experiments performed for some problems related to the design of filter networks.

Marin Dimitrov, Russian Academy of Sciences

Modeling uncertainties in location-allocation problems: A stochastic programming approach

We consider location-allocation problems with Weber objects where uncertainty not only occurs in the demand of the existing facilities (that is, in the location objective), but also in the constraints of the problem such as the size and the shape of the feasible region. The trade-off between the cost of a solution on one hand and its robustness with respect to the uncertain data on the other hand is analyzed, which naturally motivates a multiple objective formulation of the problem. A two-stage stochastic programming model is obtained as a scalarization of the multiple objective model, and the relations to single-objective location-allocation problems are discussed. We use geometric arguments to derive discretization results for the case that distances are measured by block norms or polyhedral gauges. An efficient location-allocation heuristic for problems with uncertain feasible sets is suggested and tested on problem data with up to 2000 demand nodes, 10 different scenarios and 10 new facilities.

Eugenio Mijangos, University of the Basque Country (UPV/EHU)

A stochastic capacity expansion model for the UK energy system

Energy markets are currently undergoing one of their most radical changes in history. Both market liberalisation and the increasing penetration of renewable energy sources highlight the need to accommodate uncertainty in the design and management of future energy systems. This work aims to identify the most cost-efficient expansion of the UK energy grid, given a growing future demand for energy and the target to move towards a more sustainable energy system. To this end, we develop a multi-stage stochastic program where the investment decisions are made in two time stages and is therefore severely intractable. We develop a novel approach for approximately solving the problem. In our numerical experiments, a greedy-type sparse optimization algorithm is used for designing 2D and 3D filter networks.

The efficiency of our approach is illustrated by results of numerical experiments performed for some problems related to the design of filter networks.

Marin Dimitrov, Russian Academy of Sciences

Modeling uncertainties in location-allocation problems: A stochastic programming approach

We consider location-allocation problems with Weber objects where uncertainty not only occurs in the demand of the existing facilities (that is, in the location objective), but also in the constraints of the problem such as the size and the shape of the feasible region. The trade-off between the cost of a solution on one hand and its robustness with respect to the uncertain data on the other hand is analyzed, which naturally motivates a multiple objective formulation of the problem. A two-stage stochastic programming model is obtained as a scalarization of the multiple objective model, and the relations to single-objective location-allocation problems are discussed. We use geometric arguments to derive discretization results for the case that distances are measured by block norms or polyhedral gauges. An efficient location-allocation heuristic for problems with uncertain feasible sets is suggested and tested on problem data with up to 2000 demand nodes, 10 different scenarios and 10 new facilities.

Eugenio Mijangos, University of the Basque Country (UPV/EHU)

An algorithm for nonlinearly-constrained nonlinear two-stage stochastic problems

We put forward an algorithm to solve nonlinearly-constrained two-stage stochastic problems with a nonlinear objective function. It is based on the Twin Node Family (TNF) concept involved in the Branch-and-Fix Coordination method. These problems have continuous and binary variables in the first stage and only continuous variables in the second stage. The nonanticipativity constraints are fulfilled by TNF strategy. In this work, given that the objective function is nonlinear, we propose to solve each nonlinear subproblem generated in the nodes of the trees associated with this method by solving sequences of quadratic subproblems. If the nonlinear constraints are convex we approximate them by means of linear approximations. Otherwise, we relax these constraints by using augmented Lagrangian techniques. These methods have been implemented in C++ with the help of Cplex 12.1 to solve the problem. The test problems have been randomly generated by using a C++ code developed by this author. Numerical experiments have been performed and its efficiency has been compared with that of BONMIN (COIN-OR). Results are promising.

Marcus Pogg, RU-RC Informatica (with Bruno Fisch)

On a class of stochastic programs with endogenous uncertainty: Algorithm and applications

We study a class of stochastic programming problems with endogenous uncertainty - i.e., those in which the probability distribution of the random parameters is decision-dependent - which is formulated as a Mixed Integer Non-Linear Programming (MINLP) problem. The proposed methodology consists of: (i) a convexification technique for polynomials of binary variables; (ii) an efficient cut-generation algorithm; and (iii) the incorporation of importance sampling concepts into
the stochastic programming framework so as to allow the solution of large instances of the problem. We discuss the error tolerance of the approach and its impact on the resulting algorithm efficiency. Computational results are obtained in the context of the humanitarian logistics problem, they demonstrate the effectiveness of the proposed methodology by solving instances significantly larger than those reported in related works. Other applications in this class of stochastic problems are presented.

Decisions about the containment of harmful processes that spread across landscapes (for example, wildfire and invasive species) often must be made under uncertainty and as the system evolves in time. Not all resources are available immediately and containment efforts may fail to prevent spread. The valuable probabilistic predictions produced by ecologists and foresters have been under-utilized because of the difficulty of optimizing when stochastic features and spatial connectedness exist. Then after observing the demand instantiations, a recourse route and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed – but costs here become more expensive by a factor λ. We present an $O(\log^2 n \log(n\lambda))$-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.

The R.V. Gamkrelidze’s maximum principle for state constrained control problems over finite time periods. Thus, the multiperiod network design problem (MNDP) consists in (1) establishing the network topology, (2) installing capacities, and (3) routing communication demands, while taking into account the fluctuations of demands over the design time horizon and minimizing installation costs. In this talk, we present new models and solution algorithms for the MNDP. Among other useful techniques, we derive lower bounds using Lagrangian relaxation and examine approximation algorithms. We evaluate the effectiveness of our new approaches through computational experience conducted on a number of networks, including realistic instances derived from the survivable network design library (SNDLib). This work is developed as a part of a joint German–Polish project on multiperiod network optimization. The goal of the project is to develop efficient mathematical models for capacity expansions over finite time periods.

In this talk, we present nonlinear mixed integer programming models for solving the local access network design problem with QoS constraints. The problem is a two-level hierarchical location-allocation problem on the tree topology of local access networks. The objective function of the problem minimizes the total cost of fiber link and switch investments, while satisfying both the capacity of switches within the prescribed level of quality of service. In developing an exact optimal algorithm, we develop a new approach of the reformulation linearization technique (RLT) by linearizing the nonlinear QoS constraints by implementing mixed-integer linear constraints with auxiliary variables. By exploiting the special structure of the problem, we devise an outer approximation algorithm that implements cut generation strategies for cutting off the violated solution at each iteration. Computational results are presented for demonstrating the effectiveness of cut generation strategies.
the MP of R.V. Gamkrelidze, this MP was obtained without a priori reg-
ularity assumptions, but it degenerates in many cases of interest what
discovered and studied later. Here, we suggest a MP in the form pro-
posed by R.V. Gamkrelidze without any a priori regularity assumptions
on the optimal trajectory. However, without a priori regularity assump-
tions, this MP may degenerate. Therefore, we prove that, under certain
additional conditions, controllability relatively to the state constraints
at the end-points, or regularity of the control process, degeneracy will
not occur, since a stronger non-triviality condition will be satisfied.
Elena Goncharova, Institute for System Dynamics and Control Theory, SB RAS (with Maxim Staritshin)

Impulsive systems with mixed constraints

We consider an optimal control problem for an impulsive hybrid sys-
tem. Such a dynamical system can be described by a nonlinear measure
differential equation under mixed constraints on a state trajectory
and a control measure. The constraints are of the form
\[Q_1(x(t^+)) - Q_2(x(t^-)) = 0, \quad \Psi_1(x(t^+)) \leq 0, \quad \Psi_2(x(t^-)) \leq 0 \quad \text{a.e. on } [0, T]. \]
Here, \(x(t^-), x(t^+) \) are the left and right limits of a state trajectory \(x \) at
time \(t \), a non-negative scalar measure \(\nu \) is the total variation of an im-
"pulsive control", and \(\nu([0, T]) \leq M \) with \(M > 0 \). Such conditions can be
also regarded as state constraints of equality and inequality type qual-
ified to hold only over the set where \(\nu \) is localized. A time repareme-
terization technique is developed to establish a result on the problem
transformation to a classical optimal control problem with absolutely
continuous trajectories. Based on this result, a conceptual approach is
proposed to design numerical methods for optimal impulsive control.
We give some results on numerical simulation of a double pendulum
with a blockable degree of freedom.

Laurent Pfeiffer, Inria-Isyly and CMAP, Ecole Polytechnique (with Joseph Bonnans, Oana Serea)

Sensitivity analysis for relaxed optimal control problems with
final-state constraints

We consider a family of relaxed optimal control problems with final-
state constraints, indexed by a perturbation variable \(y \). Our goal is to
compute a second-order expansion of the value \(V(y) \) of the problems,
near a reference value of \(y \). We use relaxed controls, i.e., the control
variable is at each time a probability measure. Under some conditions,
a constrained optimal control problem has the same value as its relaxed
version.

The specificity of our study is to consider bounded strong solutions
\([2] \), i.e., local optimal solutions in a small neighborhood (for the \(L^\infty \)-
distance) of the trajectory. To obtain a sharp second-order upper esti-
mate of \(V \), we derive two linearized problem from a wide class of per-
turbations of the control (e.g., small perturbations for the \(L^1 \)-distance).
Relaxation permits a very convenient linearization the problems. Using
the decomposition principle \([1] \), we prove that the upper estimate is an
exact \(1^{st} \)-order approximation. The first-order analysis is local.

\[1. \quad \text{J.F. Bonnans, N.P. Osmolovskii. Second-order analysis of optimal control prob-
lems with control and final-state constraints. 2010.} \]
\[2. \quad \text{A.A. Miljutin, N.P. Osmolovskii. Calculus of variations and optimal control. 1998.} \]

Recent advances on linear complementarity problems

Organizer/Chair Héctor Ramírez, Universidad de Chile - Invited Session

Julio López, Universidad Técnica Federico Santa María (with Rubén López, Héctor Ramírez)

Characterizing \(Q \)-linear transformations for linear complementarity
problems over symmetric cones

In this work, we introduce a new class, called \(F \), of linear trans-
formations defined on a Euclidean Jordan algebra. This concept is il-
"lustrated in some known examples of Euclidean Jordan algebras: \(\alpha \)-
dimensional vectors, quadratic forms and \(\alpha \)-dimensional symmetric
matrices. Also, within this new class, we show the equivalence between
\(Q_1 \) and \(Q_2 \)-transformations. We also provide conditions under which a
linear transformation belongs to \(F \). Finally, we present some examples of
transformation: Lyapunov, Quadratic, Stein and relaxation transfor-
mation.

Jean-Baptiste Hiriart-Urruty, Paul Sabatier University (Toulouse III) (with Hai Yen Le)

A variational approach of the rank function

We consider here the rank (of a matrix) from the variational view-
point. Actually, besides being integer-valued, the rank function is lower-
semicontinuous. We are interested in the rank function, because it ap-
pears as an objective [or constraint] function in various modern opti-
mization problems, the so-called rank minimization problems (P). A
problem like (P) has some bizarre and/or interesting properties, from
the optimization or variational viewpoint. The first one, well documented
and used, concerns the “relaxed” forms of it. We recall here some of
these results and propose further developments:
- [Global optimization] Every admissible point in (P) is a local mini-
mizer.
- [Moreau-Yosida approximation] The Moreau-Yosida approximate [or
regularized version] of the objective function in (P), as well as the
associated proximal mapping, can be explicitly calculated.
- [Generalized subdifferentials] The generalized subdifferentials of the
rank function can be determined. Actually, all the main ones coincide
and their common value is a vector subspace!

Héctor Ramírez, Universidad de Chile (with Rubén López, Julio López)

Existence and stability results based on asymptotic analysis for
semidefinite linear complementarity problems

In this talk is devoted to the study of existence and stability results of
semidefinite linear complementarity problems (for short SDLCP). Our
approach consists of approximating the variational inequality formula-
tion of the SDLCP by a sequence of suitable chosen variational inequal-
ities. This provides particular estimates for the asymptotic cone of the
solution set of the SDLCP. We thus obtain new coercive and norm-
ative existence results, as well as new properties related to the contin-
"uity of the solution sets of the SDLCP (such as outer/upper semicontinuity,
Lipschitz-type continuity, among others). Moreover, this asymptotic ap-
proach leads to a natural extension of the class of Garcia linear trans-
formations, formerly defined in the context of linear complementarity
problems, to this SDLCP setting.

Laurent Pfeiffer, Inria-Isyly and CMAP, Ecole Polytechnique (with Joseph Bonnans, Oana Serea)

Approximation and online algorithms

Wed.1.H.2010

Scheduling and packing: Approximation with algorithmic game
theory in mind

Organizer/Chair Asaf Levin, The Technion - Invited Session

Leah Epstein, University of Haifa (with Gury Osa)

Generalized selfish bin packing

In bin packing games, an item has a positive weight and each item has
a cost for every valid packing of the items. We study a class of such
games where the cost of an item is the ratio between its weight and the
weight of items packed with it, i.e., cost sharing is based linearly
on the weights of items. We study several types of pure Nash equilibria
(NE): standard NE, strong NE, and strictly/weakly Pareto optimal NE.
We show that any game of this class admits all these types of equilibria.
We study the (asymptotic) prices of anarchy and stability [PoA and PoS]
for the problem of these types of equilibria and general/Unit weights.
While the case of general weights is strongly related to First Fit, and
all the PoA values are 1.7, for unit weights they are all below 1.7. The
strong PoA is equal to approximately 1.691 (another well-known num-
ber in bin packing) while the strictly Pareto optimal PoA is lower.
The PoS values are 1, except for those of strong equilibria, which is 1.7 for
general weights, and approximately 1.611824 for unit weights.

Asaf Levin, The Technion (with Leah Epstein, Rob van Stee)

A unified approach to truthful scheduling on related machines

We present a unified framework for designing deterministic mono-
tone PTAS’s for a wide class of scheduling problems on uniformly re-
lated machines. This class includes (among others) minimizing the
makespan, maximizing the minimum load, and minimizing the \(L_p \) norm
of the machine loads vector. Previously, this kind of result was only
known for the makespan objective. Monotone PTAS’s have the property
that an increase in the speed of a machine cannot decrease the amount
of work assigned to it, and have an important role in mechanism design.
The key idea of our novel method is to show that it is possible to com-
pete in polynomial time a structured nearly optimal schedule. An inter-
esting aspect of our approach is that, in contrast to all known PTAS’s, we
avoid rounding any job sizes or speeds throughout. We can therefore find
the exact best structured schedule using a dynamic programming. The
state space encodes sufficient information such that no postprocessing
is needed, allowing an elegant and relatively simple analysis. The mono-
tonicity is a consequence of the fact that we find the best schedule in a
specific collection of schedules.

Rob van Stee, Max Planck Institute for Informatics (with Xinji Chen, Benjamin Doerr, Xiaodong Hu,
Weidong Ma, Carola Winter)

The price of anarchy for selfish ring routing is two

We analyze the network congestion game with atomic players,
asymmetric strategies, and the maximum latency among all players as
social cost. While this is an important social cost function, it has so far
resisted any relatively little attention. However, our result shows that
the price of anarchy is at most two, when the network is a ring and the link laten-
ties are linear. This bound is tight. This is the first sharp bound for the
maximum latency objective on a natural and important network topol-
ogy.
Formulations

Dirk Oliver Theis, Otto von Guericke University Magdeburg, Germany (with Troy Lee)

Projecting an extended formulation

We can be done when faced with a hard MIP for which a strong extended formulation is known, but is too large to be used in a branch-and-bound framework? One possible approach is as follows. Given an extended formulation \(Q = \{(x, w) \in \mathbb{R}^n \times \mathbb{R}^d | Ax + Dw \geq b \} \) and an objective \(\min c^T x \), we would like to efficiently derive a strong relaxation \(P = \{(x) \in \mathbb{R}^n | Ax \geq b \} \) in the original variable space. To be more specific, we would like the inequalities \(Ax \geq b \) to be at the same time: (i) such that the optimal solution sets of optimizing over \(P \) or \(Q \) are the same, (ii) small: the number of inequalities is not too large, or even minimal, so that \(Ax \geq b \) can efficiently be replaced by \(Ax + Dw \geq d \) in branch-and-bound, (iii) efficiently computable, (iv) individually strong: each of the inequalities is ideally a facet of \(\text{proj}_k(O) \), (v) collectively strong: \(P \) is a strong relaxation of \(\text{proj}_k(O) \). We formulate these different requirements, discuss their compatibility, describe a practical scheme for solving MIPs for which a strong-but-too-large extended formulation is known, and present some computational experiments.

Kostas Pashkovich, University of Magdeburg (with Volker Kaibel)

Constructing extended formulations using polyhedral relations

There are many examples of optimization problems whose associated polyhedra can be described much nicer, and with way less inequalities, by projections of higher dimensional polyhedra than this would be possible in the original space. However, currently not many general tools to construct such extended formulations are available. Here, we develop a framework of polyhedral relations that generalizes inductive tools to construct such extended formulations via projections, and we particularly elaborate on the special case of reflection relations. The latter ones provide polynomial size extended formulations for several polytopes that can be constructed as convex hulls of the unions of (exponentially) many copies of an input polytope obtained via sequences of reflections at hyperplanes. We demonstrate the use of the framework by deriving small extended formulations for the Goemans’ permutahedron of all finite reflection groups \(G \) (generalizing both Goemans’ extended formulation of the permutohedron of size \(O(\log n) \) and Ben-Tal and Nemirovski’s extended formulation with \(O(k) \) inequalities for the regular \(2k \)-gon) and for Huffman-polytopes (the convex hulls of the weight-vectors of Huffman codes).

Dirk Oliver Theis, Otto von Guericke University Magdeburg, Germany (with Troy Lee)

Some lower bounds on sizes of positive semidefinite extended formulations

Among other, similar, statements, we prove the following:

Theorem. Every positive semidefinite extended formulation for the Cut polytope of \(K_n \) dominating the 3-clique inequalities must have size at least \(\Omega(n^2) \). (The size of a positive semidefinite formulation is the dimension of the positive semidefinite matrices.) This contrasts the fact that the famous Goemans-Williamson relaxation has linear size: It dominates only a weakened form of the 3-clique inequalities.

Combinatorial optimization

Extended formulations in discrete optimization II

Organizers/Chairs Gautier Stauffer, University Bordeaux 1 – INRIA; Volker Kaibel, Otto-von-Guericke Universität Magdeburg – Invited Session

Matthieu Van Vyve, Université catholique de Louvain (with Laurence Wolsey)

A simple algorithm for testing total unimodularity of matrices

We have simplified the algorithm so that all complicated cases are avoided while key ideas are retained. The resulting, much simpler, algorithm has complexity \(O(n^2) \), which matches or is close to that of other polynomial testing algorithms of total unimodularity.

The talk describes the simplified algorithm, compares it with the original one, sketches an implementation, and summarizes computational results for several classes of matrices. The public-domain code is available from several websites.

Leontia Pitoulou, University of Thessaloniki (with Konstantinos Papalamprou)

Decomposition of binary signed-graphic matroids

We employ Tutte’s theory of bridges to derive a decomposition theorem for binary matroids arising from signed graphs. The proposed decomposition differs from previous decomposition results on matroids that have appeared in the literature in the sense that it is not based on k-sums, but rather on the operation of deletion of a cocircuit. Specifically, it is shown that certain minors resulting from the deletion of a cocircuit of a binary matroid will be graphic matroids apart from exactly one that will be signed-graphic, if and only if the matroid is signed-graphic.

Matthias Walter, Otto-von-Guericke University Magdeburg (with Klaus Truemper)

A simple algorithm for testing total unimodularity of matrices

There is a significant practical need for an effective test of total unimodularity of matrices. The currently fastest algorithm for that task has complexity \(O(n^3) \), where \(n \) is the longer dimension of the given matrix. The algorithm would be an excellent candidate for implementation, were it not for numerous structurally complicated cases in several steps that defy implementation with reasonable effort.

We have simplified the algorithm so that all complicated cases are avoided while key ideas are retained. The resulting, much simpler, algorithm has complexity \(O(n^2) \), which matches or is close to that of other polynomial testing algorithms of total unimodularity.

The talk describes the simplified algorithm, compares it with the original one, sketches an implementation, and summarizes computational results for several classes of matrices. The public-domain code is available from several websites.

Uri Zwick, Tel Aviv University (with Oliver Friedmann, Thomas Hansen)

Minimax Theorem and the Strong Duality Theorem.

An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables

Kitahara and Mizuno obtained an upper bound for the number of different solutions generated by the primal simplex method with Dantzig’s (the most negative) pivoting rule. In this talk, we extend the result to the primal simplex method with any pivoting rule which chooses an entering variable whose reduced cost is negative at each iteration. We see that the upper bound is fairly tight by using a variant of Klee-Minty’s LP. The upper bound is applied to a linear programming problem with totally unimodular matrix. We also get a similar bound for the dual simplex method.

Ilan Adler, University of California, Berkeley

The equivalence of linear programs and zero-sum games

In 1951, Dantzig showed the equivalence of linear programming problems and two-person zero-sum games. However, in the description of his reduction from linear programs to zero-sum games, he noted that there was one case in which the reduction does not work. This also led to incomplete proofs of the relationship between the Minimax Theorem of game theory and the Strong Duality Theorem of linear programming. In this Talk, I fill these gaps. In particular, I present two completely strongly polynomial reductions of LP’s to zero-sum games, a Karp-type reduction which is applicable to LP’s with rational (as well as algebraic) data, and a Cook type reduction which is applicable to LP’s with real data. The key for both reductions are procedures to solve a system of linear constraints by an oracle capable of determining either feasibility or unboundedness of the system. I’ll also discuss the relationship between the Minimax Theorem and the Strong Duality Theorem.

Uli Zwick, Tel Aviv University (with Oliver Friedmann, Thomas Hansen)

Subexponential lower bounds for randomized pivoting rules for the simplex algorithm

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. With essentially all deterministic pivoting rules it is known, however, to require an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for randomized pivoting rules. We provide the first subexponential (i.e., of the form \(2^{(\alpha n)} \), for some \(\alpha > 0 \)) lower bounds for the two most natural, and most studied, randomized pivoting rules suggested to date.

The first randomized pivoting rule considered is random-edge, which among all improving pivoting steps (or edges) from the current basic feasible solution (or vertex) chooses one uniformly at random. The second randomized pivoting rule considered is random-facet, a more complicated randomized pivoting rule suggested by Kalai and by Matousek, Sharir and Welzl. Our lower bound for the random-facet pivoting rule essentially matches the subexponential upper bounds given by Kalai and by Matoušek et al. Lower bounds for random-edge and random-facet were known before only in abstract settings, and not for concrete linear programs.

Combinatorial optimization

Combinatorics and geometry of linear optimization III

Organizers/Chairs Jesus De Loera, University of California, Davis; Dants; Antoine Deza, McMaster University – Invited Session

Shinya Mizuno, Tokyo Institute of Technology (with Tomonori Kitahara)

Subexponential lower bounds for randomized pivoting rules for the simplex algorithm

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. With essentially all deterministic pivoting rules it is known, however, to require an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for randomized pivoting rules. We provide the first subexponential (i.e., of the form \(2^{(\alpha n)} \), for some \(\alpha > 0 \)) lower bounds for the two most natural, and most studied, randomized pivoting rules suggested to date.

The first randomized pivoting rule considered is random-edge, which among all improving pivoting steps (or edges) from the current basic feasible solution (or vertex) chooses one uniformly at random. The second randomized pivoting rule considered is random-facet, a more complicated randomized pivoting rule suggested by Kalai and by Matousek, Sharir and Welzl. Our lower bound for the random-facet pivoting rule essentially matches the subexponential upper bounds given by Kalai and by Matoušek et al. Lower bounds for random-edge and random-facet were known before only in abstract settings, and not for concrete linear programs.
Combimial optimization

Heuristics I
Chair Shuji Imetani, Osaka University

Badi Toppur, Great Lakes Institute of Management
A divide-and-bridge heuristic for Steiner minimal trees on the Euclidean plane
This paper describes the construction of Steiner minimal trees on the Euclidean plane using a divide-and-bridge heuristic. A lexicographically sorted set of terminal sites is divided into subsets. These subsets with three, four or five vertices in each set are created using a recursive division by two. The optimal Steiner tree length and topology for each subset are calculated using an exponential time exact algorithm.

Any two neighboring trees calculated above, can be bridged by the edge of shortest length. Because of the repeated division of the given set into halves, an outgoing terminal of a subset may better suit the total connectivity if it is included in the neighboring subset. We start with a feasible division that may not be optimal, and then look for the optimal division by moving the boundary between two subsets, if it is promising. Split operations may be required at the terminals of the bridge edge, to obtain the minimal tree for the merged set. After every bridge operation or split operation, the optimal coordinates are calculated by an algorithm, that works in $O(N)$ time since the topology is known.

Yuri Frota, UFF (with Lúdio Simonetti)
Upper and lower bounds for the constrained forest problem
Given an undirected edge-weighted graph and a positive integer m, the constrained forest problem (CFP) seeks a covering forest of minimum weight such that each of its tree components contains at least m vertices. This work presents a new heuristic based on a variable neighborhood search (VNS) for this NP-Hard problem. Moreover, this heuristic represents the first step towards the development of an exact branch-and-cut method based on a new mathematical formulation for the CFP. Computational experiments are conducted on benchmark instances found in the literature. We report results showing that the VNS with the proposed strategies improved the solutions given by the previously approximation algorithms. Furthermore, our computational results demonstrate that the new heuristic is competitive with other methodologies, including a genetic algorithm recently proposed in the literature. We also present some preliminary results that indicate the strength of the new formulation.

Shuji Imetani, Osaka University (with Masanao Arakawa, Mutsumi Yogo)
A heuristic algorithm for the set multiconver problem with general upper bound constraints
We consider an extension of the set covering problem (SCP) introducing (i) multiconver and (ii) generalized upper bound (UB) constraints. For the conventional SCP, the pricing method has been introduced to reduce the number of variables, and several efficient heuristic algorithms based on this idea have been developed to solve very large-scale instances. However, UB constraints often make the pricing method less effective, because they prevent solutions from having highly evaluated variables simultaneously. To overcome this, we propose a heuristic algorithm to reduce the size of problem instances that modifies the evaluation scheme of variables taking account of UB constraints. We also develop an efficient implementation of a local search algorithm with the 2-flip neighborhood that reduces the number of candidates in the neighborhood without sacrificing the solution quality. According to computational comparison on benchmark instances with the latest mixed integer programming solver, our algorithm performs quite effectively for various types of instances, especially for very large-scale instances.

Planar min-cost flow in nearly $O(n^{3/2})$
We present combinatorial algorithms for the min-cost flow problem in planar graphs. Previously, the best known bounds came from algorithms for general graphs using only that the number of arcs is in $O(n)$. These yield near quadratic algorithms and subquadratic ones only for special cases, e.g., $O(n^{2.5})$ time if the optimum objective value is in $O(n)$, or $O(n^{3.5})$ time for bounded costs and capacities. We demonstrate techniques to obtain $O(n^{3+\epsilon}/2)$ for planar graphs of bounded degree, constant capacities, and arbitrary costs, or for bidirected planar graphs of bounded face sizes, no capacities, and bounded costs. These conditions come from applications in image processing and in graph drawing, respectively. In the latter case, our result improves a long standing time bound for minimizing the number of bends in an orthogonal drawing of a plane graph. Without these restrictions but with the condition of a linear optimum, we only lose a log-factor, i.e. we get $O(n^{3.5}/2 \log n)$. With a scaling approach, we obtain $O(\sqrt{Dn \log n \log C})$, where U is the sum over all capacities and C is the maximum over all costs.

Chandra Chekuri, University of Illinois, Urbana-Champaign (with Shreyan Kanna, Adnan Raja, Pramod Viswanath)
Multicommodity flows and cuts in polymatroidal networks
The maxflow-mincut theorem for s—t flow is a fundamental theorem in combinatorial optimization. Flow-cut equivalence does not hold in the multicommodity case. Approximate flow-cut gap results have been extensively studied, and poly-logarithmic upper bounds have been established in various settings.

Motivated by applications to information flow in wireless networks, we consider flow-cut gap results in polymatroidal networks in which there are submodular capacity constraints on the edges incident to a node. Such networks were introduced by Lawler & Martel and Hassin in the single-commodity setting, and are closely related to the submodular flow model of Edmonds & Giles. The maxflow-mincut theorem for a single-commodity holds in polymatroidal networks. For these networks we obtain the first approximate multicommodity flow-cut gap results that nearly match several known results in standard networks. Of particular interest is the use of line-embeddings to round the dual of the flow relaxation rewritten with a convex objective function using the Lovasz extension of a submodular function.

Combimial optimization

Routing for public transportation
Organizer: Chair Peter Sanders, Karlsruhe Institute of Technology - Invited Session
Matthias Müller-Hannemann, MLU Halle-Wittenberg
Coping with delays: Online timetable information and passenger-oriented train disposition
In reality operation, rail traffic always deviates from the planned schedule to a certain extent. Primary initial delays of trains may cause a whole cascade of secondary delays of other trains over the entire network.

In this talk, we survey recent results for efficient online timetable information, robust pretrip route planning, stochastic delay propagation, and disposition management. Disposition management solves the decision problem whether a train should wait for incoming delayed trains or not. This problem has a highly dynamic nature due to a steady stream of update information about delayed trains. We propose a new model for real-time train disposition aiming at a passenger-friendly optimization and report about experimental results with a prototypical implementation and test data of German Railways.

Thomas Pajor, Karlsruhe Institute of Technology (with Daniel Dellinger, Renato Werneck)
Round-based public transit routing
We study the problem of computing all Pareto-optimal journeys in a dynamic public transit network for two criteria: arrival time and number of transfers. Existing algorithms consider this as a single problem, and solve it using variants of Dijkstra’s algorithm. Unfortunately, this leads to either high query times or suboptimal solutions. We take a different approach. We introduce RAPTOR, our novel round-based public transit router. Unlike previous algorithms, it is not Dijkstra-based, looks at each route (such as a bus line) in the network at most once per round, and can be made even faster with simple pruning rules and parallelization using multiple cores. Because it does not rely on preprocessing, RAPTOR works in fully dynamic scenarios. Moreover, it can be easily extended to handle flexible departure times or arbitrary additional criteria.
Complementarity & variational inequalities

Wed.1 MA 041
Complementarity modeling and its game theoretical applications
Organizer/Chair: Samir Neogy, Indian Statistical Institute - Invited Session

Samir Neogy, Indian Statistical Institute

Generalized principal pivot transforms, complementarity problem and its applications in game theory

The notion of principal pivot transform (PPT) was introduced by Tucker and is encountered in mathematical programming, complementarity problem, game theory, statistics, matrix analysis and many other areas. It is originally motivated by the well-known linear complementarity problem. In this talk, we discuss the concept of generalized principal pivot transform and present its properties and applications. The proposed generalized principal pivoting algorithm has many game theoretical applications. This generalized principal pivoting algorithm is a finite step algorithm and even in the worst case, this algorithm is partial enumeration only. It is demonstrated that computational burden reduces significantly for obtaining the optimal stationary strategies and value vector of the some structured stochastic game problem.

Abhijit Gupta, Indian Statistical Institute

Complementarity model for a mixture class of stochastic game

Researchers from the field of game theory adopted Lemke's approach to the field stochastic games and formulated the problem of computing the value vector and stationary strategies for many classes of structured stochastic game problem as a complementarity problem and obtain finite step algorithms for this special class of stochastic games. In this talk we consider a mixture class of zero-sum stochastic game in which the set of states are partitioned into sets \(S_1 \) and \(S_2 \) so that the law of motion is controlled by Player I alone when the game is played in \(S_1 \), Player II alone when the game is played in \(S_2 \) and in \(S_0 \) the reward and transition probabilities are additive. We obtain a complementarity model for this mixture class of stochastic game. This gives an alternative proof of the ordered field property that holds for such a mixture type of game. Finally we discuss about computation of value vector and optimal stationary strategies for discounted and undiscounted mixture class of stochastic game.

Arup Das, Indian Statistical Institute

A complementarity approach for solving two classes of undiscounted structured stochastic games

In this talk, we consider two classes of structured stochastic games, namely, undiscounted zero-sum switching controller stochastic games and undiscounted zero-sum additive reward and additive transitions (ARAT) games. Filat and Schultz observed that an undiscounted zero-sum stochastic game possesses optimal stationary strategies if and only if a global minimum with optimum value zero can be found to an appropriately linearly constrained nonlinear program. However, a more interesting problem is the reduction of these nonlinear programs to linear complementarity problems or linear programs. The problem of computing the value vector and optimal stationary strategies is formulated as a linear complementarity problem for these two classes of undiscounted zero-sum games. Implementation of available pivoting algorithms on these two formulations are also discussed.

Complementarity & variational inequalities

Wed.1 MA 313
Advances in the theory of complementarity and related problems I
Chair: Chandrasekaran Arumugam, Central University of Tamil Nadu

Jien-Shan Chen, National Taiwan Normal University (with Xinhe Miao)

Lipschitz continuity of solution mapping of symmetric cone complementarity problem

This paper investigates the Lipschitz continuity of the solution mapping of symmetric cone (linear or nonlinear) complementarity problems (SCLCP or SCCP, respectively) over Euclidean Jordan algebras. We show that if the transformation has uniform Cartesian \(P \)-property, then the solution mapping of the SCCP is Lipschitz continuous. Moreover, we establish that the monotonicity of mapping and the Lipschitz continuity of solutions of the SCLCP imply ultra \(P \)-property, which is a concept recently developed for linear transformations on Euclidean Jordan algebra. For a Lyapunov transformation, we prove that the strong monotonicity property, the ultra \(P \)-property, the Cartesian \(P \)-property and the Lipschitz continuity of the solutions are all equivalent to each other.

Aleksy Kurennoy, Moscow State University (with Aleksey Taimanov)

On regularity conditions for complementarity problems

In the context of mixed complementarity problems, various concepts of solution regularity are known, each of them playing a certain role in related theoretical and algorithmic developments. In this presentation, we provide the complete picture of relations between the most important regularity conditions for mixed complementarity problems. We not only summarize the existing results on the subject, but also establish some new relations filling all the gaps in the current understanding of how different types of regularity relate to each other. The regularity conditions to be considered include BD and CD regularities of the natural residual and Fischer-Burmeister reformulations, strong regularity, and semistability. A special attention is paid to the particular cases of a non-linear complementarity problem and of a Karush-Kuhn-Tucker system.

Chandrasekaran Arumugam, Central University of Tamil Nadu

Some new results on semidefinite linear complementarity problems

Given a linear transformation \(L: S^+ \rightarrow S^+ \) and \(O \in S^+ \), the semidefinite linear complementarity problem (SDLCP) is to find an \(X \in S^+ \) such that \(L(X) + O \leq X \) and \(X(L(X) + O) = 0 \). Here \(S^+ \) is the space of all real symmetric matrices of order \(n \) and \(S^+ \) is the cone of all positive semidefinite matrices in \(S^+ \). This problem is considered as the natural generalization of the standard linear complementarity problem. One of the fundamental problem in SDLCP is to characterize and identify linear transformations on \(S^+ \) based on the properties of the solution sets. In this presentation we discuss some necessary and sufficient conditions on the linear transformation \(L \) to have non-empty compact solution sets for all \(O \in S^+ \) to the problem SDLCP(\(L,O \)).

New conic optimization approaches for max-cut and graph equi-partition

Organizer/Chair: Miguel Anjos, École Polytechnique de Montréal - Invited Session

Nathan Krislock, INRIA Grenoble Rhône-Alpes (with Jérôme Malick, Frédéric Roupin)

Improved semidefinite bounding procedure for solving max-cut problems to optimality

We present an improved algorithm for finding exact solutions to Max-Cut and the related binary quadratic programming problem, both classic problems of combinatorial optimization. The algorithm uses a branch-and-cut-and-bound paradigm, using standard valid inequalities and nonstandard semidefinite bounds. More specifically, we add a quadratic regularization term to the strengthened semidefinite relaxation in order to use a quasi-Newton method to compute the bounds. The ratio of the tightness of the bounds to the time required to compute them can be controlled by two real parameters; we show how adjusting these parameters and the set of strengthening inequalities gives us a very efficient bounding procedure. Embedding our bounding procedure in a generic branch-and-bound platform, we get a competitive algorithm: extensive experiments show that our algorithm dominates the best existing method.

Andreas Schmutzer, University of Cologne (with Miguel Anjos, Frankie Liers, Gregor Pardella)

Branch-and-cut for the graph 2-equipartition problem

A minimum 2-equipartition of an edge-weighted graph is a partition of the nodes of the graph into two sets of equal size such that the sum of the weights of edges joining nodes in different partitions is minimum. We compare basic linear and semidefinite relaxations for the
equivalent problem and find that linear bounds are competitive with the corresponding semidefinite ones but can be computed much faster. We further present detailed computational evaluations for a branch-and-cut algorithm using linear relaxations.

Angela Wiegele, Alpen-Adria-Universität Klagenfurt (with Elgeth Adam, Miguel Angos, Franz Rendl)

Lasserre hierarchy for max-cut from a computational point of view

The max-cut problem is one of the classical NP-complete problems defined on graphs. SDP-relaxations turned out to be in particular success in these problems. Besides the basic semidefinite relaxation (deriving the Goemans-Williamson hyperplane rounding algorithm) and tightenings of this relaxation, iterative approaches exist that converge towards the cut polytope. Such a systematic hierarchy was introduced by Lasserre. The first relaxation in this hierarchy coincides with the basic SDP relaxation. Due to the high computational complexity, already the second relaxation in this Lasserre-hierarchy is intractable for small graphs. We present an iterative algorithm for computing a strengthened SDP-relaxation towards this second relaxation combined with constraints from the metric polytope. This can also be viewed as a strengthening of the basic SDP relaxation using semidefinite cuts. We present theoretical facts and report preliminary computational results.

Parikshit Shah, University of Wisconsin (with Venkat Chandrasekaran)

Randomized optimization

We present an iterative algorithm for computing a strengthened SDP-relaxation towards this second relaxation combined with constraints from the metric polytope. This can also be viewed as a strengthening of the basic SDP relaxation using semidefinite cuts. We present theoretical facts and report preliminary computational results.

Joel Tropp, California Institute of Technology (with Michael McCoy)

Sharp recovery bounds for convex deconvolution, with applications

Suppose we observe the sum of two structured signals, and we are asked to identify the two components in the mixture. This setup includes the problem of separating two signals that are sparse in different bases and the problem of separating a sparse matrix from a low-rank matrix. This talk describes a convex optimization framework for solving these deconvolution problems and others.

We present a randomized signal model that captures the idea of “incoherence” between two structures. The calculus of spherical integral geometry provides exact formulas that describe when the optimization problem will succeed (or fail) to deconvolve the component signals with high probability. This approach yields summary statistics that measure the complexity of a particular structured signal. The total complexity of the two signals is the only factor that affects whether deconvolution is possible.

We consider three stylized problems. (1) Separating two signals that are sparse in mutually incoherent bases. (2) Decoding spread-spectrum transmissions in the presence of impulsive noise. (3) Removing sparse corruptions from a low-rank matrix. In each case, the theory accurately predicts performance.

Pankaj Pahlavan, University of Wisconsin (with Venkat Chandrasekaran)

Group symmetry and covariance regularization

Statistical models that possess symmetry arise in diverse settings such as random fields associated to geophysical phenomena, exchangeable processes in Bayesian statistics, and cyclotostationary processes in engineering. We formalize the notion of a symmetric model via a group invariance property. We propose grouping a group into a group invariant subspace as a fundamental way of regularizing covariance matrices in the high-dimensional regime. In terms of parameters associated to the group we derive precise rates of convergence of the regularized covariance matrix and demonstrate that significant statistical gains may be expected in terms of the sample complexity. We further explore the consequences of symmetry on related model-selection problems such as the learning of sparse covariance and inverse covariance matrices.

Carl Kelley, NC State University (with David Mokrauer)

Sparse interpolatory models for molecular dynamics

We describe a method for using interpolatory models to accurately and efficiently simulate molecular excitation and relaxation. We use sparse interpolation for efficiency and local error estimation and control for smoothness and accuracy.

The objective of the project is to design an efficient algorithm for simulation of light-induced molecular transformations. The simulation seeks to follow the relaxation path of a molecule after excitation by light. The simulator is a predictive tool to see if light excitation and subse-
In this talk we consider derivative-free optimization for finite minimax functions. A derivative-free trust-region algorithm for constrained, expensive black-box optimization using radial basis functions is proposed. This algorithm employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions and is an extension of the ORBIT algorithm. This algorithm will be compared with alternative methods on a series of test problems and on an automotive application with 124 decision variables and 68 black-box inequality constraints.

Price dynamics in energy markets

Organizer/Chair Florentina Paraschiv, IOR/EF University of St. Gallen - Invited Session

Pöter Erdös, Swiss Institute of Banking and Finance, University of St. Gallen

Have oil and gas prices got separated?

Prices are driven by oil prices only if there is sufficient inter-fuel competition in the US, or if gas arbitrage is possible across the Atlantic. In the period 1994–2011 interfuel replacement was marginal in the US; therefore, the coupling of oil and gas prices depended on intercontinental trade movements. Until the end of 2008 the US depended on gas imports, contributing to higher average gas prices in the US than those in Europe and attracting export to the US. Thus, the Atlantic arbitrage, taking into account transaction costs, forced gas prices to converge in the US and in Europe in the long run. Since European gas prices react to price developments in the oil market, the Atlantic arbitrage also reinforced oil-gas linkage in the US. Since 2009 US oil and gas prices have decoupled due to limits to arbitrage across the Atlantic. Despite gas extraction from shale formations boosting the US gas inventories, which in turn depresses prices below the European level, US export is not viable because of a lack of liquefying infrastructure and administrative obstacles.

Michael Schuerle, University of St. Gallen (with Florentina Paraschiv)

Price dynamics in gas markets

Modeling natural gas futures prices is essential for valuation purposes as well as for hedging strategies in energy risk management. We present a general multi-factor affine diffusion model which incorporates the joint stylized features of both spot and futures prices. The model is brought into state space form on which Kalman Filter techniques are applied to evaluate the maximum likelihood function. We further build the basis for the construction of a daily gas price forward curve. These prices take into account the seasonal structures of spot prices and are consistent under the arbitrage-free condition with the observed market prices of standard products that provide gas delivery over longer periods. Finally the performance of the models is illustrated comparing historical and model implied price characteristics.

Florentina Paraschiv, IOR/EF University of St. Gallen

Modelling negative electricity prices

We evaluate different financial and time series models such as mean reversion with jump processes, ARMA, GARCH usually applied for electricity price simulations. Since 2008 market design allows for negative prices at the European Energy Exchange (EEX), which occurred for several hours in the last decades. Up to now, only a few financial and time-series approaches exist, which are able to capture negative prices. We propose a new model for simulating energy spot prices taking into account their jumping and spiking behavior. The model parameters are calibrated using the historical hourly price forward curves for EEX and Phelix, as well as the spot price dynamics. Parameters for the spikes which characterize the spot dynamics are derived on an hourly basis. Market clearing prices are derived given an observed price forward curve and an algorithm deciding whether a spike or a Poisson jump occurs.

Warren Hare, UBC (with Mason Macklem, Julie Nutini)

Derivative free optimization for finite minimax functions

This talk will present a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. The proposed algorithm employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions and is an extension of the ORBIT algorithm. This algorithm will be compared with alternative methods on a series of test problems and on an automotive application with 124 decision variables and 68 black-box inequality constraints.
person game coincides with the solution set of a variational inequality associated with this game. The game is said to have a convex structure if the above mentioned variational inequality is defined by a monotone mapping. The convex-structure games can be solved by efficient numerical methods. The paper presents a sufficient condition to guarantee a game to have a convex structure. For finite games in mixed strategies, the author presents a sufficient condition in terms of the tables defining the game. Moreover, for the class of finite games, it is demonstrated that the proposed condition is not only sufficient but also necessary for the convex-structure games.

Vikas Jain, Jaypee University of Engineering and Technology
Constrained vector-valued dynamic game and symmetric duality for multiobjective variational problems
A certain constrained vector-valued dynamic game is formulated and shown to be equivalent to a pair of multiobjective symmetric dual variational problems which have more general formulations than those studied earlier. A number of duality theorems, are established under suitable generalized convexity assumptions on the functionals. This constrained vector-valued dynamic game is also regarded as equivalent to a pair of symmetric multiobjective dual variational problems with natural boundary conditions rather than fixed end points. Finally, it is also indicated that our results can be considered as dynamic generalization of those already studied in the literature.

Pengbo Zhang, University of Washington
Optimal hybrid control theory approaches to global optimization
Organizer/Chair: Zelida Zabinsky, University of Washington - Invited Session

Zelida Zabinsky, University of Washington (with Woll Kohn)
Solving non-linear discrete optimization problems via continualization: An interior-point algorithm
Continuous optimization problems have a tremendous structural advantage over discrete optimization problems: continuity. Necessary conditions for optimality are expressed in terms of differentiability, convexity, and other structural properties. This makes developing algorithms for continuous problems an easier task than for discrete problems. In this talk, we present a continualization approach for transforming discrete optimization problems into a continuous formulation over a compact domain. The target formulation is amenable to an interior-point descent algorithm. We use a conditional sampling procedure to translate solutions of the continuous problem into approximate solutions of the original discrete problem. The interior-point descent algorithm is expressed by a set of coupled differential equations whose integration via numerical methods generates approximate solutions to the original problem in polynomial time. The continuous problem can be characterized by a variational formulation. The central element of this formulation is a Lagrangian with nonsingular Hessian. This leads to the differential equations in the descent algorithm.

Woll Kohn, University of Washington (with Zelida Zabinsky)
Hybrid dynamic programming for rule constrained multi-objective optimization
Many optimization problems associated with large-scale complex systems require a model definition that is almost impossible to specify completely. Further, real-world applications must evaluate trade-offs between multiple objectives, which demands set representation. We will present some preliminary results of our research on developing an optimal feedback control paradigm for solving optimization problems with multiple objectives in which the model defined by the constraints is incomplete, and a complete description of the system is not available. Our optimization paradigm includes active learning of the structure of the model that goes beyond parameter adaptation. The constraints include algebraic relations, operational if-then rules, discrete- and continuous-time dynamics, and sensor-defined constraints. Our modeling approach is based on the theory of dynamic set inclusion, because this theory lends itself to construct efficient algorithms that include learning mechanisms. Our strategy is to convert all the constraints characterizing the model to continuous-time set dynamics using a continualization transformation developed in a previous paper by Krön et al.

Pengbo Zhang, University of Washington
Stochastic control optimization of a binary integer program
We develop a discrete meta-control algorithm that provides a good approximation to large-scale binary integer programs with low polynomial complexity. The key innovation to our optimal control approach is to map the vector of binary decision variables into a scalar function defined over a discrete time interval \([0, n]\) and define a linear quadratic tracking (LQT) problem that closely approximates the original problem. Our method uses an Aoki-based decomposition approach and an error correction with a Kalman filter technique that introduces less error than the continuous form used in our previous research, but maintains the primary computational advantage. We use the necessary conditions for optimality to prove that there exists an integer solution to the LQT version of the original BIP, with a bang-bang type solution. We prove that our meta-control algorithm converges to an approximate solution in polynomial time with regard to the time horizon, which is the number of binary variables \(n\). The algorithm is illustrated with several large examples. The meta-control algorithm can be extended to mixed integer programs.

Wed.1

Implementations & software

Optimal hybrid control theory approaches to global optimization
Organizer/Chair: Zelida Zabinsky, University of Washington - Invited Session

Implementations of interior point methods for linear and conic optimization problems
Organizer/Chair: Erling Andersen, MOSEK ApS - Invited Session

Csaba Meszaros, IST Austria
Solving non-linear discrete optimization problems via continualization: An interior-point algorithm

On recent improvements in the interior-point optimizer in MOSEK
In this talk we will discuss the recent advances in the interior-point optimizer in the upcoming version 7 release of MOSEK. The advances include better dense column handling, an improved GP ordering for the normal equations, handling of intersection cones and warmstart capabilities. Beyond these advances the interior-point optimization has also been extended to handle semi-definite optimization problems.

Imre Polak, SAS Institute (with Philipp Christophel)
Crossing over
There are only few academic papers about crossover techniques, i.e., about algorithms that take an optimal solution of an LP and “round” it to an optimal basic solution. Moreover, the problem we face in practice is very different from the setup in these papers. In this talk we wish to highlight these differences and offer new techniques for the different problems. Besides the standard case of interior-point methods, other issues we are discussing are solutions from the network simplex method, basic infeasibility and unboundedness certificates, and perturbation techniques. Computational experiments using SAS/OR will be presented.

Wed.1.H 1958

Implementations of interior point methods for linear and conic optimization problems
Organizer/Chair: Erling Andersen, MOSEK ApS - Invited Session

On recent improvements in the interior-point optimizer in MOSEK
In this talk we will discuss the recent advances in the interior-point optimizer in the upcoming version 7 release of MOSEK. The advances include better dense column handling, an improved GP ordering for the normal equations, handling of intersection cones and warmstart capabilities. Beyond these advances the interior-point optimization has also been extended to handle semi-definite optimization problems.

Imre Polak, SAS Institute (with Philipp Christophel)
Crossing over
There are only few academic papers about crossover techniques, i.e., about algorithms that take an optimal solution of an LP and “round” it to an optimal basic solution. Moreover, the problem we face in practice is very different from the setup in these papers. In this talk we wish to highlight these differences and offer new techniques for the different problems. Besides the standard case of interior-point methods, other issues we are discussing are solutions from the network simplex method, basic infeasibility and unboundedness certificates, and perturbation techniques. Computational experiments using SAS/OR will be presented.

Wed.1.H 2053

Optimal hybrid control theory approaches to global optimization
Organizer/Chair: Zelida Zabinsky, University of Washington - Invited Session

Implementations of interior point methods for linear and conic optimization problems
Organizer/Chair: Erling Andersen, MOSEK ApS - Invited Session

On recent improvements in the interior-point optimizer in MOSEK
In this talk we will discuss the recent advances in the interior-point optimizer in the upcoming version 7 release of MOSEK. The advances include better dense column handling, an improved GP ordering for the normal equations, handling of intersection cones and warmstart capabilities. Beyond these advances the interior-point optimization has also been extended to handle semi-definite optimization problems.

Imre Polak, SAS Institute (with Philipp Christophel)
Crossing over
There are only few academic papers about crossover techniques, i.e., about algorithms that take an optimal solution of an LP and “round” it to an optimal basic solution. Moreover, the problem we face in practice is very different from the setup in these papers. In this talk we wish to highlight these differences and offer new techniques for the different problems. Besides the standard case of interior-point methods, other issues we are discussing are solutions from the network simplex method, basic infeasibility and unboundedness certificates, and perturbation techniques. Computational experiments using SAS/OR will be presented.
Minimising tardiness in parallel machine scheduling with setup times and mould type restrictions

We study a parallel machine scheduling problem with sequence-dependent setup time. The jobs in this machine-scheduling problem have due dates and each job is of a particular job family. Each job family requires a specific mould to be installed on the machine for production. The setup time of the moulds is significant and there is only a small number of each type of mould available. We present preliminary results of our research into this problem. We propose a time-indexed integer programming formulation that minimises overall job tardiness. The formulation has constraints that model both setup times of the moulds and constraints that restrict the number of machines that can process jobs of the same family at the same time due to limited availability of moulds. We show that some of the constraints can be relaxed and that the obtained optimal solutions of the relaxed problem can be post-processed to derive optimal mould-feasible solutions thus speeding up computation time. We give an indication of expected running times for some test problem instances.

Assignments and partitioning

Chair Trivikram Dokka, Katholieke Universiteit Leuven

Assignment and partitioning

Yashu Fan, Lawrence Livermore National Lab (with Chandrika Kamath)

A heuristic for the local region covering problem

The topological or local dimension of a data manifold can be obtained using local methods, where the data are divided into smaller regions. The original Fukunaga-Olsen algorithm for the intrinsic dimension of a dataset used heuristic approaches to identify the smaller regions. To obtain an improved partitioning of the data space, we formulate this problem as a set covering problem, where each local region contains the k nearest neighbors of a data point. We discuss how we define the cost function to obtain an estimation based on a fair selection of local regions. This problem can be seen as a facility location problem with the number of facilities being optimized in order to maintain the service to at most k cities per facility. To solve the local region problem, we present a simple and easy to implement heuristic method that is a variant of a greedy approach.

Fast separation algorithms for multi-dimensional assignment problems

In polyhedral combinatorics, the polytope related to a combinatorial optimization problem is encoded in order to obtain families of strong valid inequalities or, even better, to find inequalities that are facet-defining for this polytope. To incorporate such families of inequalities within a ‘branch & cut’ algorithm requires one further step: that of deriving an algorithm which determines whether an inequality of a specific family is violated by a given vector (the separation problem). The idea put forward in this work is to consider a compact representation of the given vector, and measure the complexity of a separation algorithm in terms of this compact representation. We illustrate this idea on the separation problem of well-known families of inequalities associated to the (multi-index) assignment polytope, and we show that for these families of inequalities better time-complexities than the current ones are possible.

Vehicle routing and logistics optimization

Organizer/Chair Daniela Vigo, University of Bologna - Invited Session

Mario Rothmaler, Vienna University of Technology (with Günter R Raidl)

An adaptive layers framework for vehicle routing problems

Current exact solution methods for vehicle routing problems are mostly based on set partitioning formulations enhanced by strong valid inequalities. We present a different approach where resources, e.g., capacities or times, are modeled on a layered graph in which the original graph is duplicated for each achievable resource value. MIP models on this layered graph typically yield tight LP bounds. However, as the size of this graph strongly depends on the resource bounds, such models may be huge and impracticable. We propose a framework for approximating the LP bound of such a resource-indexed formulation by a sequence of much smaller models. Based on a strongly reduced node set in the layered graph we redirect arcs in a way to obtain lower and upper bounds to the LP value of the complete model. This reduced layered graph is iteratively extended, decreasing the gap. Moreover, a sequence of improving primal bounds can be provided. The final model extended by inequalities to ensure feasibility is solved by branch-and-cut. Obtained results, e.g., for the vehicle routing problem with time windows, look promising although we currently cannot compete with state-of-the-art methods.

Roberto Roberti, University of Bologna (with Roberto Baldacci, Aristide Minogno)

Dynamic NG-path relaxation

We recently introduced a new state-space relaxation, called ng-path relaxation, to compute lower bounds to routing problems. This relaxation consists of partitioning the set of all possible paths ending at a
generic vertex according to a mapping function that associates with each path a subset of the visited vertices that depends on the order in which such vertices are visited.

In this talk, we propose a new dynamic method to improve the ng-path relaxation which consists of defining, iteratively, the mapping function of the ng-path relaxation using the results achieved at the previous iteration. This method is analogous to cutting plane methods, where the cuts violated by the ng-paths at a given iteration are incorporated in the new ng-path relaxation at the next iteration.

The new technique has been used to solve the traveling salesmen problem with cumulative costs (CTSP) and to produce new benchmark results for the TSPTW. The results obtained show the effectiveness of the proposed method.

Daniele Vigl, University of Bologna (with Maria Battarra, Guus Erdoes)

An exact approach for the clustered vehicle routing problem

We present an exact approach for the clustered vehicle routing problem (Clu-VRP), which is a generalization of the capacitated vehicle routing problem (CVRP), in which the customers are grouped into clusters. As in the CVRP, all the customers must be visited exactly once, but a vehicle visiting one customer in a cluster must visit all the remaining customers in the cluster before leaving it. An integer programming formulation for the Clu-VRP based on an exponential time preprocessing scheme is presented. The linear relaxation of the formulation is strengthened in a branch & cut algorithm by including valid inequalities for the CVRP. Computational experiments on instances adapted from the literature and real-world problems are presented.

Wed.1.H.0111
Stochastic routing
Organizer/Chair Pieter Audenaert, Ghent University – IBBT - Invited Session

Sofie Demeyer, Ghent University (with Pieter Audenaert, Mario Pickavet)

Time-dependent stochastic routing: A practical implementation

By tracking cell phones and GPS systems on road networks, vast amounts of accurate real-time data can be collected. From this data, we can derive time-dependent travel time probability distributions for each of the roads and by making use of these distributions, the travel time distribution of whole routes can be calculated. Here, we present a case study of an industrial-strength time-dependent and stochastic routing system, with the main focus on its practical implementation. Distributions are represented by a number of percentiles, since we use actual measured data and we do not want to impose a single common probability distribution. As determining the exact correlations between each pair of links is quite cumbersome, two extreme cases were investigated, namely assuming that all links are completely correlated and assuming they are not. A stochastic routing algorithm was developed that determines the travel time distribution in both cases. Experiments show that the resulting routes indeed are faster than those in a deterministic routing system. It should be noted that results of this work are deployed by the industrial partners involved in this research.

Moritz Käbsch, Karlruhe Institute of Technology

Alternative routes and route corridors

We present an overview over two static route planning techniques, alternative routes and corridor graphs, and discuss how to compute them efficiently. An alternative route is considered a valid alternative to a shortest path, whenever it fulfills three simple criteria: local optimality, limited overlap, limited stretch. The second technique, corridor graphs, is a method to iteratively grow a subgraph around an initial set of paths to a single target. This technique bases on allowing deviations along the route and can account for minor detours. We expect a combination of these techniques to manifest itself in an immense reduction of the input size for stochastic route planning.

Sebastien Blandin, IBM Research Collaboratory - Singapore (with Alexandre Bayen, Samitha Samarakoon)

Fast computation of solution to stochastic on-time arrival problem

We consider the stochastic on-time arrival (SOTA) problem which consists in finding a policy that maximizes the probability of reaching a destination within a given budget. We propose novel algorithmic methods for the fast computation of its solution in general graphs with stochastic and strictly positive minimal network-wide edge weights, with application to transportation networks in particular. Our first contribution is based on the proof of existence of an optimal order for minimizing the computation time of the optimal policy for the SOTA problem in an exponential-time preprocessing framework. The second contribution of this work is based on the integration of a zero-delay convolution method, which allows for further reduction of the algorithm complexity by a factor $\log n/n$. We illustrate the comparative run-times of the different algorithms on selected synthetic networks and on actual road networks from Northern California, using real travel-time estimates from the Mobile Millennium traffic information system.

Wed.1.H.0129
Multi-objective optimization

Organizer/Chair Henri Bonnel, University of New Caledonia - Invited Session

Jacqueline Morgan, University of Naples Federico II (with Henri Bonnel)

Semidefinite bilevel convex optimal control problems: Existence results

We consider a bilevel optimal control problem where the upper level, to be solved by a leader, is a scalar optimal control problem and the lower level, to be solved by several followers, is a multiobjective convex optimal control problem. We deal with the so-called optimistic case, when the followers are assumed to choose a best choice for the leader.
among their best responses, as well with the so-called pessimistic case, when the best response chosen by the followers can be the worst choice for the leader. We present sufficient conditions on the data for existence of solutions to both the optimistic and pessimistic optimal control problems, with particular attention to the linear-quadratic case.

Henri Bonnel, University of New Caledonia (with Jacqueline Morgan)

Semivectorial bilevel optimal control problems: Optimality conditions

We deal with a bilevel optimal control problem where the upper level is a scalar optimal control problem to be solved by the leader, and the lower level is a multi-objective convex optimal control problem to be solved by several followers acting in a cooperative way inside the greatest coalition and choosing amongst the Pareto optimal controls. This problem belongs to post-Pareto analysis area because generalizes the problem of optimizing a scalar function over a Pareto set. We obtain optimality conditions for the so-called optimistic case when the followers choose among their best responses one which is a best choice for the follower, as well as for the so-called pessimistic case, when the best response chosen by the followers can be the worst case for the leader.

Julien Collange, University of New-Caledonia (with Henri Bonnel)

Optimization over the Pareto set associated with a multi-objective stochastic convex optimization problem

We deal with the problem of minimizing the expectation of a scalar valued function over the Pareto set associated with a multi-objective stochastic convex optimization problem. Every objective is an expectation that is approximated by a sample average approximation function (SAA-N), where N is the sample size. In order to show that the Hausdorff distance between the SAA-N weakly Pareto set and the true weakly Pareto set converges to zero almost surely as N goes to infinity, we need to assume that all the objectives are strictly convex. Then we show that every cluster point of any sequence of SAA-N optimal solutions \(N = 1, 2, \ldots \) is a true optimal solution. To weaken the strict convexity hypothesis to convexity, we need to work in the outcome space. Then, under some reasonable and suitable assumptions, we obtain the same type of results for the image of the Pareto sets. Thus, assuming that the function to minimize over the true Pareto set is expressed as a function of other objectives, we show that the sequence of SAA-N optimal values \(N = 1, 2, \ldots \) converges almost surely to the true optimal value. A numerical example is presented.

Michael Saunders, Stanford University (with Christopher Muro)

QPBLUR: A regularized active-set method for sparse convex quadratic programming

QPBLUR is designed for large convex quadratic programs with many degrees of freedom. Some QPs have many variables but relatively few active constraints at a solution, and cannot be solved efficiently by null-space methods. QPBLUR complements SQOPT as a solver for the subproblems arising in the quasi-Newton SQP optimizer SNOPT. QPBLUR uses a BCL algorithm (bound-constrained augmented Lagrangian) to solve a given QP. For each BCL subproblem, an active-set method solves a large KKT system at each iteration, using sparse LU factors of an initial KKT matrix and block-LU updates for a series of active-set changes. Primal and dual regularization ensures that the KKT systems are always nonsingular, thus simplifying implementation and permitting warm starts from any starting point and any active set. There is no need to control the inertia of the KKT systems, and a simple step-length procedure may be used without risk of cycling in the presence of degeneracy.

We present the main features of QPBLUR and some numerical results from the Fortran 95 implementation on a test set of large convex QPs and on the QPs arising within SNOPT.

Ya-xiang Yuan, Chinese Academy of Sciences (with Kiankuan Chen, Lingfeng Niu)

Optimality conditions and smoothing trust region newton method for non-Lipschitz optimization

Regularized minimization problems with nonconvex, nonsmooth, perhaps non-Lipschitz penalty functions have attracted considerable attention in recent years, owing to their wide applications in image restoration, signal reconstruction and variable selection. In this paper, we derive affine-scaled second order necessary and sufficient conditions for local minimizers of such minimization problems. Moreover, we propose a global convergent smoothing trust region Newton method which can find a point satisfying the affine-scaled second order necessary optimality condition from any starting point. Numerical examples are given to illustrate the efficiency of the optimality conditions and the smoothing trust region Newton method.
mial optimization problems, in particular, the spherically constrained homogeneous polynomial optimization. The new approach has the following three main ingredients. First, we establish a block coordinate descent type search method for nonlinear optimization, with the novelty being that we accept only a block update that achieves the maximum improvement, hence the name of our new search method: maximum block improvement (MBI). Convergence of the sequence produced by the MBI method to a stationary point is proved. Second, we establish that maximizing a homogeneous polynomial over a sphere is equivalent to its tensor relaxation problem; thus we can maximize a homogeneous polynomial freely on a sphere by its tensor relaxation via the MBI approach. Third, we propose a scheme to reach a KKT point of the polynomial optimization, provided that a stationary solution for the relaxed tensor problem is available. Numerical experiments have shown that our new method works very efficiently. For a majority of the test instances that we have experimentally tested, the method finds the global optimal solution at a low computational cost.

Zhang-Hai Huang, Tianjin University [with Xianjun Shi, Li Lai Yong]

An iterative algorithm for tensor n-rank minimization
Tensor arises in many areas of science and engineering including data mining, machine learning and computer vision. In this talk, we consider the tensor n-rank minimization problem and adopt twice tractable convex relaxations to transform it into a convex, unconstrained optimization problem. Based on Fixed Point Continuation with Approximate Singular Value Decomposition, we propose an iterative algorithm for solving this class of problems. We show that the proposed algorithm is globally convergent under mild assumptions. The preliminary numerical results demonstrate that the proposed algorithm is effective, especially for the large-sized problems.

Vincent Leclèce, École des Ponts ParisTech [with Mathews Grasselli, Mike Ludkovski]
The priority option: The value of being a leader in complete and incomplete markets
In a recent paper, Bensoussan, Diltz and Hoe (2010) provide a comprehensive analysis of optimal investment strategies under uncertainty and competition. They consider two firms competing for a project whose payoff can be either a lump-sum or a series of cash-flows, in both complete and incomplete markets. Despite its generality, the analysis is restricted to a Stackelberg game, where the roles of leader and follower are predetermined. In this talk, I’ll extend the analysis to the case where these roles emerge as the result of a symmetric, Markov, sub-game perfect equilibrium, extending the seminal work of Grenadier (1996) and (2000) to incomplete markets. As a result, one can calculate the amount of money that a firm would be willing to spend in advance [either by paying a license or acquiring market power] to have the right to be the leader in a subsequent game - what we call the priority option.

Vincent Tan, OMAP, École Polytechnique

A splitting scheme for degenerate nonlinear PDEs: Application in an optimal hydropower management problem
Based on the semi-Lagrangian scheme and the probabilistic scheme of Fahim, Touzi and Warin, for non-degenerate parabolic PDEs, we propose a splitting numerical method for degenerate nonlinear parabolic PDEs. We also provide a simulation-regression method to make the splitting scheme implementable. General convergence as well as rate of convergence are obtained under reasonable conditions, using the monotone convergence of viscosity solution techniques. Finally, we study an optimal hydropower management problem which can be characterized by a degenerate nonlinear parabolic PDE. A numerical resolution is given by this splitting method.

Imen Ben Tahar, Université Paris Dauphine

Integration of an intermittent energy: A mean fields game approach
The integration of renewable sources of energy to the grid brings new challenges, due to their intermittent nature. In this talk we propose a toy model, based on a mean fields games (MFG) approach, to analyze consumption decisions integrating a stochastic source of energy.
The properties of the method are studied by applying it to realistic models of petroleum fields. The examples lend themselves to a decompositional strategy due to the layout and structure of the wells and pipeline systems. The first model resembles the Troll west oil rim, a huge gas and oil field on the Norwegian Continental shelf. Decision variables are allocation of production between wells and routing of well streams. A second case also includes allocation of gas lift. This is based on an on-going study of an offshore field outside Brazil.

Bruno Fisch, IBM Research - Brazil (with Dai Valladao, Bianca Zadorny)

An MIPG approach to the determination of analogous reservoirs

Oil companies are constantly faced with decision under uncertainty problems related to the analysis of potential investments in target reservoirs. Often, the amount of information on these prospects is relatively scarce and a common adopted strategy is having specialists determine analogous reservoirs - i.e., those for which plenty of data is available and are believed to be similar to the target - as a way to estimate unknown parameters and evaluate production forecasts. Machine learning algorithms, such as k-nearest-neighbors (KNN), may also be applied in this context but the quality of their results is intrinsically related with the definition of a distance metric that defines the similarity between the target reservoir and those stored in a database. To this end, our work focuses on the determination of an optimal distance function - in the sense of minimizing the error in the prediction of a given property or attribute - associated with the computed analogues - by formulating it as a mixed integer quadratic programming (MIPG) problem. Computational results on the application of different solution algorithms to a realistic large-scale problems will be discussed.

PDE-constrained opt. & multi-level/multi-grid meth.

Wed.1.MA.415

Optimization applications in industry III

Organizer/Chair Dietmar Hömberg, Weierstrass Institute for Applied Analysis and Stochastics - Invited Session

Roland Herzog, TU Chemnitz (with Christian Meyer, Gord Wacht帅th)

Optimal control of elastoplastic processes

Elastoplastic deformations are the basis of many industrial production techniques, and their optimization is of significant importance. We consider mainly the (idealized) case of infinitesimal strains as well as simple kinematic hardening. From a mathematical point of view, the forward system in the stress-based form is represented by a time-dependent variational inequality of mixed type. Its optimal control thus leads to an MPEC (mathematical program with equilibrium constraints) or an equivalent MPCC (mathematical program with complementarity constraints), both of which are challenging from both a mathematical and an algorithmic point of view. In this presentation, we therefore address tailor-made algorithmic techniques for optimization problems involving elastoplastic deformation processes.

Anton Schela, TU Berlin

An adaptive multilevel method for hyperthermia treatment planning

The aim of hyperthermia treatment as a cancer therapy is to damage deeply seated tumors by heat. This can be done regionally by a microwave applicator and gives rise to the following optimization problem: “Find antenna parameters, such that the damage caused to the tumor is maximized, while healthy tissue is spared”. Mathematically, this is a PDE constrained optimization problem subject to the time-harmonic Maxwell equations, which govern the propagation of the microwaves, and the bio heat transfer equation, a semi-linear elliptic equation, which governs the heat distribution in the human body. Further, upper bounds on the temperature in the healthy tissue are imposed, which can be classified as pointwise state constraints. In this talk we consider a function space oriented algorithm for the solution of this problem, which copes with the various difficulties. The state constraints are tackled by an interior point method, which employs an inexact Newton corrector in function space for the solution of the barrier subproblems. Herein, discretization errors are controlled by a-posteriori error estimation and adaptive grid refinement.

Michael Stingl, Friedrich-Alexander-University Erlangen-Nürnberg (with Fabian Schur, Fabian Wein)

Matrix-free interior point methods for compressed sensing problems

We consider the class of 𝐔_{2} -regularization methods for sparse signal reconstruction from the field of Compressed Sensing. Such problems are very well conditioned and, indeed, can be solved by first-order methods, such as, GPSR, FPC_AS, SPGL1, Nest_A. Interior point methods rely on second-order information. They have many advantageous features and one clear drawback: in general, the solution of a Newton’s system is optimum has computational complexity 𝒪(n^2). We remove this disadvantage by employing the matrix-free interior point method with suitable preconditioners which cleverly exploit special features of compressed sensing problems. Spectral analysis of the preconditioners is presented. Computational experience with large-scale symmetry as well as special bounds on the stiffness of the material are added. The latter constraints are chosen compatible with the choice of the material on the microscopic level. Approximate solutions methods for this modified FMO problem are presented. In a discretized finite element setting the result of the macroscopic problem is a set of material tensors. Depending on the macroscopic constraints, these tensors are either directly interpreted as periodic microstructures or accessible through an inverse homogenization approach.

Ban Kawas, IBM Research - Zürich (with Marco Laumanns, Eleni Pratsini)

A robust optimization approach to enhancing reliability in production planning under non-compliance risks

We investigate a game-theoretic setup of a production planning problem under uncertainty in which a company is exposed to the risk of failing authoritative inspections due to non-compliance with enforced regulations. The outcome of an inspection is uncertain and is modeled as a Bernoulli distributed random variable whose parameter is a function of production decisions. We model non-compliance probabilities as uncertain parameters belonging to polyhedral uncertainty sets and maximize the worst-case expected profit over these sets. We derive convex tractable formulations, in the form of MIPs, that offer the flexibility of matching solutions to the level of conservatism of decision makers via two intuitive parameters. Varying these parameters when solving for the optimal production allocation provides different risk-return tradeoffs. We give strong empirical evidence that exhibits the superior performance of the devised model. We believe the robust approach holds much potential in enhancing reliability in production planning and other frameworks in which probabilities of random events depend on decision variables and in which parameter uncertainty is prevalent and difficult to handle.

Stawomir Pietrzak, Paris Dauphine – GOF Suez

Strategically robust investments on gas transmission networks

Looping regional gas transmission networks to increase their capacity involves considerable costs. Thus the corresponding investment decisions occur only after thoroughly weighing both the industrial and economic pros and cons. Wouldn’t it be profitable to encompass those uncertainties from the top to deliver several equivalent investment alternatives that no decision maker would regret? Hence, we have focussed on the evolving context of investment studies and identified uncertain technical, economic and strategic parameters who play a significant role in the outcome investment proposition. Analyzing what is at stake when it comes to robustness and flexibility has led us to introduce a mathematical risk measure which is interpretable in operational terms. We eventually offer a set of R&D approaches, that we hope, will contribute to shift present optimization models into future robust decision rules.

Linear programming applications in industry III

Organizer/Chair Kimon Fountoulakis, Edinburgh University - Invited Session

Kimon Fountoulakis, Edinburgh University (with Jacek Gondzio, Pavel Zhlobich)

Matrix-free interior point method for compressed sensing problems

We consider the class of 𝐔_{2} -regularization methods for sparse signal reconstruction from the field of Compressed Sensing. Such problems are very well conditioned and, indeed, can be solved by first-order methods, such as, GPSR, FPC_AS, SPGL1, Nest_A. Interior point methods rely on second-order information. They have many advantageous features and one clear drawback: in general, the solution of a Newton’s system is optimum has computational complexity 𝒪(n^2). We remove this disadvantage by employing the matrix-free interior point method with suitable preconditions which cleverly exploit special features of compressed sensing problems. Spectral analysis of the preconditioners is presented. Computational experience with large-scale

Robust optimization

Applications of robust optimization III

Organizer/Chair Aurelie Thiele, Leibig University - Invited Session

Elcin Celiknaya, Leibig University (with Aurelie Thiele)

Robust customized pricing

We study robust revenue management problems when companies request bids for services but their price-response function is not known precisely. The company bidding for these contracts only knows the previous bids it submitted to those businesses and whether they were accepted or not. We show how to derive tractable mathematical models for this problem and provide insights into the optimal solution. We also document the performance of the approach in numerical experiments.

Organizer/Chair Aurelie Thiele, Leibig University. Invited Session

Elcin Celiknaya, Leibig University (with Aurelie Thiele)

Robust customized pricing

We study robust revenue management problems when companies request bids for services but their price-response function is not known precisely. The company bidding for these contracts only knows the previous bids it submitted to those businesses and whether they were accepted or not. We show how to derive tractable mathematical models for this problem and provide insights into the optimal solution. We also document the performance of the approach in numerical experiments.

Organizer/Chair Aurelie Thiele, Leibig University. Invited Session

Elcin Celiknaya, Leibig University (with Aurelie Thiele)

Robust customized pricing

We study robust revenue management problems when companies request bids for services but their price-response function is not known precisely. The company bidding for these contracts only knows the previous bids it submitted to those businesses and whether they were accepted or not. We show how to derive tractable mathematical models for this problem and provide insights into the optimal solution. We also document the performance of the approach in numerical experiments.

Organizer/Chair Aurelie Thiele, Leibig University. Invited Session

Elcin Celiknaya, Leibig University (with Aurelie Thiele)

Robust customized pricing

We study robust revenue management problems when companies request bids for services but their price-response function is not known precisely. The company bidding for these contracts only knows the previous bids it submitted to those businesses and whether they were accepted or not. We show how to derive tractable mathematical models for this problem and provide insights into the optimal solution. We also document the performance of the approach in numerical experiments.

Organizer/Chair Aurelie Thiele, Leibig University. Invited Session

Elcin Celiknaya, Leibig University (with Aurelie Thiele)

Robust customized pricing

We study robust revenue management problems when companies request bids for services but their price-response function is not known precisely. The company bidding for these contracts only knows the previous bids it submitted to those businesses and whether they were accepted or not. We show how to derive tractable mathematical models for this problem and provide insights into the optimal solution. We also document the performance of the approach in numerical experiments.
one-dimensional signals ($n = 2^{20}$) confirms that the new approach is efficient and compares favourably with other state-of-the-art solvers.

Xiaofeng Wang, Nanjing University (with Xiaoming Yuan)

Linearized alternating direction methods for Dantzig selector

The Dantzig selector was recently proposed to perform variable selection and model fitting in the linear regression model, and it can be solved numerically by the alternating direction method (ADM). In this paper, we show that the ADM for Dantzig selector can be speeded up significantly if one of its resulting subproblems at each iteration is linearized. The resulting linearized ADMs for Dantzig selector are shown to be globally convergent, and their efficiency is verified numerically by both simulation and real world data-sets.

Sergiy Voronen, Princeton University

Iteratively reweighted least squares methods for structured sparse regularization

We describe two new algorithms useful for obtaining sparse regularized solutions to large inverse problems, based on the idea of reweighted least squares. We start from the standpoint of l_1 minimization, and show that by replacing the non-smooth one norm $|x|^1 = \sum_{k=1}^N |x_k|$ with a reweighted two norm: $\sum_{k=1}^N w_k x_k^2$, with the weights being refined at each successive iteration, we can formulate two new algorithms with good numerical performance. We then discuss a generalization of both variants, useful in cases of structured sparsity, where different sets of coefficients demand different treatment. We discuss in particular, an example from a large inverse problem from Geotomography, where Wavelets are used to promote sparsity. We show that to build up a solution from a dictionary of different Wavelet bases and to have control over the different components of each Wavelet basis, the minimization of a more general functional: $||Ax - b||_2^2 + \sum_{k=1}^N \lambda_k |x_k|^2$ for $1 \leq \lambda_k < 2$ is desirable. We show that our proposed schemes extend to this more general case.

Serena Venturelli, Princeton University

Algorithms for stochastic optimization and approximation

Organizer/Chair: Marc Steinbach, Leibniz Universität Hannover - Invited Session

Vaclav Kozmik, Charles University in Prague, Faculty of Mathematics and Physics. (with David Morton)

Risk-averse stochastic dynamic programming

We formulate a risk-averse multistage stochastic program using CVaR as the risk measure. The underlying random process is assumed to be stage-wise independent, and the stochastic dynamic programming (SDP) algorithm is applied. We discuss the poor performance of the original upper bound estimator in the risk-averse setting and provide a modified procedure, which improves the upper bound estimator. Only mild conditions and modest additional computational effort are required to apply the new upper bound estimator. The procedure allows a meaningful improvement in the terms of applying desirable stopping rules for the SDP algorithm in the risk-averse setting. We give a numerical example with a simple multistage asset allocation problem using a log-normal distribution for the asset returns.

Jens Hüsnerr, Leibniz Universität Hannover (with Marc Steinbach)

Structure-exploiting parallel interior point method for multistage stochastic programs

Highly specialized and structure-exploiting solvers for the primal-dual system are essential to make interior point methods competitively applicable to multistage stochastic programs. In the underlying sequential direct approach, depth-first based recursions over the scenario tree and usage of hierarchical problem structures are the key ingredients to achieve memory-efficiency and reduce computational costs. Our parallel approach is based upon a node-distributing pre-processing step that applies a depth-first based splitting of the scenario tree. The node-related problem data are statically distributed among participating processes. Proper computation orders lead to little idle times and communication overhead. This way only few communication routines are required to parallelize the sequential algorithm for distributed memory systems without losing its benefiting features. We use generic implementation techniques to adapt conforming data distributions to the entire IPM data. Thus, distributed memory systems can be used to solve even huge problems exceeding shared-memory capacities. Theoretical concepts and numerical results will be presented.

Anthony Man-Chu So, The Chinese University of Hong Kong (with Sin-Shuen Cheung, Kunhang Wang)

Chance-constrained linear matrix inequalities with dependent perturbations: A safe tractable approximation approach

In the formulation of optimization models, the data defining the objective functions and/or constraints are often collected via estimation or sampling, and hence are only approximations of the nominal values. One approach to incorporate data uncertainty in optimization models is through chance constrained programming. Although such an approach often leads to computationally difficult optimization problems, one of the successes is the development of so-called safe tractable approximations (STAs) of chance constrained programs. Currently, the STA approach mainly applies to problems where the data perturbations are independent. However, in some applications (e.g., portfolio optimization), the data perturbations are not independent, and so existing results cannot be applied. In this talk, we will demonstrate how tools from probability theory can be used to develop STAs of chance constrained programs with dependent data perturbations. An advantage of our approach is that the resulting STAs can be formulated as SDPs or even SOCPs, thus allowing them to be solved easily by off-the-shelf solvers. If time permits, we will also discuss some other applications of our approach.

Jian Li, Tsinghua University (with Amol Deshpande)

Partitions of integers as states of these stochastic dynamic programs

The stochastic dynamic distance optimal partitioning problem (SDDP problem) is a complex Operations Research problem. The SDDP problem is based on a problem in industry, which contains an optimal conversion of machines.

Partitions of integers as states of these stochastic dynamic programming problems involves combinatorial aspects of SDP problems. Under the assumption of identical “basic costs“ (in other words of “unit distances“) and independent and identically distributed requirements we will show (in many cases) by means of combinatorial ideas that decisions for feasible states with least square sums of their parts are optimal solutions. Corresponding Markov kernels are called partitions-Requirements-Matrices (PRMs).

Optimal decisions of such problems can be used as approximate solutions of corresponding SDP problems, in which the basic costs differ only slightly from each other or as starting decisions if corresponding SDP problems are solved by iterative methods, such as the Howard algorithm.

Mariya Naumova, Rutgers University (with Andras Prekopa)

Univariate discrete moment problem for new classes of objective function and its applications

We characterize the dual feasible bases, in connection with univariate discrete moment problem for classes of objective function not dealt with until now, e.g., step functions with finite number of values. Formulas for the optimum value and dual type algorithmic solutions will be presented. Applications will be mentioned to engineering design and finance.

John Hübner, Leibniz Universität Hannover - Invited Session

Partitions-requirements-matrices as optimal Markov kernels of special stochastic dynamic distance optimal partitioning problems

The stochastic dynamic distance optimal partitioning problem (SDDP) is a complex Operations Research problem. The SDDP problem is based on a problem in industry, which contains an optimal conversion of machines.

Partitions of integers as states of these stochastic dynamic programming problems involves combinatorial aspects of SDP problems. Under the assumption of identical “basic costs“ (in other words of “unit distances“) and independent and identically distributed requirements we will show (in many cases) by means of combinatorial ideas that decisions for feasible states with least square sums of their parts are optimal solutions. Corresponding Markov kernels are called partitions-Requirements-Matrices (PRMs).

Optimal decisions of such problems can be used as approximate solutions of corresponding SDP problems, in which the basic costs differ only slightly from each other or as starting decisions if corresponding SDP problems are solved by iterative methods, such as the Howard algorithm.

Mariya Naumova, Rutgers University (with Andras Prekopa)

Univariate discrete moment problem for new classes of objective function and its applications

We characterize the dual feasible bases, in connection with univariate discrete moment problem for classes of objective function not dealt with until now, e.g., step functions with finite number of values. Formulas for the optimum value and dual type algorithmic solutions will be presented. Applications will be mentioned to engineering design and finance.

Jian Li, Tsinghua University (with Amol Deshpande)

Maximizing expected utility for stochastic combinatorial optimization problems

We study the stochastic versions of a broad class of combinatorial optimization problems that allows for decision making under uncertainty.
problems where the weights of the elements in the input dataset are uncertain. The class of problems that we study includes shortest paths, minimum weight spanning trees, and minimum weight matchings over probabilistic graphs, and other combinatorial problems like knapsack. We observe that the expected value is inadequate in capturing different types of risk-averse or risk-prone behaviors, and instead we consider a more general objective which is to maximize the expected utility of the solution for some given utility function, rather than the expected weight (expected weight becomes a special case). We show that we can obtain a polynomial time approximation algorithm with additive error ϵ for any $\epsilon > 0$, and the maximum value of the utility function is bounded by a constant. Our result generalizes several prior results on stochastic shortest path, stochastic spanning tree, and stochastic knapsack. For our algorithm for utility maximization makes use of a technique to decompose a general utility function into exponential utility functions, which may be useful in other stochastic optimization problems.

Chaitanya Swamy, University of Waterloo
Risk-averse stochastic optimization: Probabilistically-constrained models and algorithms for black-box distributions

We consider various stochastic models that incorporate the notion of risk-averseness into the standard 2-stage recourse model, and develop techniques for solving the algorithmic problems arising in these models. A key notable and distinguishing feature of our work is that we obtain results in the black-box setting, where one is given only sampling access to the underlying distribution. One such model is what we call the risk-averse budget model, where we impose a probabilistic constraint that restricts the probability of the second-stage cost exceeding a given budget B to at most a given input threshold p. We devise an approximation scheme for solving the LP-relaxations of a variety of risk-averse budgeted problems. Complementing this, we give a rounding procedure that lets us use existing LP-based approximation algorithms for the 2-stage and/or deterministic counterpart of the problem to round the fractional solution. This yields approximation algorithms for various discrete optimization problems in our risk-averse models with black-box distributions. These are the first approximation results for problems involving probabilistic constraints with black-box distributions.

Abraham Othman, Carnegie Mellon University (with Tuomas Sandholm)
Inventory-based versus prior-based options trading agents

Options are a basic, widely-traded form of financial derivative that offer payouts based on the future price of an underlying asset. The finance literature gives us option-trading algorithms that take into consideration information about how prices move over time but do not explicitly involve the trades the agent made in the past. In contrast, the prediction market literature gives us automated market-making agents (like the popular LMSR) that are event-independent and price trades based only on the inventories the agent holds. We simulate the performance of five trading agents inspired by these literatures on a large database of recent historical option prices. We find that a combination of the two approaches produced the best results in our experiments; a trading agent that keeps track of previously-made trades combined with a good prior distribution on how prices move over time. The experimental success of this synthesized trader has implications for agent design in both financial and prediction markets.

Charitha Cherugondi, Universität Göttingen
A descent method for solving an equilibrium problem based on generalized D-gap function

The gap function approach for solving equilibrium problems has been investigated by many authors in the recent past. As in the case of nonsmooth piecewise linear (EPL) can be formulated as an unconstrained minimization problem through the D-gap function. We present a descent type algorithm for solving (EP) based on the generalized D-gap function. The convergence properties of the proposed algorithm under suitable assumptions has been discussed while supporting our approach with appropriate examples. We construct a global error bound for the equilibrium problem in terms of the generalized D-gap function. This error bound generalizes most of the existing error bounds for (EP) in the literature.
Quadatic and polynomial optimization

Organizer/Chair: Jeya Jeyakumar, The University of New South Wales - Invited Session

Gew Soo Kim, Pukyong National University, Busan, Republic of Korea (with Gue Myung Lee)

On ε-saddle point theorems for robust convex optimization problems

In this talk, we consider ε-approximate solutions for a convex optimization problem in the face of data uncertainty, which is called a robust convex optimization problem. Using robust optimization approach (worst-case approach), we define ε-saddle points for ε-approximate solutions of the robust convex optimization problem. We prove a sequential ε-saddle point theorem for an ε-approximate solution of a robust convex optimization problem which holds without any constraint qualification, and then we give an ε-saddle point theorem for an ε-approximate solution which holds under a weakens constraint qualification.

Jeya Jeyakumar, The University of New South Wales (with Guoyin Li)

Sum of squares representations and optimization over convex semialgebraic sets

We present sum of squares representations of positive or non-negative SOS-convex polynomials over non-compact convex sets without any qualifications. In the case of representations of positive polynomials, we allow representations to hold up to a positive constant, whereas for representations of non-negative polynomials, we permit them to hold asymptotically. Exploiting convexity of the systems and using hyperplane separations, we derive qualification-free representations in terms of sum of squares polynomials. Consequently, we show that for an SOS-convex optimization problem, its sum of squares relaxation problem is always exact. Stronger relaxation and duality results are given when a constraint qualification is present.

Guoyin Li, University of New South Wales (with Boris Mordukhovich)

Error bound for classes of polynomial systems and its applications: A variational analysis approach

Error bound is an important tool which provides an effective estimation of the distance from an arbitrary point to a set in terms of a computable “residual function”. The study of error bound plays an important role in the convergence analysis of optimization algorithms and accurate identification of active constraints. In this talk, we are interested in error bound for classes of polynomial systems. Using variational analysis technique, we first show that global Lipschitz type error bound holds for a convex polynomial under Slater condition. When Slater condition is not satisfied, we establish a global Hölderian type error bound with an explicit estimate of the Hölderian exponent extending the known results for convex quadratic functions. Next, we extend these results to some classes of nonconvex system including piecewise convex polynomials and composite polynomial systems. Finally, as an application, we apply the error bound results to provide a quantitative convergence analysis of the classical proximal point method.

Approximation & online algorithms

Organizer/Chair: Nicole Megow, Technische Universität Berlin, Jose Correa, Universidad de Chile - Invited Session

Jose Soto, Universidad de Chile (with Jose Correa, Omar Larre)

The traveling salesman problem in cubic graphs

We prove that every 2-connected cubic graph on \(n \) vertices has a tour of length at most \((4/3 - \varepsilon)n\), for a small, but positive \(\varepsilon \). This in particular implies that the integrality gap of the Held and Karp LP relaxation for the TSP is strictly less than \(4/3 \) on this graph class.

Jose Verschae, Universidad de Chile (with Nicole Megow, Martin Skutella, Andreas Wiese)

The power of recourse for online MST and TSP

We consider online versions of MST and TSP problems with recourse. Assume that vertices of a complete metric graph appear one by one, and must be connected by a tree (respectively tour) of low cost. In the standard online setting, where decisions are irrevocable, the competitive factor of each algorithm is \(\Omega(\log n) \). In our model, recourse is allowed by granting a limited number of edge rearrangements per iteration. More than 20 years ago, Imase and Waxman [1991] conjectured that constant-competitive solutions can be achieved with a constant (amortized) number of rearrangements. In this talk, we present an algorithm that solves this conjecture for MSTs in the amortized setting.

Unlike in offline TSP variants, the standard double-tree and short-cutting approach does not give constant guarantees in the online setting. However, a non-trivial robust short-cutting technique allows to construct trees into tours at the loss of small factors, implying the conjecture of Imase and Waxman for tours.

For the non-amortized setting, we conjecture a structural property of optimal solutions that would imply a constant competitive ratio with one recourse action per iteration.

Claudio Telha, Universidad de Chile (with Jose Soto)

The jump number (maximum independent set) of two-directional orthogonal-ray graphs

We consider a special case of the independent set of rectangles problem.

Given a family of white \(W \) and black \(B \) points in the plane, we construct the family \(R \) of rectangles having bottom-left corner in \(W \) and top-right corner in \(B \). The problem is to find the maximum cardinality of a collection of disjoint rectangles in \(R \).

We show that this problem can be efficiently solved using linear programming techniques. Inspired by this result, and by previous work of A. Frank, T. Jordan and L. Vegh on set-pairs, we describe a faster combinatorial algorithm that solves this problem in \(O((|W| + |B|)^{1.5}) \) time.

We also establish a connection between this special case of the independent set of rectangles problem and the problem of finding the jump number of a certain class of comparability graphs (known as two-directional orthogonal ray graphs). Using this connection, we can compute the jump number of convex graphs with \(n \) nodes in \(O((n \log n)^2) \) time, while previous algorithms for these instances ran in time at least \(O(n^6) \).

Wed.2.H 3910

Extended formulations in mixed integer programming

We study the convex hull of a mixed-integer set \(S \) by expressing each continuous variable as the average of \(k \) integral variables. This allows us to model \(S \) as a pure integer set in an extended space. The integrality of the additional variables allows us to strengthen the inequalities that describe \(S \). We concentrate on a mixed-integer set defined as follows: Given a bipartite graph \(G = (U \cup V, E) \), a set \(I \subseteq U \cup V \) and rational numbers \(b_{ij}, ij \in E \), let

\[
S(G) = \{ x \in \mathbb{R}^{U\cup V} | \sum_{i \in U} x_i = b_{ij}, ij \in E \}.
\]

We show that the set \(S(G) \) is equivalent to the “network dual” set introduced and studied by Conforti, Di Summa, Eisenbrand and Wolsey. Conforti et al. gave an extended formulation for the polyhedron \(\text{conv}(S(G)) \) and discuss cases in which the formulation is compact.

Our goal is to describe the polyhedron \(\text{conv}(S(G)) \) in the space of the \(x \) variables and we give properties of the facet-defining inequalities. Our principal result is a characterization of the structure of facet-defining inequalities when the graph \(G \) is a tree.

Giacomo Zambelli, London School of Economics and Political Science (with Michele Conforti, Bert Gerards, Laurence Wolsey)

Mixed-integer bipartite vertex cover problems

The mixed-integer bipartite vertex-covering problem consists in optimally assigning weights to the nodes of a bipartite graph so that the sum of the weights on the endnodes of each edge is at least some prescribed edge-requirement, and that the weights on certain nodes are integer. Besides being the natural mixed-integer counterpart of the classical vertex-covering problem, this model arises as a relaxation of several lot-sizing problems. While no satisfactory polyhedral characterization is known, an extended formulation - albeit not polynomial in size - was given by Conforti, Di Summa, Eisenbrand and Wolsey. We give results on the projection of the extended formulation onto the original space, leading to full polyhedral characterizations for the case when the edge-requirements are half-integral and for certain classes of lot-sizing problems.
Combinatorial optimization
Chair Maurice Queyranne, Sauder School of Business at UBC

Modeling convex subsets of points
A subset S of a given set P of points in a vector space is convex (relative to P) if every point of P that is in the convex hull of S is also in S. We are interested in modelling such convex discrete convexity restrictions which arise, usually in a low-dimensional space and subject to additional constraints, in many applications (e.g., mining, forestry, location, data mining, political districting, police quadrant design). This question is well understood in one dimension, where optimization can be solved in time that is linear (in the number $|P|$ of given points), a complete (but exponential-size) polyhedral description in the natural variables (that select the points in S), and a linear-time separation algorithm are known, as well as a linear-sized ideal extended formulation. On the other hand the optimization problem (to find a maximum weight convex subset of given points with weights of arbitrary signs) is NP-hard in dimensions three and higher, and inapproximable when the dimension is part of the input. In the two-dimensional plane, the optimization problem is solved in polynomial (cubic) time by dynamic programming (Bautista-Santiago et al., 2011) and, thanks to Caratheodory’s

Random Synchronized Prospecting: A new metaheuristic for combinatorial optimization
Chair Abderrazak Djadoun, ZAK Technology

A population-based iterated greedy algorithm for the minimum weight vertex cover problem
Given an undirected, vertex-weighted graph, the goal of the minimum weight vertex cover problem is to find a subset of the vertices of the graph such that the subset is a vertex cover and the sum of the weights of its vertices is minimal. This problem is known to be NP-hard and no efficient algorithm is known to solve it optimally. Therefore, most existing techniques are based on heuristics for providing approximate solutions in a reasonable computation time. Population-based search approaches have shown to be effective for solving a multitude of combinatorial optimization problems. Their advantage can be identified as their ability to find areas of the space containing high quality solutions. This paper proposes a simple and efficient population-based iterated greedy algorithm for tackling the minimum weight vertex cover problem. At each iteration, a population of solutions is established and refined using a fast randomized iterated greedy heuristic based on successive phases of destruction and reconstruction. An extensive experimental evaluation on a commonly used set of benchmark instances shows that our algorithm outperforms current state-of-the-art approaches.

Random Synchronized Prospecting: A new metaheuristic for combinatorial optimization
Chair Abderrazak Djadoun, ZAK Technology (with Ibtih Bourasid)

Abstract optimization problems revisited
Abstract Optimization Problems (AOP) generalize linear programs and have been invented with the goal of providing an abstract setting in which the subsequential randomized linear programming algorithms of Kalai and of Matousek, Sharir and Welzl still work. Linear programming abstractions have also been considered recently by Eisenbrand et al., and Kim, and others in the context of diameter bounds for polytopes. In this talk, I want to discuss whether and how AOP relate to these new abstractions.

Random Synchronized Prospecting: A new metaheuristic for combinatorial optimization
Chair Abderrazak Djadoun, ZAK Technology (with Ibtih Bourasid)
Our work on parallelization strategies.

Geir Dahl, University of Oslo

Generalized Birkhoff polytopes and majorization

The notion of majorization plays an important role in matrix theory and other mathematical areas, like combinatorics, probability and physics. The basic notion is an ordering of vectors according to their partial sums, but several extensions exist. The purpose of this talk is to give a lively brief introduction to majorization theory and to present some recent work on a generalization of Birkhoff polytopes related to majorization. Recall that the Birkhoff polytope is the set of all doubly stochastic matrices of a fixed size (it also corresponds to the perfect matching polytope). Main results include a generalization of the Birkhoff - von Neumann theorem and a characterization of the faces of such generalized Birkhoff polytopes. This is joint work with Richard A. Brualdi (University of Wisconsin).

Olga Heimann, Zuse Institute Berlin (with Ralf Borndörfer, Achim Hildenbrand)

The hypergraph assignment problem

The hypergraph assignment problem (HAP) generalizes the assignment problem on directed graphs to directed hypergraphs; it is motivated by railway scheduling applications. The HAP is NP-hard even for problems with small hyperarc sizes and hypergraphs with a special partitioned structure. We propose an integer programming approach to the HAP and investigate the associated polyhedron of feasible solutions. Further, we develop combinatorial procedures that provide heuristic approximation results.

Christian Schulz, Karlsruhe Institute of Technology (with Peter Sanders)

Assignment problems

Chair Ger Dahl, University of Oslo

Chair Joachim Gwinner, Universität der Bundeswehr München

Organizer/Chair Renato Werneck, Microsoft Research Silicon Valley - Invited Session

Graph partitioning and clustering

We present an overview over our graph partitioners KaFFPa (Karlsruhe Fast Flow Partitioner) and KaFFPaE (KaFFPa Evolutionary). KaFFPa is a multilevel graph partitioning algorithm which on the one hand uses novel local improvement algorithms based on max-flow and min-cut computations and more localized FM searches and on the other hand uses more sophisticated global search strategies transferred from multi-grid linear solvers. KaFFPaE is a distributed evolutionary algorithm to solve the Graph Partitioning Problem. KaFFPaE uses KaFFPa which provides new effective crossover and mutation operators. By combining these with a scalable communication protocol we obtain a system that is able to improve the best known partitioning results for many inputs.

Henning Meyerhenke, Karlsruhe Institute of Technology (with David Bader, Jason Riedy)

Graph partitioning

Organizer/Chair Monique Laurent, CWI, Amsterdam and U Tilburg; Christoph Helmberg, TU Chemnitz - Invited Session

Semidefinite programming and geometric representations of graphs

Organizers/Chairs Monique Laurent, CWI, Amsterdam and U Tilburg; Christoph Helmberg, TU Chemnitz

Semidefinite programming

Chair Joachim Gwinner, Universität der Bundeswehr München

Organizer/Chair Renato Werneck, Microsoft Research Silicon Valley. Invited Session

Optimizing extremal eigenvalues of the weighted Laplacian of a graph

Recent work on the Laplacian of a weighted graph by semidefinite programming techniques, i.e., we optimize nonnegative edge weights w of a graph, that sum up to one, so as to minimize the difference of the maximum and the second smallest eigenvalue of the corresponding weighted Laplacian Lw(G). The dual program may be interpreted as a graph realization problem in Euclidean space, that reflects the optimized eigenspaces. We present connections between structural properties of the graph (especially its separator structure) and geometrical properties of optimal graph realizations, thereby shedding light on
Optimization problems over unit-distance representations of graphs

We start with a result of Lovász relating the theta number of a graph to its smallest radius hypersphere embedding where each edge has unit length. We use this identity and its generalizations to establish close relationships among many related graph parameters. We then study the more general problem of finding the smallest radius of an ellipsoid of a given shape that contains an embedding of a given graph where each edge has unit length.

This talk is based on joint work with Levent Tunçel.

Antonis Varvitsiotis, Centrum Wiskunde & Informatica (with Marianna Eisenberg-Nagy, Monique Laurent)

Two new graph parameters related to semidefinite programming with a rank constraint

We consider geometric representations of edge weighted graphs obtained by assigning unit vectors to the nodes, such that the weight of each edge is equal to the inner product of the vectors assigned to its endpoints. We introduce two new graph parameters related to the minimum dimension where such representations exist. Their study is motivated by their relevance to bound rank positive semidefinite matrix completions and to the graphical Grothendieck problem with a rank constraint.

In this talk we analyze combinatorial and geometric properties of these parameters. In particular, we provide forbidden minor characterizations as well as structural and complexity results. Additionally, we discuss how our results imply some known characterizations of parameters related to Euclidean graph realizations and Colin de Verdière-type graph invariants.

Stephen Wright, University of Wisconsin-Madison (with Caroline Uhler)

Conic and convex programming in statistics and signal processing III

Organizer/Chair Yenka Chandrasekaran, Caltech - Invited Session

Deanna Needell, Claremont McKenna College

Randomized projection algorithms for overdetermined linear systems

In this talk we discuss variations to projection onto convex sets (POCS) type methods for overdetermined linear systems. POCS methods have found many applications ranging from computer tomography to digital signal and image processing. The Kaczmarz method is one of the most popular algorithms for overdetermined systems of linear equations due to its speed and simplicity. Here we introduce and analyze extensions of this method which provide exponential convergence to the solution in expectation which in some settings significantly improves upon the convergence rate of the standard method.

Stephen Wright, University of Wisconsin-Madison (with Caroline Uhler)

 Packing ellipsoids (and chromosomes)

Problems of packing shapes with maximal density possibly into a container of restricted size, are classical in mathematics. We describe here the problem of packing ellipsoids of given (and varying) dimensions into a finite container of given size, allowing overlap between adjacent ellipsoids but requiring some measure of total overlap to be minimized. A trust-region bivolution optimization algorithm is described for finding local solutions of this problem – both the general case and the more elementary special case in which the ellipsoids are in fact spheres. Tools from conic optimization, especially semidefinite programming and duality, are key to the algorithm. Theoretical and computational results will be summarized. Our work is motivated by a problem in structural biology - chromosome arrangement in cell nuclei – for which results are described.

James Saunderson, Massachusetts Institute of Technology (with Pablo Parrilo)

 Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones

The hyperbolicity cones associated with the elementary symmetric polynomials provide an intriguing family of non-polynomial relaxations of the non-negative orthant that preserve its low-dimensional faces and successively discard higher dimensional structure. A similar construction gives a family of outer approximations for any spectrahedral cone (i.e. slice of the psd cone), and more generally for any hyperbolicity cone. We show, by a simple and explicit construction, that these derivative relaxations of spectrahedral cones have polynomial-sized representations as projections of slices of the psd cone. This, for example, allows us to solve the associated linear cone program using semidefinite programming, and allows us to give corresponding explicit semidefinite representations for the (thus far poorly understood) duals of the derivative relaxations of spectrahedral cones.
aerospatial. Several SHM techniques are able to determine the presence of structural damage. However, the location and damage severity estimation are more difficult to determine.

In this talk, a new SHM approach based on optimization techniques is shown. This method is capable of, simultaneously, locate, determine the type of damage and output its severity. The considered objective function measures how well structural damage simulated data (obtained by using finite element models) compares with the observed data from the (un)damaged part in service. For 2D parts, four damage spatial variables and three material properties variables are considered. Due to the simulation process involved, objective function derivatives are unavailable and the objective function evaluations are costly. Numerical results also show that, in order to properly determine the damage location and severity, the optimization problem has to be solved globally. We present some successful numerical results using the PSwarm solver.

Per-Magnus Olsson, Linköping University (with Holmenberg Kj. Olsson Per-Magnus)

Parallelization of algorithms for derive-free optimization

In this talk we present parallelization and extensions of algorithms for derivative-free optimization. In each iteration, we run several instances of an optimization algorithm with different trust region parameters, and each instance generates a point for evaluation. All points are kept in a common priority queue and the most promising points are evaluated in parallel when computers are available. We use models from several instances to prioritize the points and in case new information becomes available, we allow dynamic prioritization of points to ensure that computational resources are used efficiently. A database is used to avoid reevaluation of points. Together, these extensions make it easier to find several local optima and rank them against each other, which is very useful when performing robust optimization. Empirical testing reveals considerable decrease in the number of function evaluations as well as in the time required to solve problems.

Cristina Falga, Institute of Mathematical Statistics and Applied Mathematics of Romanian Academy

Higher moments and conditional value at risk optimization

In order to control their exposure to risk, financial institutions are in charge of estimating risks caused by changes in asset prices and exchange and/or interest rates. Due to present regulations, the risk management of portfolios is intimately related to value at risk. For VaR calculation, there is the straightforward formula that can be used under the assumption that the log-returns of the portfolio are normally distributed and according to which VaR can be expressed in terms of mean and variance. But empirical evidence shows that, generally, financial returns are not normally distributed. In this paper we find the expression of conditional value at risk (CVaR) in terms of higher moments of the input loss distribution and compare the importance of different moments in VaR and CVaR. Using the maximum entropy principle, we find the best fit for the empirical probability distribution function in terms of its empirical moments. Their weights indicate which of them should be used in the Cornish–Fisher expansion. The VaR and CVaR approximation formulas are used to reduce the computational effort for large portfolio optimization problems.

Wei Xu, Tongji University (with Zhiwu Hong)

A new sampling strategy willow tree method with application to path-dependent option pricing

Willow tree algorithm, first developed by Curran in 1998, provides an efficient option pricing procedure. However, it leads to a big bias using the classical sampling strategy when the number of points at each step is not large. Thus, in this paper, we propose a new sampling strategy with solving a small nonlinear least square problem. Compared with Curran’s sampling strategy, the new strategy gives a much better estimation of the standard normal distribution with small amount of sampling measurements. The well structural damage simulated data obtained with the new sampling strategy to price path-dependent options such as American, Asian and American moving-average options. The numerical results illustrate that the willow tree algorithm is much more efficient than the least square Monte Carlo method and binomial tree method.

Asaf Shapo, MNEA Canada TD Bank Group (with Dragos Calitrou, Hasan Mytykoli)

Optimal promotion rate in a cash campaign

Taking care of customers and serving them better by building optimal strategies meeting their financial needs are the most important challenges to maintain existing customers and to remain profitable. In the scenario when a company lends money to its customers, the process of assigning to each offer the optimum interest rate becomes a complex task, considering many other offers from competitors and considering that, in many cases, the goal of lending is not only the profit while reducing risk but also satisfying real needs of customers.

This current research presents the results of implementing our previous reported network optimization approach which uses customer level scores produced by a suite of cash models. This implementation is a real-life application which helps building optimal promotion campaigns by offering the optimal interest rates to each customer. In summary, from the mathematical perspective, this application provides an integer optimal solution which optimizes a goal function subject to some budget and business constraints. The improvement of using this optimization process vs. the classical approach was evident in all campaigns investigated in this research.

Wei Xu, Tongji University (with Zhiwu Hong)

Parallelization of algorithms for derive-free optimization

In this talk we present parallelization and extensions of algorithms for derivative-free optimization. In each iteration, we run several instances of an optimization algorithm with different trust region parameters, and each instance generates a point for evaluation. All points are kept in a common priority queue and the most promising points are evaluated in parallel when computers are available. We use models from several instances to prioritize the points and in case new information becomes available, we allow dynamic prioritization of points to ensure that computational resources are used efficiently. A database is used to avoid reevaluation of points. Together, these extensions make it easier to find several local optima and rank them against each other, which is very useful when performing robust optimization. Empirical testing reveals considerable decrease in the number of function evaluations as well as in the time required to solve problems.

Gergely Csapo, Maastricht University (with Rudolf Müller)

The private provision of a public good: Digging for gold

We study the problem of finding the profit-maximizing mechanism for the provision of a single, non-excludable public good. This problem has been well studied for the case when the valuations of the agents are independently distributed, but the literature is silent about the general case. We focus on general joint distributions, characterizing the deterministic mechanism implementable in dominant-strategies that yields the maximum revenue for the monopolistic provider of the public good. We investigate the problem from an automated mechanism design perspective and show that finding the optimal mechanism can be solved in polynomial time in the number of types by reducing it to a maximal closure problem with respect to sum of conditional virtual values. We also conclude that in case of independent type distributions the optimal mechanism is the same as under Bayesian implementation and interim individual rationality.

Angélica Vidal, University of Vienna (with George Christodoulou, Amos Fiat, Anna Karlin, Elias Koutsoupias)

Scheduling, auctions and truthfulness

I will give an introduction and present some of my recent results in one of the most fundamental problems in algorithmic game theory and mechanism design: the problem of scheduling unrelated machines to minimize the makespan. I will emphasize the connection between this problem and the problem of designing truthful auctions for selling multiple items.

Finally I will present a geometrical characterization of truthfulness and also some very recent work on strongly truthful mechanisms. We assume that the machines behave like selfish players: they have to get paid in order to process the tasks, and would lie about their processing times if they could increase their utility in this way. The problem was proposed thirteen years ago in the seminal paper of Nisan and Ronen, where it was shown that the approximation ratio of mechanisms is between 2 and 1. I improve this to 1 + \sqrt{2} for three or more machines and to 1 + \varphi for many machines. I also characterize the class of truthful mechanisms for the case of two players [regardless of approximation ratio] and show how the result can be used as a black box to obtain characterizations for other domains.
The hitting set problem is given a set \(U \) and a family \(S \) of subsets of \(U \), find a minimum-cardinality set that intersects each set in \(S \). In the implicit hitting set problem, \(S \) is given via an oracle which verifies that a given set is a hitting set or returns a not-intersected set from \(S \). Many NP-hard problems can be solved as implicit hitting set problems. We solve the implicit hitting set problem by combining efficient heuristics and exact methods. We present computational results for the minimum feedback-vertex-set and the multiple-genome alignment problems.

Maximum clique problem on very large scale sparse networks

We define a new clique relaxation called a \(k \)-community, and explore scale reduction techniques based on it to obtain the maximum clique on very large-scale real life networks. Analytically, the technique has been shown to be very effective on power-law random graphs. Experimental results on real life graph instances [collaboration networks, P2P networks, social networks, etc.] show our procedure to be much more effective than a regular \(k \)-core peeling approach.

Global optimization

Global optimization methods and applications

Panos Pandolfo, University of Florida, USA & HSE Moscow, Russia; with Pando Georgiev

Global optimality conditions in non-convex optimization

In this talk we are going to present recent results regarding global optimality conditions for general non-convex optimization problems. First motivated by AdWords auctions, we present a theorem which characterizes the AdWords auction as polymatroidal. As a result, this auction not only simplifies and generalizes all previous results, it applies to several new applications including AdWords Auctions, bandwidth markets, and video on demand. In particular, our characterization of the AdWords auction as polymatroidal constraints might be of independent interest. This allows us to design the first mechanism for Ad Auctions taking into account simultaneously budgets, multiple keywords and multiple slots.

Organizer/Chair Vasilis Syrgkanis, Cornell University (with Renato Paes Leme, Eva Tardos)

Welfare and revenue guarantees in sponsored search auctions

In sponsored search auctions, advertisers compete for a number of available advertisement slots of different quality. The auctioneer decides the allocation of advertisers to slots using bids provided by them. Since the advertisers can act strategically and submit their bids in order to maximize their individual objectives, such an auction naturally defines a strategic game among the advertisers. We consider generalized second price and generalized first price auctions in settings where the advertisers have incomplete information and present bounds on the social welfare over Bayes-Nash equilibria compared to the optimal social welfare. We also consider auctions that use a single reserve price and provide similar bounds on the revenue. Even though the above auctions are inferior to variations of the well-known VCG auction mechanism, both in terms of welfare and revenue, our results provide explanations for their adoption by the sponsored search industry.

Organizer/Chair Ioannis Caragiannis, University of Patras & CTI (with Christos Kaklamanis, Panagiotis Kanellopoulos, Maria Kyropoulou, Brendan Lucier, Renato Paes Leme, and Eva Tardos)

Efficiency in sequential auctions

In many settings agents participate in multiple different auctions that are not necessarily implemented simultaneously. Future opportunities affect strategic considerations of the players in each auction, introducing externalities. Motivated by this consideration, we study a setting of a market of bidders and sellers, where each seller holds one item, bidders have combinatorial valuations and sellers hold item auctions sequentially. We examine both the complete and incomplete information version of the setting.

Organizer/Chair Ioannis Caragiannis, Cornell University (with Renato Paes Leme, Eva Tardos)

Polyhedrality clinching auctions and the AdWords polytope

A central issue in applying auction theory in practice is the problem of dealing with budget-constrained agents. A desirable goal in practice is to design incentive compatible, individually rational, and Pareto optimal auctions while respecting the budget constraints. Achieving this goal is particularly challenging in the presence of nontrivial combinatorial constraints over the set of feasible allocations. Toward this goal and motivated by AdWords auctions, we present an auction for polymatroidal environments satisfying the above properties. Our auction employs a novel clinching technique with a clean geometric description and only needs an oracle access to the submodular function defining the polymatroid. As a result, this auction not only simplifies and generalizes all previous results, it applies to several new applications including AdWords Auctions, bandwidth markets, and video on demand. In particular, our characterization of the AdWords auction as polymatroidal constraints might be of independent interest. This allows us to design the first mechanism for Ad Auctions taking into account simultaneously budgets, multiple keywords and multiple slots.

Organizer/Chair Renato Paes Leme, Cornell University (with Gagan Goel, Vahab Mirrokni)

Global optimization

Global optimization methods and applications

Panos Pandolfo, University of Florida, USA & HSE Moscow, Russia; with Pando Georgiev

Global optimality conditions in non-convex optimization

In this talk we are going to present recent results regarding global optimality conditions for general non-convex optimization problems. First motivated by AdWords auctions, we present a theorem which characterizes the AdWords auction as polymatroidal. As a result, this auction not only simplifies and generalizes all previous results, it applies to several new applications including AdWords Auctions, bandwidth markets, and video on demand. In particular, our characterization of the AdWords auction as polymatroidal constraints might be of independent interest. This allows us to design the first mechanism for Ad Auctions taking into account simultaneously budgets, multiple keywords and multiple slots.

Organizer/Chair Vasilis Syrgkanis, Cornell University (with Renato Paes Leme, Eva Tardos)
These aspects are investigated using a new adjoint implementation in which potentially complicate both the adjoint computation and gradient-complexity of frequent flash calculations and high compressibilities in a job, the corresponding component needs to be mounted into a physics, in particular two-phase (oil-water) or three-phase (oil-gas-carried out in specific resources of the cell. Further, in the process-based reservoir optimization reported so far concern relatively simple tardiness. The scheduling of the cell must be fast and produce reliable schedules, since the conditions are unceasingly changing of compositional flow in porous media minimization of a weighted sum of the completion times and the total are subject to precedence constraints with time lags. The objective is the minimization of a weighted sum of the completion times and the total tardiness. The scheduling of the cell must be fast and produce reliable and robust schedules, since the conditions are unceasingly changing with new jobs continuously arriving at the queue. During the production a number of precision of the main production activities need to be regularly carried out in specific resources of the cell. Further, in the processing of a job, the corresponding component needs to be mounted into a certain fixture; only a limited number of fixtures are available and each fixture is compatible only with a subset of the jobs. We present a time-indexed mathematical model of this flexible job shop problem including the scheduling of the preventive maintenance activities and subject to the fixture availability. Computational results for real instances collected during the spring of 2012 are also presented.

Adam Wojciechowski, Chalmers University of Technology (with Emil Gustafsson, Magnus Önnheim, Michael Patriksson, Ann-Britt Strömberg)

Opportunistic replacement scheduling with interval costs

The topic of this talk is replacement scheduling in a multicomponent system, where maintenance is associated with a set up or fixed cost. In such a system, replacing several components simultaneously is less expensive than replacing the components at different times. Hence, the replacement of one component is also an opportunity for the replacement of another. We have developed a 0-1 integer linear program- ming (ILP) model for the problem of scheduling replacement activities, when the cost of the schedule depends on the length between replacement activities. In this model, the complexity restrictions on most variables can be relaxed without losing integrality, and the inequality constraints are facets of the convex hull of feasible solutions. We present numerical tests performed on the replacement scheduling of a turbine in an aircraft engine. We show that the ILP model can be utilized for the two-objective problem of minimizing the replacement cost and minimizing the probability of unexpected system halts. Further, by assigning a cost to unexpected system halts, we also use the ILP model for solving the problem of minimizing the expected cost.

Mahmut Gokce, Izmir University of Economics (with Burak Gokgur, Selin Ozyegitoz)

Scheduling for disassembly systems

Disassembly systems obtain valuable parts from end-of-life products to remanufacture, reuse or recycle them. This study deals with the disassembly scheduling and presents a mixed integer programming (MIP) model. Disassembly scheduling is the problem of determining quality and sequence of disassembled, held in inventory, sold, and incinerated on which resource over a planning horizon while satisfying at least the service level. The model presented includes a number of novelties including consideration of capacitated resources, environmental concepts and demand for items at all levels. Results from an experimental design are presented. After the statistical analysis of experimental design, research may be directed to develop exact algorithms or heuristics. Insights into the optimal solutions and alternative solution methods to large sized problems with which mathematical programming model has difficulty solving in acceptable times are discussed.

Carla Michini, Sapienza Università di Roma (with Gerard Cornuéjols, Giacomo Nannicini)

How tight is the corner relaxation? Insights gained from the stable set problem

The corner relaxation of a mixed-integer linear program is a central concept in cutting plane theory. In a recent paper Fischetti and Monaci provide an empirical assessment of the strength of the corner and other related relaxations on benchmark problems. In this work we validate with theoretical arguments the empirical results obtained by Fischetti and Monaci: we give a precise characterization of the bounds given by the corner relaxation and three of its extensions, in the special case of some important multi-row relaxations. How tight is the corner relaxation? Insights gained from the stable set problem shows that degeneracy plays a major role, as the difference in the description of the corner polyhedron is available. Our theoretical analysis of the bounds given by corner relaxations from two different optimal bases can be significantly large. Therefore, exploiting multiple degenerate bases for cut generation could give better bounds than working with just a single basis.

Laurent Poirrier, University of Liège (with Quentin Louveaux, Domenico Salvagnin)
work set with constant capacities in which the capacity of the node is an integer multiple of some constant value. This set is a generalization of the single arc design set studied by Magnanti et al. (1993). It arises in lot-sizing and network design problems. We derive several families of facet-defining inequalities. In particular we generalize the residual capacity inequalities. Then we lift some of these valid inequalities through simultaneous lifting.

Example:

The structure of LLL-reduced kernel lattice bases: background and outline of the main result

The so-called lattice reformulation of an integer program has been used to solve very hard instances. In this reformulation one expresses the vector of variables in terms of an integer linear combination of kernel lattice basis vectors. Most of the instances tackled so far have been extremely hard even in lower dimensions, so almost all of the computational experience so far is obtained for such instances. When solving larger instances one can observe a certain structure of the reduced kernel lattice bases. More specifically, a lattice basis will contain an idenity matrix as a submatrix. This means that some of the variables will have a “rich” translation in terms of the lattice basis vectors, and that the other variables will be merely variable substitutions. In this presentation we address the theoretical reason for the structure to form. We give the necessary background and outline the main ingredients of the theoretical analysis.

Frederik von Heumann, TU Delft (with Karen Aardal, Andrea Lodi, Laurence Wolsey)

The structure of LLL-reduced kernel lattice bases: Theoretical details

This presentation is continuation of the previous one. Here we go in more detail on how the various parts of the analysis are derived, and present several of the proofs. The key ingredient in our analysis is the result that, after a certain number of iterations, the LLL-algorithm, with high probability, only performs size reductions and no swaps. In our derivation we use an inequality derived by Azuma, as well as some details of transcript variants and their abundance from millions of short sequences (next generation) and their abundance from millions of short sequences.

Karen Aardal, Delft University of Technology (with Frederik von Heumann, Andrea Lodi, Laurence Wolsey)

On cutting planes and lattice reformulations

Lattice reformulations have been traditionally used to deal with Integer Programming problems that are difficult to solve by branch-and-bound on variables. We discuss full and/or partial lattice reformulations performed with the aim of generating cutting planes, which are then mapped back in the original space of variables.

Andrea Lodi, University of Bologna (with Karen Aardal, Frederik von Heumann, Laurence Wolsey)

Transcriptome reconstruction using delayed column generation

Through alternative splicing, fragments of an RNA transcript of a gene, the exons, are recombined in different ways to generate different mRNA molecules, which in turn code for proteins. Determining the set of transcript variants and their abundance from millions of short sequence reads from the RNA complement of a cell is referred to as the transcriptome reconstruction problem. The main difficulty is that different mRNA variants transcribed from the same gene may share a considerable fraction as a common subsequence. Deciding from which variant a short read originates can thus be intricate and has to be done independently, based on the global information provided by high-throughput transcriptome sequencing data.

We present an algorithm that implicitly explores the entire space of all possible transcriptomes by using a delayed column generation approach. We show that the pruning problem is a variant of the longest path problem in directed acyclic graphs, which we can solve efficiently.

Tobias Marschall, Centrum Wiskunde & Informatica (with Markus Bauer, Stefan Canzar, Ivan Costa, Gunnar W. Klau, Alexander Schliep, Alexander Schönhuth)

CLEVER: Clique-enumerating variant finder

Next-generation sequencing techniques have for the first time facilitated a large scale analysis of human genetic variation. However, despite the advances in sequencing speeds, achieved at ever lower costs, the computational discovery of structural variants is not yet standard. It is likely that a considerable amount of variants have remained undiscovered in many sequenced individuals. Here we present a novel interval-segment size based approach, which organizes all, including also concordant reads into a read alignment graph where max-cliques represent maximal contradiction-free groups of alignments. A specifically engineered algorithm then enumerates all max-cliques and statistically evaluates them for their potential to reflect insertions or deletions (in-del). We achieve highly favorable performance rates in particular on indels of sizes 30-500 bp and predict a considerable amount of correct, but so far undiscovered variants.

Suzanne Page, FAU Erlangen-Nuremberg, Discrete Optimization (with Alexander Martin)

Computational complexity of the multiple sequence alignment problem

During the last decades, continuing advances in molecular bioinformatics (for example the Human Genome Project) have led to increased information about biological sequences like protein or DNA sequences. Multiple alignments of these sequences play an important role in detecting conserved subregions, inferring evolutionary history, or predicting protein structure and function. We study the computational complexity of two popular problems in multiple sequence alignment: multiple alignment with SP-score and multiple tree alignment - two problems that have indeed received much attention in biological sequence comparison. From a mathematical point of view, both problems are difficult to solve and often remain hard, even if we restrict the problems to instances with scoring matrices that are a metric, a binary alphabet, or a gap-0-alignment (i.e. sequences can be shifted relative to each other, but no internal gaps are allowed). Here, we give an overview of some recent results about NP-completeness and Max-SNP-hardness, analyze the computational complexity of some restricted versions of this problem, and present some new complexity and approximation results.

Karen Aardal, Delft University of Technology (with Markus Bauer, Stefan Canzar, Ivan Costa, Andrea Lodi, University of Bologna (with Karen Aardal, Frederik von Heumann, Laurence Wolsey))
derive the optimal pricing mechanism in this situation under reasonable conditions.

Auction theory and recent work on pricing with strategic consumers

Azarakhsh Malekian, Massachusetts Institute of Technology (with Saeed Alaei, Hu Fu, Minh Hanh Nguyen, Jason Hartline)

Bayesian optimal auctions via multi- to single-agent reduction

We study an abstract optimal auction problem for a single good or service. This problem includes environments where agents have budgets, risk preferences, or multi-dimensional preferences over several possible configurations of the good (furthermore, it allows an agent’s budget and risk preference to be known only privately to the agent). There are the main challenge areas for auction theory. A single-agent problem is to optimize a given objective subject to a constraint on the maximum probability with which each type is allocated, a.k.a., an allocation rule. Our approach is a reduction from multi-agent mechanism design problem to collection of single-agent problems. We focus on maximizing revenue, but our results can be applied to other objectives (e.g., welfare). An optimal multi-agent mechanism can be computed by a linear/convex program on interval allocation rules by simultaneously optimizing several single-agent mechanisms subject to joint feasibility of the allocation rules.

Organizer/Chair Noam Goldberg, Mathematics and Computer Science Division, Argonne National Laboratory - Invited Session

Toni Lastusilta, GAMS Software GmbH (with Michael R. Bussieck, Stefan Emel)

Chromatographic separation using GAMS extrinsic functions

In chemical and pharmaceutical industries the problem of separating products of a multicomponent mixture can arise. The objective is to efficiently separate the mixture within reasonable costs during a cyclic operation. To optimize the process a boundary value problem that includes differential equations needs to be solved. The presented Mixed-Integer Nonlinear Programming (MINLP) model solves an instance of the chromatographic separation process in GAMS by using extrinsic functions. The function library facility that was recently introduced in GAMS 23.7 provides a convenient way of modeling it. The problem has been earlier studied in “Comparisons of solving a chromatographic separation problem using MINLP methods” by Stefan Emel and Tapio Westerlund.

Noam Goldberg, Mathematics and Computer Science Division, Argonne National Laboratory (with Sven Leyffer, Ilya Safro)

Cover inequalities for nearly monotone quadratic MINLPs

Cover Inequalities for nearly monotone quadratic MINLPs We consider MINLPs arising from novel network optimization formulations with a quadratic objective and constraints that satisfy relaxed monotonicity conditions. We derive valid cover inequalities for these formulations and their linearized counterparts. We study heuristics for generating effective cuts in practice and also consider approximate separation in some cases.

Susan Margulies, Pennsylvania State University (with Shmuel Onn)

New algorithms for new pricing models

Organizer/Chair Hamid Nazerzadeh, Marshall School of Business - Invited Session

Luís Brito-Arias, Universidade Tecnico Federico Santa Maria (with José Correa)

Optimal continuous pricing with strategic consumers

An interesting problem in mechanism design is that of finding mechanisms to sell a single item when the number of bidders is random. In this paper we take a step further to the static situation and derive an optimal pricing scheme when selling a single item to strategic consumers that arrive over time according to a random process. Combining auction theory and recent work on pricing with strategic consumers, we
matrix from the combination of Hilbert’s Nullstellensatz and the parti-
tion problem, and demonstrate that the determinant of that matrix is a
polynomial that factors into an iteration of all possible partitions of \(W \).

Mixed-integer nonlinear programming

Mixed-integer nonlinear programming

Topics in mixed-integer nonlinear programming II

Chair Michael Engelhardt, Interdisciplinary Center for Scientific Computing (IWR), Uni Heidelberg

Melania Calinescu, VU University Amsterdam (with Sandjai Bhulai, Barry Schouten)

Optimal resource allocation in survey designs

Resource allocation is a relatively new research area in survey de-
signs and has not been fully addressed in the literature. Survey organi-
zations across the world are considering the development of new math-
eatical models in order to improve the quality of survey results while
taking into account optimal resource planning.

The resource allocation problem for survey designs has specific fea-
tures that lead to a formulation as a nonconvex integer nonlinear prob-
lem, which prohibits the application of many algorithms that are found in
the literature. Current global optimization tools that address general nonconvex integer problems suffer from long computational times and
limitations in the problem size. Moreover, implementing solutions from
convex approximations of the problem may result in major errors in sur-
vey results.

We present an algorithm that solves the problem to optimality using
Markov decision theory. Additionally to optimal resource planning, the
algorithm can handle various practical constraints that aim at improv-
ning the quality of survey results. The algorithm is implemented in C++,
it achieves short computational times and it can handle large-scaled
problems.

Michael Engelhardt, Interdisciplinary Center for Scientific Computing (IWR), Uni Heidelberg (with Joachim Funke, Sebastian Sager)

A new test-scenario for analysis and training of human decision making with a tailored decomposition approach

In the real-domain complex problem solving in psychology, where the aim is to analyze complex human decision making and prob-
lem solving, computer-based test-scenarios play a major role. The ap-
proach is to evaluate the performance of participants within microworlds and correlate it to certain attributes, e.g., the participant's capacity to regulate emotions. In the past, however, these test-scenarios have usu-
ally been defined on a trial-and-error basis to realize specific re-
quirements for the testee. The more complex models become, the more likely it is that unforeseen and unwanted characteristics emerge in studies.

To overcome this important problem, we propose to use mathematical optimization methodology on three levels: first, in the design stage of
the problem scenario, second, as an analysis tool, and third, to provide feedback in real time for learning purposes. We present a novel test-
scenario, the IWR Tailorshop, with functional relations and model parameters that have been formulated based on optimization results,
as well as a tailored decomposition approach to address the resulting
nonconvex nonlinear mixed-integer programs.

Michael Engelhardt, Interdisciplinary Center for Scientific Computing (IWR), Uni Heidelberg (with Joachim Funke, Sebastian Sager)

Nonlinear multiobjective optimization

Nonlinear multiobjective optimization

Chair Shashi Mishra, Banaras Hindu University

Shashi Mishra, Banaras Hindu University (with Vivek Laha, Vinay Singh)

On constraint qualifications in multiobjective optimization problems

In this paper, we consider the class of multiobjective optimization problems (MOP). We propose a framework for updating any symmetric positive def-
finite preconditioner for bound-constrained quadratic programming and bound-constrained linear least-squares.

We propose a framework for updating any symmetric positive def-
finite preconditioner for bound-constrained quadratic programming and bound-constrained linear least-squares.

We propose a framework for updating any symmetric positive def-
finite preconditioner for bound-constrained quadratic programming and bound-constrained linear least-squares.

We propose a framework for updating any symmetric positive def-
finite preconditioner for bound-constrained quadratic programming and bound-constrained linear least-squares.
linear least-squares problems and bound-constrained convex quadratic programming.

Serge Gratton, IRIT-CERFACS (with Selime Guro, Philippe Toint, Jean Tolimberge)

Preconditioning inverse problems using duality

The problem considered in this talk is the data assimilation problem arising in weather forecasting and oceanography, which consists in estimating the initial condition of a dynamical system whose future behaviour is to be predicted. More specifically, new optimization techniques will be discussed for the iterative solution of the particular non-linear least-squares formulation of this inverse problem known under the name of 4DVAR, for four-dimensional data assimilation. These new methods are designed to decrease the computational cost in applications where the number of variables involved is expected to exceed 10^6. They involve the exploitation of the problem's underlying geometrical structure in reformulating standard trust-region techniques into significantly cheaper variants. Adapted preconditioning issues for the considered systems of equations will be discussed, which also depend on the problem's geometrical structure and which exploit limited-memory techniques in a novel way.

Makoto Yamashita, Tokyo Institute of Technology (with Zhi-Zin Lin, I-Lin Wang)

An approach based on shortest path and connectivity consistency for sensor network localization problems

Sensor network localization (SNL) problems are considered to be an important topic due to the variety of applications including a molecular conformation. In SNL problems, we have anchors (known locations) and sensors (unknown locations). The distance between a pair of them is available if the pair is closer than the radio range. From this partial distance information, we want to infer the sensor locations. This optimization approach often generalizes the relaxation of conditional piecewise monotonic regression algorithms, our algorithm can be used with any structure in reformulating standard trust-region techniques into significantly cheaper variants. Adapted preconditioning issues for the considered systems of equations will be discussed, which also depend on the problem's geometrical structure and which exploit limited-memory techniques in a novel way.

Michael Patriksson, Chalmers University of Technology (with Christoffer Strömberg)

Nonlinear continuous resource allocation - A numerical study

We study the performance of the most important algorithms for solving the strictly convex and separable resource allocation problem. This is a key problem arising in many applications, particularly as a subproblem, whence the search for extremely efficient solution procedures for the problem continues. We compare the performance of algorithms belonging to the relaxation, breakpoint and quasi-Newton classes of methods, for sizes up to about 100 Million variables, establishing that a new implementation of a relaxation algorithm utilizing a blended evaluation of the relaxed problem performs the best in general, having linear practical convergence even for very many variables.

Marc Steinbach, Leibniz Universität Hannover

Estimating material parameters by X-ray diffraction

X-ray diffraction is a standard method for quantitative material analysis in areas like crystallography, chemistry, or biochemistry. X-Ray exposure yields intensity distributions that depend on the molecular structure and that can be measured with high precision over a certain range of diffraction angles. Material parameters are then obtained by suitable parameter estimation methods. The talk presents the resulting class of optimization problems. We present a non-linear least squares inversion problem that arises in many applications, particularly as a subproblem, whence the search for extremely efficient solution procedures for the problem continues. We compare the performance of algorithms belonging to the relaxation, breakpoint and quasi-Newton classes of methods, for sizes up to about 100 Million variables, establishing that a new implementation of a relaxation algorithm utilizing a blended evaluation of the relaxed problem performs the best in general, having linear practical convergence even for very many variables.
Power production planning applications depend on stochastic quantities like uncertain demand, uncertain failure rates and stochastic inflow into water reservoirs, respectively. To deal with the stochastic behavior of these quantities we consider optimization problems with joint probabilistic constraints of the type

$$\min_{x} \{ c^T x | P(\{x \in X | A(x) \xi \leq b(x) \}) \geq p, x \in X \}$$

where $p \in (0,1)$ is the required probability level.

The treatment of this optimization problem requires the computation of function values and gradients of $\phi(x) := P(\{x \in X | A(x) \xi \leq b(x) \})$. We will present derivative formulae for special cases which extend a classical result (see Prekopa 1995). As in the classical result the derivative formulae reduces the computation of gradients to the computation of function values again. Thus the same existing codes may be used to compute $\phi(x)$ and $\nabla \phi(x)$.

Numerical results for selected power production applications will be reported.

Raimund Kovacevic, University of Vienna (with Alois Pichler)

A process distance approach for scenario tree generation with applications to energy models

We develop algorithms to construct tree processes which are close to bigger trees or empirical or simulated scenarios and can, e.g., be used for multistage stochastic programming. Our approach is based on a distance concept for stochastic processes, developed in Plug and Pichler [2011]: The process-distance used is based on the process’ law, accounts for increasing information over time and generalizes the Wasserstein distance, which itself is a distance for probability measures. In this framework we implement an algorithm for improving the distance between processes (between) by changing the probability measure and the values related to the smaller tree. In addition we use the distance for stepwise tree reduction. Algorithms are applied to energy prices, leading to tree based stochastic programs in the area of electricity industry involving, e.g., electricity, oil and gas spot prices.

M.A. 004

Optimization applications in industry IV

Organizer/Chair Dieter Hemberg, Wissenschaft Institute for Applied Analysis and Stochastics - Invited Session

Hans Josef Pesch, University of Bayreuth (with Kurt Chudej, Armin Rund, Kati Stemberg)

Direct versus indirect solution methods in real-life applications: Load changes of fuel cells

When analyzing mathematical models for complex dynamical systems, their analysis and numerical simulation is often only a first step. Thereafter, one often wishes to complete these investigations by an optimization step to exploit inherent degrees of freedom. This generally leads to optimization problems of extremely high complexity if the underlying system is described by time dependent partial differential equations (PDEs) or, more generally, by a system of partial differential algebraic equations (PDAEs).

The driving example of this talk is concerned with the optimal control of a fuel cell system. The underlying mathematical model constitutes a high dimensional PDAE system describing the gas transport and the electro-chemical reactions within the fuel cells.

In this talk we will particularly discuss the pros and cons of direct versus indirect methods, resp. first discretize then optimize versus first optimize then discretize when applying these approaches on real-life problems of extremely high complexity.

Chantal Landry, Wissenschaft Institute (with Matthias Gerlach, René Henrion, Dietmar Hemoberg)

Modeling of the optimal trajectory of industrial robots in the presence of obstacles

In automotive industry robots work simultaneously on the same workpiece. They must accomplish their task as fast as possible and without colliding with surrounding obstacles. We model the search of the fastest collision-free trajectory of each robot as a time optimal control problem. The collision avoidance is based on linear programming and expressed as state constraints. The resulting optimal control problem is solved by a sequential quadratic programming method. In order to speed up the resolution an active set strategy based on back-face culling is added. Numerical examples illustrate the efficiency of this strategy.

Jean-Antoine Désidéri, INRIA (with Adrien Zeb, Régis Duvigneau)

Multiple gradient descent algorithm (MGDA) for multi-objective optimization with application to compressible aerodynamics

We focus on the development of numerical algorithms for multi-objective optimization, with application to physical systems governed by PDE’s. Indeed, concurrent engineering makes multi-objective optimization a particularly acute question in the design of complex systems. In several mature disciplines, modern simulation codes often provide along with the evaluation of the performance, or functional criterion, the calculation of the functional gradient. Assuming the gradients of different criteria are at hand, we propose to analyze systematic constructions of a descent direction common to all criteria. Based on this, MGDA generalizes to multi-objective optimization the classical steepest-descent method. We prove that it converges to Pareto stationary points, and demonstrate the efficiency of the method in several problems: aircraft wing design, shape optimization of an automobile cooling system duct.

Francisco Munoz, Johns Hopkins University (with Benjamin Hobbs)

Using decomposition methods for wide-area transmission planning to accommodate renewables: A multi-stage stochastic approach

Increasing environmental concerns have led authorities to promote the use of generation from renewable technologies. Although the type and location of future generation investments are still uncertain, transmission planners still need to make decisions “today” in order to have enough network infrastructure available for “tomorrow”. Consequently, there is a need for tools to aid transmission planners to select robust transmission plans that will accommodate a broad range of generation configurations. We developed a two-stage stochastic program that considers transmission lumpiness, generators’ response, uncertainty and Kirchhoff Voltage Laws. We apply our methodology to a 17-bus representation of California, and a 240-bus representation of the Western Interconnection in the US. We discuss the implementation and performance of Benders decomposition as an alternative approach for large-scale networks.

Jorge Vera, Universidad Catolica De Chile (with Pamela Alvarez, Sergio Maturana)

Improving consistency of tactical and operational planning using robust optimization

This work is motivated by a problem in the forest industry, in which...
tactical planning is carried out using an optimization model and then short-term decisions are taken. It is expected that operational decisions be consistent with tactical plans, but that is not usually the case as the process is subject to various uncertainty, especially those originating in the natural variation of the forest. The “rolling horizon” approach is used in practice as an attempt to reduce inconsistencies, but we propose that using a robust optimization tactical planning model should increase the chances of consistency with the short-term. The question, however, is how much robustness do we need, as being robust is expensive, and whether structural characteristics of the problem can be used to anticipate these factors. We provide some specific estimates, like probabilities of consistency, and results on the relations as well as computational results based on an industrial case. We also show how to dynamically adjust the degree of robustness of the planning process in such a way to approach an “optimal” policy. These results should be relevant also in other problems where consistency is desirable.

Florian Bruns, Universität Osnabrück (with Marc Goerigk, Sigrid Knust, Anita Schöbel)

Robust load planning of trains in intermodal transportation

In this paper the problem of robust load planning for trains in intermodal container terminals is studied. The objective is to assign load units (container, swap bodies and trailer) to wagons of a train such that the utilization of the train is maximized, and setup and transportation costs in the terminal are minimized. However, in real-world applications many restrictions are needed for the problems.

In our paper we enhance the load planning problem by taking the most important uncertainties into account. Based on a mixed-integer linear programming formulation developed in Bruns and Knust (2010) we are able to formulate robust counterparts and show how these may be solved within a reasonable runtime. Our results indicate that it might be worth to study the robust counterparts even of large and complicated mixed integer programs.

Pierre-Louis Poirier, CEDRIC/ENSTA/CNAM (with Alain Billionnet, Marie-Christine Costa)

Robust optimal sizing of an hybrid energy stand-alone system

The development of renewable energy brought new complex combinatorial optimization problems as the one studied here: the conception of an autonomous hybrid energy system. The study is made considering a finite time horizon divided into periods where an energy demand has to be fulfilled. An auxiliary fuel generator guarantees to meet the demand in every case but its use induces important costs. The aim is to determine the optimal number of photovoltaic panels, wind turbines and batteries while minimizing the total cost of investment and use. We first propose a mixed integer linear program for the problem without uncertainty. However, the stochastic behavior of both solar and wind energy and of the demand needs to be taken into account for a robust solution: here we only consider the variation of the demands. We focus on an approach where we assume that the total variation of the demands is bounded. The problem is modeled as a two stage optimization program where the decision variables are integer while the recourse problem is a quadratic continuous program. We show that it can be linearized, which allows us to solve the global robust problem with a constraint generation algorithm.

Shiqian Ma, University of Minnesota

An alternating direction method for latent variable Gaussian graphical model selection

Latent variable Gaussian graphical model selection (LVGGMs) is an important topic in Statistics and Machine Learning. We propose an alternating direction method (ADM) that solves a convex formulation of LVGGMs proposed by Chandrasekaran, Parrilo and Willsky (2010). There are three sets of variables in this convex formulation. Our proposed ADM solves three subproblems that all have closed-form solutions in each iteration, which makes our algorithm efficient and capable of solving very large problems. The global convergence result of the proposed algorithm is established. Numerical results on both synthetic data and gene expression data are shown to demonstrate the efficiency of the proposed method.

Zhaoqiang Lu, Simon Fraser University (with Yang Zhang)

Sparse approximation via penalty decomposition methods

In this talk we consider sparse approximation problems, that is, general l_p minimization problems with the l_q-norm of a vector being a part of constraints or objective function. In particular, we first study the first-order optimality conditions for these problems. We then propose penalty decomposition (PD) methods for solving them in which a sequence of penalty subproblems are solved by a block coordinate descent (BCD) method. Under some suitable assumptions, we establish that any accumulation point of the sequence generated by the PD methods satisfies the first-order optimality conditions of the problems. Furthermore, for the problems in which the l_p part is the only nonconvex part we show that such an accumulation point is a local minimizer of the problems. In addition, we show that any accumulation point of the sequence generated by the BCD method is a saddle point of the penalty subproblem. Moreover, for the problems in which the l_p part is the only nonconvex part, we establish that such an accumulation point is a local minimizer of the penalty subproblem. Finally, we test the performance of our PD methods by applying them to sparse logistic regression.

Donald Goldfarb, Columbia University (with Bo Huang, Shiqian Ma)

An accelerated linearized Bregman method

We propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related sparse optimization problems. Our algorithm is based on the fact that the linearized Bregman (LB) algorithm first proposed by Stanley Osher and his collaborators is equivalent to a gradient descent method applied to a certain dual formulation. We show that the LB method requires $O(1/\epsilon)$ iterations to obtain an ϵ-optimal solution and the ALB algorithm reduces this iteration complexity to $O(1/\sqrt{\epsilon})$ while requiring almost the same computational effort on each iteration. Numerical results on compressed sensing and matrix completion problems are presented that demonstrate that the ALB method can be significantly faster than the LB method.

David Papp, Northwestern University (with Sanjay Mehrotra)

Generating moment matching scenarios using optimization techniques

An optimization-based method is proposed to generate moment matching scenarios for stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order. The method is based on a semi-infinite linear programming formulation of the problem that is shown to be solvable with polynomial iteration complexity. A practical column generation method is also presented, in which the column generation subproblems are polynomial optimization problems. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff’s. Empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.

Teemu Pennanen, King’s College London

Tractability of stochastic programs

Recently, Nemirovski et al. established the tractability of a class of convex stochastic programs in the randomized setting. This talk describes classes of convex stochastic programs that are tractable in the stronger, worst case setting.

Jitimitra Desai, Nanyang Technological University (with Surendra Soni)

A mathematical programming framework for decision tree analysis

One of the most important analytical tools often used by management executives is decision tree analysis. Traditionally, the solution to decision tree problems has been accomplished using backward recursion or more specifically stochastic dynamic programming techniques, but such methods have been shown to suffer from a number of shortcomings. In our research effort, we present a mathematical programming formulation for solving decision tree problems that not only alleviates the difficulties faced by traditional approaches but also allows for the incorporation of new classes of constraints that were hitherto unsolvable in this decision-making context. We begin by presenting a mathematical representation of decision trees as a (path-based) polynomial programming problem, which can be efficiently solved using a branch-and-bound method. Recognizing the exponential increase in problem size for large-scale instances, we extend this basic characterization to a compact path-based relaxation and exploit the special structure of this formulation to design an efficient globally optimal branch-price-and-cut algorithm.
Stage integrands.

We present an interior point based multi-step solution approach for stochastic programming problems, given by a sequence of scenario trees of increasing sizes. These trees can be seen as successively more accurate discretization of an underlying continuous probability distribution. Each problem in the sequence is warmstarted from the previous one. We analyse the resulting algorithm, argue that it yields improved complexity over either the coldstart or a naive two-step scheme, and give numerical results.

Miles Lubin, Massachusetts Institute of Technology (with Mihai Anitescu, J. A. Julian Hall, Kipp Martin, Cosmin Petra, Burhaneddin Sandikçi)

Double and distributed solution methods for two-stage stochastic MILPs

Large-scale linear and mixed-integer two-stage stochastic programming problems with recourse have a finite number of scenarios (typically arising from sample average approximation formulations) that have been widely studied; however, many instances remain computationally challenging if not intractable on a modern desktop. For such instances, parallel computing holds great potential due to the decompositional nature of the problems. After reviewing the state of the art, we present our recent work on parallelizing the simplex algorithm for deterministic-equivalent form LP problems, thereby obtaining optimal bases for efficient hot starts for branch and bound or real-time control. We combine an algebraic parallelization of the dual algorithm of Carone and Schultz’s dual decomposition algorithm with a novel treatment of combining subproblems to decrease the Lagrangian duality gap. Both approaches look towards solving two-stage mixed-integer problems on a massively parallel scale, and we will compare their effectiveness on a stochastic power grid unit commitment problem as well as problems from the literature.

Werner Römisch, Humboldt-University Berlin (with Holger Heitsch, Hernan Leovey)

Are quasi-Monte Carlo methods efficient for two-stage stochastic programs?

Quasi-Monte Carlo algorithms are studied for designing discrete approximations of two-stage linear stochastic programs. Their integrands are piecewise linear, but neither smooth nor of bounded variation in the sense of Hardy and Krause. We show that under some weak geometric condition on the two-stage model all terms of their ANOVA decomposition, except the one of highest order, are smooth if the densities are smooth. Hence, Quasi-Monte Carlo algorithms may achieve the optimal rate of convergence $O(n^{-1+\epsilon})$ for $\epsilon \in (0, 1/2)$ and with a constant not depending on the dimension. The geometric condition is generically (i.e., almost everywhere) satisfied if the underlying distribution is normal. We also discuss sensitivity indices, efficient dimensions and suitable transformations to reduce the dimension of the two-stage integrands.

Bartłomiej Moroldzuk, Wayne State University (with Terry Rockafellar)

Second-Order variational analysis and stability in optimization

We present new results on the second-order generalized differentiation theory of variational analysis with new applications to tilt and full stability in parametric constrained optimization in finite-dimensional spaces. The calculus results concern second-order subdifferentials (or generalized Hessians) of extended-real-valued functions, which are dual-type constructions generated by coderivatives of first-order subdifferential mappings. We develop general second-order chain rules for amenable compositions and calculate second-order subdifferentials for some major classes of piecewise linear-quadratic functions. These results are applied to characterizing tilt and full stability of local minimizers for important classes of problems in constrained optimization that include, in particular, problems of nonlinear programming and certain classes of extended nonlinear programs described in composite terms.

Adrian Lewis, Cornell University (with J. Bolte, A. Daniilidis, D. Drusvyatskiy, and S. Wright)

Activity sets and nonsmooth geometry

The active constraints of a nonlinear program typically define a surface central to understanding both theory and algorithms. The standard optimality conditions rely on this surface; they hold generically, and the surface consists of solutions to near-problem problems. Furthermore, standard algorithms “identify” the surface: it iterates eventually remain there. A blend of variational and semi-algebraic analysis gives a more intrinsic and geometric view of these phenomena, attractive for less classical optimization models. A recent proximal algorithm for composite optimization gives an illustration.

Shu Lu, University of North Carolina at Chapel Hill

Confidence regions and confidence intervals for stochastic variational inequalities

The sample average approximation (SAA) method is a basic approach for solving stochastic variational inequalities (SVI). It is well known that under appropriate conditions the SAA solutions provide...
We present an algorithmic template that achieves nearly tight approximation guarantees for k-robust and k-max-min versions of many covering problems. The analysis is based on establishing certain net-type properties, that rely on LP dual-rounding and primal-dual arguments.

A counterexample to Beck’s three permutations conjecture

Given three permutations on the integers 1 through n, consider the set system consisting of each interval in each of the three permutations. In 1972, József Beck conjectured that the discrepancy of this set system is $O(1)$. In other words, Beck conjectured that for every three permutations, each integer from 1 through n can be colored either red or blue so that the number of red and blue integers in each interval of each permutation differs only by a constant. (The discrepancy of a set system based on two permutations is two.)

In this talk, we give a counterexample to this conjecture: for any positive integer $n = 3^k$, we construct three permutations whose corresponding set system has discrepancy $\Omega(\log n)$. Our counterexample is based on a simple recursive construction, and our proof of the discrepancy lower bound is by induction. We also present implications of this construction for the bin packing problem: There are instances of bin packing problem and corresponding basic feasible LP solutions, such that any packing that only uses patterns from the support of these solutions requires at least $OPT + 2\log(n)$ bins.

Alazhar Newman, DIMACS (with Ofer Neiman, Aleksandr Nikolov)

The bounded sequential multiple knapsack problem

The Bounded Multiple Knapsack Problem (BMKP) is a generalization of the 0-1 multiple knapsack problem, where a bounded amount of each item type is available. In this work, a special case of BMKP is considered in which the sizes of the items are divisible. This problem is known in the literature as Bounded Sequential Multiple Knapsack Problem (BSMKP). Several authors have addressed the Bounded Sequential Knapsack Problem (BSKP). Pochet and Weismantel provided a description of the bounded sequential single-knapsack polytope. Polynomial time algorithms for BSKP and BSMKP are also proposed in the literature. This work basically extends the study of Pochet and Weismantel to BSMKP. Specifically, problem transformations are proposed for BSMKP that allow a characterization of the optimal solutions and the description

Combinatorial optimization
of the BSMKP polytope. Keywords: bounded sequential multiknapsack, optimal solutions, polytope description.

Joachim Schauer, University of Graz (with Ulrich Pferschy)

Knapsack problems with disjunctive constraints

We study the classical 0-1 knapsack problem subject to binary disjunctive constraints. Conflict constraints state that certain pairs of items cannot be simultaneously contained in a feasible solution. Forcing constraints enforce at least one of the items of each given pair to be included into the knapsack. A natural way for representing these constraints is the use of conflict (resp. forcing) graphs. We will derive FPTASs for the knapsack problem with chordal forcing graphs and with forcing graphs of bounded treewidth - complementing results for the conflict graph case given in Pferschy and Schauer (2009). The result for chordal forcing graphs is derived by a transformation of the problem into a minimization knapsack problem with chordal conflict graphs. We will furthermore give a PTAS for the knapsack problem with planar conflict graphs. In contrast the corresponding forcing graph problem is inapproximable. Similar complexity results are given for subclasses of perfect graphs as conflict (resp. forcing) graphs.

Jakub Marecek, IBM Research (with Andrew Parkes)

This modification enables us to apply the Lagrangian relaxation to large instances. Computational results show that only a small fraction of all constraints are considered eventually. We also propose an improvement of the ordinary pegging test by using the structural property of CPP. The pegging test reduces the size of given instances, often significantly, and contributes to finding a very tight upper bound for several instances.

Noriyoshi Sukegawa, Tokyo institute of Technology (with Yoshitsugu Yamamoto, Liyuan Zhang)

Lagrangian relaxation and pegging test for clique partitioning problems

We develop a relaxation method to solve the clique partitioning problem (CPP), as it is done customarily by the Lagrangian relaxation, but in a new approach we have aimed at overcoming the burden imposed by the number of constraints. Since the binary integer linear programming formulation of CPP has a huge number of inequality constraints, we propose a modified Lagrangian relaxation which discards some of the multipliers and the modified subgradient method to solve the Lagrangian dual problem defined by the modified Lagrangian relaxation. This modification enables us to apply the Lagrangian relaxation to large instances. Computational results show that only a small fraction of all constraints are considered eventually. We also propose an improvement of the ordinary pegging test by using the structural property of CPP. The pegging test reduces the size of given instances, often significantly, and contributes to finding a very tight upper bound for several instances.

Noriyoshi Sukegawa, Tokyo institute of Technology (with Yoshitsugu Yamamoto, Liyuan Zhang)

Lagrangian relaxation and pegging test for clique partitioning problems

We develop a relaxation method to solve the clique partitioning problem (CPP), as it is done customarily by the Lagrangian relaxation, but in a new approach we have aimed at overcoming the burden imposed by the number of constraints. Since the binary integer linear programming formulation of CPP has a huge number of inequality constraints, we propose a modified Lagrangian relaxation which discards some of the multipliers and the modified subgradient method to solve the Lagrangian dual problem defined by the modified Lagrangian relaxation. This modification enables us to apply the Lagrangian relaxation to large instances. Computational results show that only a small fraction of all constraints are considered eventually. We also propose an improvement of the ordinary pegging test by using the structural property of CPP. The pegging test reduces the size of given instances, often significantly, and contributes to finding a very tight upper bound for several instances.

Jakub Marecek, IBM Research (with Andrew Parkes)

Semidefinite programming relaxations in timetabling and matrix-free implementations of augmented Lagrangian methods for solving them

Semidefinite programming provides the best known relaxations of graph colouring solvable in time polynomial in the dimensions of the graph. In order to derive strong bounds for timetabling and scheduling problems extending graph colouring, however, one cannot consider the graph colouring component alone.

We present two infinite programming relaxations of graph colouring with an upper bound on the number of uses of each colour and numerous extensions encountered in timetabling. In timetabling terms, we consider the number of rooms available, room sizes, room features, room assignment stability, and pre-allocated room assignments.

We present a semidefinite programming relaxation of a production alternating direction augmented Lagrangian methods (ALM). We present an ALM, which exploits the structure of the matrices involved and is essentially “matrix-free” except for a projection on the cone of positive semidefinite matrices. It can be shown the rate of convergence of ALMs within a given error bound is asymptotically the best possible, among first-order methods. The computational results suggest this may turn out to be the method of choice in practical timetabling.

Vladimir Beresnev, Sobolev Institute of Mathematics

Algorithms for discrete competitive facility location problem

We consider a mathematical model generalizing the well-known facility location problem. In this model two rival sides (Leader and Follower) sequentially open their facilities and aim to capture customers in order to make maximal profit. We state the problem as a bilevel integer programming problem. It includes the upper level [Leader’s] problem and the lower level (Follower’s) problem. We consider so-called optimal noncooperative solutions to the problem, where from all possible optimal solutions to Follower’s problem we choose the solution which yields the smallest value of the objective function of the Leader’s problem. We represent our problem as the problem of maximizing a pseudo-Boolean function. We propose a local search algorithm for constructing an approximate solution to the problem and a branch-and-bound algorithm for finding an optimal solution of the problem. An important ingredient of the algorithms is a method for calculating an upper bound for the values of the pseudo-Boolean function on subsets of solutions.

Yury Kochetov, Sobolev Institute of Mathematics (with Emilio Carrizosa, Ivan Danylov, Alexander Plyasunov)

A local search algorithm for the \((r + 1) \)-centroid problem on the plane

In the \((r + 1)\)-centroid problem two players, leader and follower, open facilities to service clients. We assume that clients are on the Euclidean plane and facilities can be opened in arbitrary points on the plane. Leader opens \(p\) facilities. Later on, follower opens \(r\) facilities. Each client patronizes the closest facility. Our goal is to find \(p\) facilities for the leader to maximize his market share. We show that the problem is \(\sum_{i=1}^{r} X_i\)-hard. In other words, this Stackelberg game is more difficult than well-known NP-complete problems, unless \(\text{P}=\text{NP}\). To find near-optimal solutions we develop a local search heuristic, based on the exact approach for the follower player. We apply discretization of the \((r + 1)\)-centroid problem where the leader can move one facility only in order to identify the best neighboring solution. Starting solution is generated by a new alternating heuristic and an exact polynomial time algorithm for the \((1 + 1)\)-centroid problem. Computational experiments for the randomly generated test instances show that this local search algorithm dominates the previous heuristics.

Marta Pascoal, INESC-Caimbra and University of Coimbra (with Gilbert Laporte)

Path based method for multicriteria metro location

We model the metro location problem considering the maximization of the population covered by the metro stations, the minimization of the construction cost and the minimization of the metro line lengths, under some constraints. Sets of efficient metro lines and corresponding metro stations are obtained by applying a path based algorithm. The metro lines are then combined following traditional metro configurations by means of solving a multicriteria linear program.

Beyzanur Cayir, Anadolu University (with Nil Aras)

A genetic algorithm for truck to door assignment in warehouses

Customer satisfaction is crucial for companies to survive. Right shipment planning is indispensable process of warehouse management
in supply chain and logistics management. This problem is similar to the problem of gate assignments in airports. We consider the over-constrained truck-to-door assignment problem with time window, operational time and customer priority constraints in warehouse where the number of vehicles exceed the number of doors available. The problem feasibility is affected by three factors: the arrival and departure time window of each type of vehicle, loading time for orders, total distance to customers. Objective of this study is to minimize total lead time and deviations from expected delivery time. Otherwise a penalty cost occurs for late or early delivery. Penalty cost depends on customer priorities. In this study, formulation of a mixed integer model for optimal solution of the vehicle scheduling problem is described and a genetic algorithm is proposed which can search for practical optimal solutions, on the basis of the theory of natural selection, without performing all searches. The computational experiment is carried out on real life instances.

Polyhedra in combinatorial optimization
Chair Shungo Koichi, Nanzan University

Shungo Koichi, Nanzan University

A note on ternary semimodular polyhedra

A ternary semimodular polyhedron associated with a submodular function on \{0, 1\} vectors was introduced by Fujishige in 1984, and it is not necessary integral even if the submodular function is integer-valued. However, it is known that the polyhedron has a nice property that corresponds to a laminarity property of the (standard) submodular polyhedra. In this paper, we give a slightly different type of polyhedron associated with a submodular function on \{0, 1\} vectors, and show that it also has the nice property as above and moreover, due to the nice property, it is quarter-integral if the submodular function is integer-valued. In addition, this paper proposes a variant of a submodular function on \{0, 1\} that preserves the quarter-integrality of the newly-defined associated polyhedron. The proof uses the result by Karzanov in 2007 concerning the integrality of the intersection of two integer bisubmodular polyhedra. Our results may be applicable to the multicmodity flow problem, which is our motivation.

Akihito Makisaki, Narusawa State University

The common face of some 0/1 polytopes with NP-complete nonadjacency relations

We consider so-called double covering polytopes (DCP). In 1995, Matsui showed that the problem of checking nonadjacency on these polytopes is NP-complete. We show that double covering polytopes are faces of the following polytopes: knapsack polytopes, set covering polytopes, cubic graph polytopes, 3-SAT polytopes, partial order polytopes, traveling salesman polytopes, and some others. Thus, these families of polytopes inherit the property of NP-completeness of nonadjacency relations from DCP. We show also that the graph of a double covering polytope has superpolynomial clique number. The same is true for the mentioned families of polytopes.

Shapoori Li, Delft University of Technology (with Karen Aardal)

The polyhedral relationship between the capacitated facility location polytope and its knapsack and single-node flow relaxations

The knapsack and single node flow polytopes, \(X_K\) and \(X_{NSF}\), respectively, are well-known relaxations of the capacitated facility location polytope \(X_{FL}\). In earlier studies specific classes of facets for \(X_K\) and \(X_{NSF}\) have been proved to be facets also for \(X_{FL}\) and the computational effectiveness of these classes have also been demonstrated for \(X_{FL}\). In this presentation we prove more general relationships between the polytopes \(X_K\), \(X_{NSF}\), and \(X_{FL}\). We also prove results in the spirit of Goemans’ worst-case comparison of valid inequalities.

Combinatorial optimization

Routing in road networks
Organizer/Chair Andrew Goldberg, Microsoft Research - Invited Session

Peter Sanders, Karlsruhe Institute of Technology (with Yelt Batz, Robert Geisberger, Moritz Kobitzsch, Dennis Laueen, Dennis Schierendecker)

Advance route planning using contraction hierarchies

Contraction hierarchies are a simple and powerful way to grasp the hierarchical structure of road networks allowing very fast routing. The talk introduces the technique and gives applications focussing on advanced techniques like taking time-dependent travel times into account or using multiple objective functions. We also discuss applications like fast distance table preprocessing for logistics or ride sharing.

Andrew Goldberg, Microsoft Research (with Itai Abraham, Daniel Delling, Amos Fiat, and Renato Werneck)

The hub labeling algorithm

The labeling approach to distance oracle design is to precompute a label for every vertex so that distances can be computed from the corresponding labels. This approach has been introduced by [Gavoille et al. ’01], who also introduced the Hub Labeling algorithm (HL). HL has been further studied by [Cohen et al. ’02].

We study HL in the context of graphs with small highway dimension (e.g., road networks). We show that under this assumption HL labels are small and the queries are sublinear. We also give an approximation algorithm for computing small HL labels that uses the fact that shortest path sets have small VC-dimension. Although polynomial-time, precomputation given by theory is too slow for continental-size road networks. However, heuristics guided by the theory are fast, and compute very small labels. This leads to the fastest currently known practical distance oracles for road networks. HL also has efficient (real-time) implementation inside of a relational database (e.g., in SQL).

Daniel Delling, Microsoft Research Silicon Valley (with Andrew Goldberg, Thomas Pajot, Ilya Razenshteyn, Renato Werneck)

Realistic route planning in road networks

I will present an extremely practical algorithm to compute shortest paths on continental road networks with arbitrary metrics, (cost functions). The approach has very low space usage per metric, supports real-time queries, and can incorporate a new metric in a few seconds. As a result, it can easily handle real-time traffic updates and personalized optimization functions. Unlike most previous methods, ours do not rely on the strong hierarchy observed on road networks with travel times as the cost function, making it much more robust to metric changes. Our algorithm uses the fact that road networks can be partitioned into loosely connected regions. To find such partitions, we developed a new algorithm based on the notion of natural cuts, which are sparse regions separating much denser areas.

This approach is currently used by Bing Maps.

Combinatorial optimization

Routing in road networks

Applications of complementarity
Chair Wen Chen, The University of Western Australia

Ingo Shi Pang, University of Illinois at Urbana-Champaign, with Dane Schiro

On differential linear-quadratic Nash games with mixed state-control constraints

This paper addresses the class of open-loop differential linear-quadratic Nash games with mixed state-control constraints. A sufficient condition is provided under which such a game is equivalent to a certain concatenated linear-quadratic optimal control problem. This equivalent formulation facilitates the application of a time-stepping algorithm whose convergence to a continuous-time Nash equilibrium trajectory of the game can be established under certain conditions. Another instance of this game is also analyzed for which a convergent distributed algorithm can be applied to compute a continuous-time equilibrium solution.

Vadim Shmyrev, Sobolev Institute of Mathematics

A polyhedral complementarity algorithm for searching an equilibrium in the linear production-exchange model

A finite algorithm for searching an equilibrium in a linear production-exchange model will be presented. The algorithm is based on the consideration of two dual polyhedral complexes associated with the model. The intersection point of two corresponding each other polyhedrons of the complexes yields equilibrium prices. Thus, we deal with polyhedral complementarity. The mentioned approach made it possible to propose also finite algorithms for some other modifications of the exchange model. These algorithms can be considered as analogues of the simplex method of linear programming.

Wen Chen, The University of Western Australia (with Song Wang)

A power penalty method for fractional Black-Scholes equations governing American option pricing

In this talk, we present a power penalty approach to the linear fractional differential complementarity problems arising from pricing American options under a geometric Levy process. The problem is first reformulated as a variational inequality, and the variational inequality is then approximated by a nonlinear fractional partial differential equation (FPDE) containing a power penalty term. We will show that the solution
to the penalty IFPDE converges to that of the variational inequality problem with an exponential order. A finite difference method is proposed for solving the penalty nonlinear IFPDE. Numerical results will be presented to illustrate the theoretical findings and to show the effectiveness and usefulness of the methods.

Conic programming

First-derivative methods in convex optimization

Organizer/Chair Stephen Vavasis, University of Waterloo - Invited Session

Yoel Drori, Tel Aviv University (with Marc Teboulle)

Performance of first-order methods for smooth convex minimization: A novel approach

We introduce a novel approach for analyzing the performance of first-order black-box optimization methods. Following the seminal work of Nemirovski and Yudin (1983) in the complexity analysis of convex optimization methods, we measure the computational cost based on the oracle model of optimization. Building on this model, our approach relies on the observation that by definition, the worst case behavior of a black-box optimization method is itself an optimization problem, which we call the Performance Estimation Problem (PEP). We analyze the properties of the resulting problem for various black-box first-order schemes. This allows us to prove a new tight analytical bound for the classical gradient method, as well as to derive numerical bounds that can be efficiency computed for a broad class of first-order schemes. Moreover, we derive an efficient procedure for finding step sizes which produces a first-order black-box method that achieves best performance.

Clovis Gonçaga, Federal University of Santa Catarina – Brazil

On the complexity of steepest descent algorithms for minimizing quadratic functions

We discuss the question of how fast a steepest descent algorithm can be for minimizing a convex quadratic function. We do not tackle the general case of convex differentiable functions, which is more difficult. Steepest descent methods differ exclusively on the choice of step length at each iteration. We examine patterns in the distribution of these step lengths for minimizing a convex quadratic function. We show how a large number of short steps are needed, and how these relate to the much smaller number of large steps. We note the order in which the step lengths are used is irrelevant, and show a worst case example with a small number of variables. We also conceive a brute force algorithm which is in a certain way optimal, and compare it with known algorithms.

Sahar Karimi, University of Waterloo (with Stephen Vavasis)

CGSO for convex problems with polyhedral constraints

We have proposed CGSO (Conjugate Gradient with Subspace Optimization) as an extension to Nemirovski-Yudin’s algorithm. CGSO is a conjugate gradient type algorithm that benefits from the optimal complexity bound Nemirovski-Yudin’s algorithm achieves for the class of unconstrained convex problems. In this talk, we discuss CGSO for convex problems with polyhedral constraints. We study the theoretical properties as well as the practical performance of CGSO for this class of problems.

Sahar Karimi, University of Waterloo (with Stephen Vavasis)

Computational sustainability

Organizer/Chair Alan Holland, University College Cork - Invited Session

Alan Holland, University College Cork (with Barry O'Sullivan)

Optimising the economic efficiency of monetary incentives for renewable energy investment

Many governments have instituted policies to support the increased generation of electricity using renewable energy devices, and there is compelling need to ensure that publicly funded subsidy schemes are operated in a manner that maximizes societal benefit. We consider the mechanism design problem associated with the rollout of an auction for monetary incentives to support the increased deployment of renewable energy devices. We assume a game-theoretic model with self-interested agents that behave strategically in order to maximize their expected utility. We seek to develop algorithms for the assignment of investment subsidies and determination of payoff that are resilient to the possibility that agents will lie in order to manipulate the outcome for their own benefit. We seek to minimize the maximum cost imposed on any single agent thus ensuring that a wide distribution of subsidies can be expected. This problem is analogous to solving a make-span minimization problem and has associated algorithmic design challenges when we require a mechanism that can support the elicitation of preferences from potentially tens of thousands of agents in public auctions.

Maryam Fazel, University of Washington (with Ting Kei Pong, Defeng Sun, Paul Tseng)

Algorithms for Hankel matrix rank minimization for system identification and realization

We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz and Moment structures, and catalog applications from diverse fields under this framework. We discuss first-order methods for solving the resulting optimization problem, including alternating direction methods, proximal point algorithm and gradient projection methods. We perform computational experiments comparing these methods on system identification and system realization problems. For the system identification problem, the gradient projection method (accelerated by Nemirovski’s extrapolation technique) outperforms other first-order methods in terms of CPU time on both real and simulated data; while for the system realization problem, the alternating direction method, as applied to a certain primal reformulation, outperforms other first-order methods.

Yoel Drori, Tel Aviv University (with Marc Teboulle)

Conic and convex programming in statistics and signal processing IV

Organizer/Chair Pingkait Shih, University of Wisconsin - Invited Session

Defeng Sun, National University of Singapore (with Weimin Miao)

Finding the nearest correlation matrix of exact low rank via convex optimization

In this talk, we aim to find the nearest correlation matrix of exact low rank from a independent noisy observations of entries under a general sampling scheme. Since the nuclear norm (trace) of a correlation matrix is a constant, the widely used nuclear norm regularization technique can no longer be applied to achieve this goal in the noisy setting. Here, we propose a new convex optimization approach by using a linear regularization term based on the observation matrix to represent the rank information. This convex optimization problem can be easily written as an H-weighted least squares semidefinite programming problem, which can be efficiently solved, even for large-scale cases. Under certain conditions, we show that our approach possesses the rank consistency. We also provide non-asymptotic bounds on the estimation error.

Sahand Negahban, MIT (with Alekh Agarwal, Martin Wainwright)

Fast global convergence of composite gradient methods for high-dimensional statistical recovery

Many statistical M-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension to grow with (and possibly exceed) the sample size n. This high-dimensional structure precludes the usual global assumptions—namely, strong convexity and smoothness conditions—that underlie much of classical optimization analysis. We define appropriately restricted versions of these conditions, and show that they are satisfied with high probability for various statistical models. Under these conditions, our theory guarantees that composite gradient descent has a globally geometric rate of convergence up to the statistical precision of the model, meaning the typical distance between the true unknown parameter θ∗ and an optimal solution ˆθ. This result is substantially sharper than previous convergence guarantees. These results extend existing ones based on constrained M-estimators.

Rene Schönfelder, University of Lübeck (with Martin Leucker)

Algorithms for Hankel matrix rank minimization for system identification and realization

We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz and Moment structures, and catalog applications from diverse fields under this framework. We discuss first-order methods for solving the resulting optimization problem, including alternating direction methods, proximal point algorithm and gradient projection methods. We perform computational experiments comparing these methods on system identification and system realization problems. For the system identification problem, the gradient projection method (accelerated by Nemirovski’s extrapolation technique) outperforms other first-order methods in terms of CPU time on both real and simulated data; while for the system realization problem, the alternating direction method, as applied to a certain primal reformulation, outperforms other first-order methods.

Maryam Fazel, University of Washington (with Ting Kei Pong, Defeng Sun, Paul Tseng)

Conic and convex programming

Conic programming

Conic programming

Conic programming
problems. Furthermore we provide a unified routing model to account for time-dependency and energy-constraints as well as stochasticity.

Marco Savarelli, University of Ferrara (with Michela Milano, Fabrizio Riguzzi)
Simulation and optimization for sustainable policy-making
Policy-making for European regions is becoming more and more challenging. Good policies should take into account environmental sustainability, economic factors and social acceptance of the policy. Optimization promises to improve currently adopted, hand-made solutions and may generate a savings for the taxpayers and lower depletion of limited resources, given the scale of regional planning. On the other hand, the effectiveness of a policy depends strongly on the response of the population, which cannot be easily foreseen. In fact, it is the emerging behavior of a complex system, for which one can, at most, exploit a simulator. From this, one wishes to extract mathematical relationships to be modeled as constraints. In order to extract significant information from simulations, they should be run a statistically significant number of times, and the results aggregated through statistical analysis or machine learning. We show how optimization has been applied in the regional energy plan of the Emilia-Romagna region, in Italy. We propose an approach for the combination of simulation and combinatorial optimization that we evaluate experimentally.

Derivative-free & simulation-based opt.

Stochastic zero-order methods
Organizers/Chairs Stefan Wild, Argonne National Laboratory; Luis Nunes Vicente, University of Coimbra - Invited Session
Joao Luiz Faco, Federal University of Rio de Janeiro (with Mauricio Resende, Ricardo Silva)
A continuous GRASP for global optimization with general linear constraints
A new variant of the global optimization method Continuous GRASP (C-GRASP) is presented. The new variant incorporates general linear constraints in addition to box constraints. C-GRASP solves continuous global optimization problems subject to box constraints by adapting the greedy randomized adaptive search procedure [GRASP] of Feo and Resende [1989] for discrete optimization. It has been applied to a wide range of continuous optimization problems. We consider the box constraints as implicit and handle the general linear inequality/inequality constraints explicitly. If we have an n x m matrix A, with m < n, then as basic variables can be eliminated from the global optimization problem. A Reduced Problem in (n – m) independent variables will be subject only to the box constraints. The C-GRASP solver is a derivative-free global optimization method yielding an optimal or near-optimal solution to the Reduced Problem. The basic variables can be computed by solving a system of linear equations. If all basic variables are inside the box, the algorithm stops. Otherwise a change-of-basis procedure is applied, and a new Reduced Problem is solved.

Sebastian Stich, ETH Zürich (with Bernd Gärtner, Christian Müller)
Convergence of local search
We study unconstrained optimization of convex functions. Many algorithms generate a sequence of approximate solutions to this optimization problem. Usually, these algorithms are analyzed by estimating the anticipated one-step progress. However, in case of randomized algorithms it is often difficult to obtain bounds on the variance of the whole process. We present a general framework to analyze local search algorithms. Suppose that an algorithm proposes in each iteration exactly one new feasible solution that sufficiently improves the last iterate, i.e. a local decrease condition is satisfied. Karmanov [1974] presented a genuine methodology to analyze such a local search algorithm for differentiable convex functions. We extend his approach to strongly convex functions where linear convergence rates can be established with high probability. This approach can be used to analyze deterministic as well as randomized optimization algorithms. We show that for instance the Random Gradient method [Nesterov 2011], as well as Random Pursuit [Stich et al. 2011] can be analyzed by this framework. We conclude with another interesting example, namely derivative-free local metric learning.

Anne Auger, INRIA Scalay-Ile-de-France (with Yoshi Kitaudo, Niklas Hansen)
Convergence of adaptive evolution strategies on monotonic C^2-composite and scale-invariant functions
Evolution Strategies [ES] are stochastic search algorithms for numerical black-box optimization where a family of probability distributions is iteratively adapted to ultimately converge to a distribution concentrated on optima of the function. They are derivative-free methods using the objective function value when the ranking of candidate solutions. Hence they are invariant when optimizing using the objective function through the ranking of candidates. We study the sharing of an existing radio access network (set of base stations antennas) between two telecommunication operators. For each base station, an operator has to decide whether it covers it, in which case it gains a profit, or not. This profit may be different if it is alone to cover the base station, or if both operators cover the base station (by

We study the sharing of an existing radio access network (set of base stations antennas) between two telecommunication operators. For each base station, an operator has to decide whether it covers it, in which case it gains a profit, or not. This profit may be different if it is alone to cover the base station, or if both operators cover the base station (by
covering a same base station, both operators decrease their costs, but they may also cover less clients). We model this situation by a game, where each agent is an operator and the strategy set of each agent is the set of base stations it covers. We study the existence of Nash equilibria, the price of anarchy and the price of stability for various settings. We also study how the agents may cooperate so that both obtain larger profits than in a Nash equilibrium. Finally, we conduct experiments to measure the gain obtained.

Cheng Wan, Université Pierre et Marie Curie - Paris 6, Institut de Mathématiques de Jussieu

Coalitions in nonatomic network congestion games

The work studies coalitions in nonatomic network congestion games. Suppose that a finite number of coalitions are formed by nonatomic individuals. Having established the existence and the uniqueness of an equilibrium both in the nonatomic game without coalitions and in the composite game with coalitions and independent individuals, we show that the presence of coalitions benefits everyone: at the equilibrium of the composite game, the individual payoff as well as the average payoff of each coalition exceeds the equilibrium payoff in the nonatomic game. The individual payoff is higher than the average payoff of any coalition. The average payoff of a smaller coalition is higher than that of a larger one. In the case of unique coalition, both the average payoff of the coalition and the individual increase with the size of the coalition. Asymptotic behaviors are studied for a sequence of composite games where some coalitions are fixed and the maximum size of the remaining coalitions tends to zero. It is shown that the sequence of equilibrium of these games converges to the equilibrium of a composite game played by those fixed coalitions and the remaining individuals.

Xavier Zeilin, LRI

The complexity of approximate Nash equilibrium in congestion games with negative delays

The paper extends the study of the complexity of computing an ε-approximate Nash equilibrium in symmetric congestion games from the case of positive delay functions to delays of arbitrary sign. Our results show that with this extension the complexity has a richer structure, and it depends on the exact nature of the signs allowed. We first prove that in symmetric games with increasing delay functions and with ε-bounded jump the ε-Nash dynamic converges in polynomial time when all delays are negative, similarly to the case of positive delays. We are able to extend this result to monotone delay functions. We then establish a hardness result for the computation of Nash equilibria of games with increasing delay functions and with ε-bounded jump when the delays can be both positive and negative: in that case computing an ε-Nash equilibrium becomes PLS-complete, even if each delay function is of constant sign or of constant absolute value.

Solving cooperative games

Chair Kazutoshi Ando, Shizuoka University

Finding solutions of large cooperative games

The paper introduces the most important solution concepts in cooperative game theory as a result of its attractive properties - it always exist, is unique, and is always in the core (if the core is non-empty). However, computing the nucleolus is very challenging because this involves lexicographical minimization of an exponentially large number of excess values. We present a method for computing the nucleolus of large games. We formulate the problem as nested LPs and solve them using a constraint generation algorithm. Although the nested LPs formulation has been documented in the literature, it has not been used for large games because of the large LPs involved. In addition, subtle issues such as how to deal with multiple optimal solutions and with large tight constraint sets have not been discussed in the literature. These issues are crucial and need to be resolved in each LP in order to formulate and solve the subsequent ones. We treat them rigorously and show that the nucleolus can be found efficiently as long as the worst coalition can be identified for a given imputation. We demonstrate our methodology with the case of the weighted voting games with up to 100 players.

Ping Zhao, City University of Hong Kong (with Chunyin Dang)

A mixed-integer programming approach to the determination of a core element for an n-person cooperative game with nontransferable utility

A fundamental issue concerning n-person cooperative game with nontransferable utility well the convergence of solutions to core exist. We study balancedness and necessary conditions for nonemptiness of the core have been given. From a complexity theoretic standpoint, the core existence problem has been proved to be NP-complete, which also indicates computation of core element intractable in general case. We transform a core computation problem into a mixed-integer programming problem such that core existence is equivalent to having an integer point in a polytope. The core of a game can be computed directly by this MIP in virtue of approximating characteristic function by a finite numbers of corners. This approach renders sufficient and necessary conditions dispensable and the information about core can be derived directly by solving the mixed-integer programming. Case in large scale can be computed in the MIP through CPLEX.

Kazutoshi Ando, Shizuoka University

Computation of the Shapley value of minimum cost spanning tree games: #P-hardness and polynomial cases

We showed that computing the Shapley value of minimum cost spanning tree games is #P-hard even if the cost functions of underlying networks are restricted to be {0, 1}-valued. The proof is by a reduction from counting the number of minimum 2-terminal vertex cuts of an undirected graph, which is #P-complete. We also investigate minimum cost spanning tree games whose Shapley values can be computed in polynomial time. We show that if the cost function of the given network is a submodular distance, which is a generalization of a tree metric, then the Shapley value of the associated minimum cost spanning tree game can be computed in O(n^4) time, where n is the number of players.

Organizer/Chair Evrim Dalkiran, Wayne State University. Invited Session

Nonconvex optimization: Theory and algorithms

Organizer/Evrim Dalkiran, Wayne State University. Invited Session

Ermin Dalkiran, Wayne State University (with Hanif Sherali)

RLT-POS: Reformulation-linearization technique-based optimization software for polynomial programming problems

We introduce a Reformulation-Linearization Technique-based (RLT-based) open-source optimization software for solving polynomial programming problems (RLT-POS). We present algorithms and mechanisms that form the backbone of RLT-POS, including grid-bound-factor constraints and semidefinite cuts, constraint filtering techniques, reduced RLT representations, and bound tightening procedures. When implemented individually, each model enhancement has been shown to significantly improve the performance of the standard RLT procedure. When implemented simultaneously, the coordination between model enhancement techniques becomes critical for an improved performance since special structures in the original formulation may be thus affected. More specifically, we discuss the coordination between (a) bound-grid-factor constraints and semidefinite cuts and (b) constraint filtering techniques and reduced RLT representations. We present computational results using instances from the literature as well as randomly generated problems to demonstrate the improvement over a standard RLT procedure, and we compare the performances of the software packages BARON, SparsePOP, and Couenne with RLT-POS.

Hong Ryoo, Korea University (with Kedong Yan)

0+1 multilinear programming & LAD patterns

In this paper, we present a new framework for generating LAD patterns based on 0+1 multilinear programming. The new framework is useful in that one can apply standard linearization techniques and obtain all optimization/MILP-based pattern generation models that have been developed in the literature. We demonstrate this and then apply the McCormick’s relaxation and logical implications to develop new pattern generation models that involve a small number of 0–1 decision variables and constraints. With experiments on benchmark machine learning datasets, we demonstrate the efficiency of the new MILP models over previously developed ones.

Spencer Schauer, Massachusetts Institute of Technology (with Paul Barton)

Convergence order of relaxations for global optimization of nonlinear dynamic systems

Deterministic methods for global optimization of nonlinear dynamic systems rely upon underestimating problems for rigorous bounds on the objective function on subsets of the search space. Convergence order of numerical methods is frequently highly indicative of their computational requirements, but has not yet been analyzed for these methods. We studied the convergence order of the underestimating problems to the original nonconvex problem for one method of nonlinear global dynamic optimization. We found that the convergence order of the underestimating problem is bounded below by the smallest of the convergence orders of the methods used to compute (i) the bounds for the state-space approximations of the (ii) vector field, (iii) initial condition, and (iv) objective function in terms of the state variables. We compared the theoretical convergence order to empirical results for several optimal-control and parameter-estimation problems and found that the bounds were valid for all problems and sharp for
some. We confirmed that empirical convergence order is highly corre-
related with the CPU time for full global dynamic optimization.

Implementations & software

Commercial mathematical programming solvers I
Organizer/Chair: Hans Mittelmann, Arizona State University - Mixed Session

Thorsten Koch, ZIB (with Gerald Gamrath, Hans Mittelmann)

Any progress one year after MIPLIB 2010?

It has been a little more than one year after the release of MIPLIB 2010. How much progress has there been in solving these instances and how does this translate into real progress in the ability to solve integer programs?

Michael Perregaard, FICO

Recent advances in the Xpress MIP solver

We will present some of the recent developments in the Xpress MIP solver, with particular emphasis on heuristics. Modellers continually push the boundaries on the size of problems that can be solved and is often satisfied with a solution that is “good enough”. This talk will focus on the developments in Xpress to address such problems.

Tobias Achterberg, IBM

Cover probing for mixed integer programs

This talk is about an extension of the probing procedure on binary variables to set covering constraints. We will explain an algorithm to do this efficiently. Computational results based on CPLEX 12.4 assess the impact of the procedure in practice.

Implementations & software

Software for large-scale optimization
Organizer/Chair: Dennis Ridzal, Sandia National Labs - Mixed Session

Kevin Long, Texas Tech University (with Paul Boggs, Bart van Bloemen Waanders)

Sundance: High-level software for PDE-constrained optimization

Sundance is a package in the Trilinos suite designed to provide high-level components for the development of high-performance PDE simulators with built-in capabilities for PDE-constrained optimization. We review the implications of PDE-constrained optimization on simulator design requirements, then survey the architecture of the Sundance problem specification components. These components allow immediate extension of a forward simulator for use in an optimization context. We show examples of the use of these components to develop full-space and reduced-space codes for linear and nonlinear PDE-constrained inverse problems.

Stefan Richter, ETH Zurich (with Jones Jones, Manfred Morari, Fabian Ullmann)

FIOrDoS: A Matlab toolbox for C-code generation for first-order methods

FIOrDoS is the first toolbox for automated C-code generation for first-order methods. It considers the class of multi-parametric convex programs with a quadratic cost and a feasible set given as the intersection of an affine set and a ‘simplex’ convex set for which a projection can be evaluated at low cost; this class comprises important embedded optimization problems, for example, model predictive control. The toolbox implements both polyhedral and non-polyhedral simple sets, e.g., the simplex and 1-norm ball and the 2-norm ball and second-order cone respectively. Thus, solver code for problems beyond quadratic programming can be generated. If required, the solution approach is based on Lagrange relaxation which uses the gradient or the fast gradient method at a lower level. Additional toolbox features include optimal preconditioning and the automatic certification of the iteration count for a restricted set of problems. The generated C-code can be compiled for an platform and can be made library-free. FIOoDSo provides also a tailored MEX-interface for calling the generated solvers inside Matlab and a Simulink library for rapid prototyping.

Eric Phipps, Sandia National Laboratories (with Roger Pawlowski, Andy Salinger)

Support embedded algorithms through template-based generic programming

We describe a framework for incorporating embedded analysis algorithms, such as derivative-based optimization and uncertainty quantification, in large-scale simulation codes using template-based generic programming. The framework is based on standard C++ language constructs such as templating, operator overloading, expression templates, and template metaprogramming, and enables the incorporation of advanced algorithms with a minimum of programmer effort. In this talk we describe the overall approach, several software tools implementing the approach in the Trilinos solver framework, and examples demonstrating the usefulness of the approach applied to optimization and uncertainty quantification of large-scale PDE-based simulations.

Integer & mixed-integer programming

Scheduling III
Chair: Rüdiger Stephan, TU Berlin / Zuse Institute Berlin

Nelson Hein, Universidade Regional de Blumenau (URI) (with Adriana Kroenke, Volmir Wilhelm)

Mathematical model of hierarchical production planning

The use of hierarchical model is mostly related to some of the advantages it may provides this type of planning, like a lower requirement for higher level of detailed information, a more simplified formulation of the global model and the gradual introduction of the random effects. Furthermore, beside the advantage of reducing the computational resources, this approach allows a better establishment of parallelism between his formulation and the hierarchy of decisions in the organization. Hierarchical models have been widely used to represent the processes of planning operations in companies. So far, the practical implementation of these models has been made under a, somewhat, formal approach. In this case, a hierarchical model is presented, which takes into consideration a great deal of the complexity that is commonly brought up in production environments. A methodology based on goal programming (applied to different disaggregation procedures to make room for the hierarchical planning) is utilized to solve this matter. This study aims at presenting a proposed methodology, the results obtained when applying it in a practical case, and the conclusions that derive from it.

Diego Recalde, Escuela Politécnica Nacional (with Ramiro Torres, Polo Vaca)

Scheduling the Ecuadorian professional football league by integer programming

A sports schedule fixes the dates and venues of games between teams in a sports league. Constructing a sports schedule is a highly restrictive problem. The schedule must meet constraints due to regulations of a particular sports league Federation and it must guarantee the participation of all teams on equal terms. Moreover, economic benefits of teams, and other agents involved in this activity are expected. Until 2011, the Ecuadorian Football Federation (FEF) has developed schedules for their professional football championship manually. In early 2011, the authors presented to the FEF authorities several evidences that the use of mathematical programming to elaborate feasible sports schedules could easily exceed the benefits obtained by the empirical method. Under the last premises, this work presents an Integer Programming formulation for scheduling the professional football league in Ecuador, which is solved to optimality, and also a three phase decomposition approach for its solution. The schedules obtained fulfilled the expectations of the FEF and one of them was adopted as the official schedule for the 2012 edition of the Ecuadorian Professional Football Championship.

Rüdiger Stephan, TU Berlin / Zuse Institute Berlin

Smaller compact formulation for lot-sizing with constant batches

We consider a variant of the classical lot-sizing problem in which the capacity in each period is an integer multiple of some basic batch size. Pochet and Wolsey (MathOR 18, 1993) presented an \(O(n^5 \min\{n, C\}) \) algorithm to solve this problem and a linear program with \(O(n^2) \) variables and inequalities, where \(n \) is the number of periods and \(C \) the batch size. We provide a linear program of size \(O(n^3 \min\{n, C\}) \), that is, in case that \(C < n \), our formulation is smaller.

Branch-and-price I: Generic solvers
Organizer/Chair: Marco Lübbecke, RWTH Aachen University - Mixed Session

Marco Lübbecke, RWTH Aachen University (with Martin Bergner, Gerald Gamrath, Christian Puchert)

A generic branch-price-and-cut solver

We implemented GCG, a branch-price-and-cut solver based on the branch-price-and-cut framework SCIP. Given a MIP, the solver performs a Dantzig-Wolfe reformulation (based on user input, or in some cases the solver suggests a reformulation), does column generation and full branch-price-and-cut. GCG inherits advanced MIP solving features from SCIP, like presolving, propagation, (combinatorial) cutting planes, pseudo-costs etc. A number of additional plugins are implemented which are specific to exploiting the availability of having an original compact and an extended column generation formulation, like primal heuristics or branching rules. We report on computational exper-
DIP is a software framework for simplifying the implementation of a range of decomposition-based algorithms for solving mixed integer linear optimization problems. It is based on an underlying theoretical framework that unifies a number of decomposition methods, such as Dantzig-Wolfe decomposition, Lagrangian relaxation, and cutting-plane methods. Recent efforts have focused on the development of a generic decomposition-based solver, capable of automatically detecting block structure and utilizing an appropriate decomposition method to solve the problem. DIPy is a modeling language front end to DIP, which allows block structure to be explicitly identified in cases where such block structure is known to the modeler. This is done in a very natural way, making it easy for unsophisticated users to experiment with powerful methods such as column generation. In this talk, we discuss the latest developments and present computational results.

Matthew Galati, SAS Institute
The new decomposition solver in SAS/OR
This talk demonstrates the new DECOMP feature in the SAS/OR suite of optimization solvers for solving decomposition-based techniques for solving linear and mixed-integer linear programs. Using the modeling language provided by the OPTMODEL procedure in SAS/OR software, a user can easily experiment with different decompositions simply by redefining the partitions of constraints in the original compact model. All algorithmic details in the reformulated (Dantzig-Wolfe) space are automatically managed by DECOMP. We will discuss the overall software design motivated by the goal to minimize user burden and reduce the need for algorithmic expertise. We will then present results from several client trials where DECOMP was successfully used, including results in both shared and distributed memory parallel environments.

José-María Ucha, Universidad de Sevilla (with F. Castro, J. Gago, M. Hartillo, J. Puerto)
Some bridges between algebra and integer programming
In this talk we will show some connections between discrete optimization and commutative algebra. In particular, we analyze some problems in numerical semigroups, which are sets of nonnegative integers, closed under addition, and containing zero. In this algebraic framework, we will prove that some computations that are usually performed by applying brute force algorithms can be improved by formulating the problems as (single or multiobjective) linear integer programming. For instance, computing the omega invariant of a numerical semigroup (a measure of the primality of the algebraic object), decompositions into irreducible numerical semigroups (special semigroups with simple structure), homogeneous numerical semigroups, or the Kunz-coordinates vector of a numerical semigroup can be done efficiently by formulating the equivalent discrete optimization problem.

Víctor Blanco, Universidad de Granada (with Justo Puerto)
Applications of discrete optimization to numerical semigroups
In this talk we will show some connections between discrete optimization and commutative algebra. In particular, we analyze some problems in numerical semigroups, which are sets of nonnegative integers, closed under addition, and containing zero. In this algebraic framework, we will prove that some computations that are usually performed by applying brute force algorithms can be improved by formulating the problems as (single or multiobjective) linear integer programming. For instance, computing the omega invariant of a numerical semigroup (a measure of the primality of the algebraic object), decompositions into irreducible numerical semigroups (special semigroups with simple structure), homogeneous numerical semigroups, or the Kunz-coordinates vector of a numerical semigroup can be done efficiently by formulating the equivalent discrete optimization problem.

José-María Ucha, Universidad de Sevilla (with F. Castro, J. Gago, M. Hartillo, J. Puerto)
Algebraic tools for nonlinear integer programming problems 1: Getting started
In this first talk we revisit a classical approach for obtaining exact solutions of some nonlinear integer problems. We treat the case of linear objective function with linear and nonlinear constraints. Besides the test-set of some linear subpart of the problem, calculated via Grobner bases (sometimes obtained explicitly without computation), we propose some extra ingredients. We show how to use information from the continuous relaxation of the problem, add quasitangent hyperplanes and use penalty functions as a guide in the search process.

María Isabel Hartillo, Universidad de Sevilla (with Jesus Gago, Justo Puerto, Jose Ucha)
Algebraic tools for nonlinear integer programming problems 2: Applications
In this second talk of the series we present how the methodology works in some real problems, namely construction of integer portfolios and redundancy allocation problems in series-parallel systems. Only in the first case the nonlinear part is of convex type. We analyse how the ideas introduced in the first talk provide promising results in computational experiments. On the other side, the combination of using test sets and heuristics techniques opens a new approach for getting good solutions in facing huge problems.

Gary Froyland, University of New South Wales, Australia
Robust airline schedule planning, aircraft routing and crew pairing: An integrated scenario-based approach
For reasons of tractability, classical approaches to the airline scheduling problem have been to sequentially decompose the problem into various stages [e.g., schedule generation, fleet assignment, aircraft routing, and crew pairing], with the decisions from one stage imposed upon the decision making in subsequent stages. Such a sequential approach unfortunately fails to capture the many dependencies between the various stages, most notably between those of aircraft routing and crew pairing, and how these dependencies affect the propagation of delays through the flight network. As delays are commonly
transferred between late-running aircraft and crew, it is important that aircraft routing and crew pairing decisions are made together. The propagated delay may then be accurately estimated to minimize the overall propagated delay for the network and produce a robust solution for both aircraft and crew. We introduce a new scenario-based approach to accurately calculate and minimise the cost of propagated delay, in a framework which incorporates aircraft routing, crew pairing, and re-timing, and uses delay information from multiple scenarios.

Elmar Swarat, Zuse Institute Berlin (with Ralf Borndörfer, Guillaume Sagnol)

Modeling and solving a toll enforcement problem

We present the Toll Enforcement Problem to optimize the tours of toll inspectors on German motorways. This is an integrated planning and scheduling model, consisting of a tour planning and a duty rostering part. The goal is to achieve a network-wide control proportional to the traffic distribution. We introduce a time-expanded planning graph, based on a given time discretization, where computing the tours corresponds to a Multi-Commodity flow problem. This is formulated as an IP using path variables. For the rostering problem we develop a graph model, where arcs model feasible sequences of duties. Finding feasible rosters again comes up to a Multi-Commodity flow problem in an IP formulation. By introducing coupling constraints, both problems were connected to an integrated model. We will show, that many important requirements and legal rules can be modeled by this approach. By our modeling issues the extreme complexity of our problem can be reduced to reasonable size problem instances. Computational experiments on several real-world instances indicate that we are able to solve them to a proven optimality with only a small gap.

Guenc Sahin, Sabanci University (with Fardin Dastch Sairdarg, A. Cetin Sayabatmaz)

Tactical and strategic crew planning problems in railways

We consider the tactical level planning problem in railways that determines the minimum sufficient crew resources level for one crew region at a time given the list of periodic train duties in a finite planning horizon. We formulate this problem once as a network flow problem and once as a set covering problem. The set covering version may only be attacked with a column-and-row generation algorithm, and the experimental results are not satisfactory from a computational point of view when compared to the network flow formulation. Even with complicating hard constraints that challenge the network flow formulation, the set covering problem is not easy to handle while the network flow formulation can converge to optimal solutions with no additional effort. We also extend the network flow formulation to consider multiple regions simultaneously while the allocation of train duties among the regions is partially unknown. The problem is to determine the allocation and the level of minimum sufficient crew resources level coherently. The network flow formulation still provides satisfactory results, but only for a limited number of regions under consideration.

Amir Toosi Vahid, Industrial Engineering Dept. of Amirkabir University of Tehran (with Najgar Vazifedan Ali)

An integer linear programming model for bus rapid transit network design

Public transportation plays an important role in most populated cities. In Iran, the majority of people use public transportation within the cities. Thus, the quality of bus network services is very important. Bus Rapid Transit (BRT) is a high capacity public transit solution that can improve urban mobility. For several decades, operations research (OR) has been successfully applied to solve a wide variety of optimization problems in public transit. This paper represents an integer linear programming model to design a BRT network. The model attempts to maximize the coverage of public transportation demand. The model has been implemented to the design of BRT network in Mashhad, the second largest city of Iran. The required actual data have been collected and fed to the model. The resulting network determines the BRT routes, the BRT stations and the schedules.

Wong Hei Tou, The Chinese University of Hong Kong (with Jimmy M. Y. Leung)

A dial-a-ride problem for public transport using electric vehicles

With concern about environmental quality growing in the world, sustainable transportation systems, such as on-demand public transit and the use of electric vehicles (EV), are developing in many cities. An on-demand public transport system works similar to a taxi service, but combines the servicing of customers with similar routes in the same vehicle so as to reduce operational cost and impact to the environment. The usage of EV can further reduce pollution levels. We combine these two eco-friendly concepts to study a variant of the Dial-a-Ride problem (DARPEV), which aims to minimize the total distance travelled subject to meeting all customers’ requests, and constraints on vehicle capacity, pickup/ delivery time-window, customer ride-time and battery-charging restrictions. Using EV limits the travelling time between battery recharges. The restricted charging locations and the requirement that charging must be done with no customers in-service complicate the problem, as extra variables and constraints are added. Computational results and further research directions are discussed.

Marie Schmidt, Universität Göttingen

A new model for capacitated line planning

The planning of lines and frequencies is a well-known problem in public transportation planning. Passenger-oriented approaches to line planning often determine the lines to be established, the corresponding frequencies, and the passenger routing simultaneously. This integration of the planning steps yields better results then stepwise approaches which start with an estimation of the passengers’ paths by traffic-assignment procedures and then establish lines and frequencies accordingly. However, in presence of capacity constraints, integrated approaches aiming at a minimization of the overall travel time may find solutions which force some passengers to make long detours. When such a line concept is realized in practice, passengers will most likely not accept such a solution but choose a shortest route among the available ones, leading to an overallocation of capacity constraints. For this reason we develop a new line planning model that allows every passenger to choose a shortest route among all available ones. We provide complexity results and an integer programming formulation for this model.

Christoph Buchheim, TU Dortmund (with Emiliano Torenvliet)

Nonconvex underestimators for integer quadratic optimization

Recently, fast branch-and-bound algorithms for both convex and nonconvex integer quadratic optimization problems have been proposed that use lattice-point free ellipsoids for deriving lower bounds. In the convex case, these bounds improve those obtained from continuous relaxation. The ellipsoids are often chosen as axis-parallel ellipsoids centered in the stationary point of the objective function. In our talk, we show that in this case the resulting lower bound can be interpreted as the integer minimum of a separable quadratic nonconvex global underestimator of the objective function with the same stationary point. The best such underestimator can be computed efficiently by solving an appropriate semidefinite program. This approach can be applied to mixed-integer quadratic programming problems with box constraints, where the separable underestimator can be minimized easily, and to combinatorial optimization problems with quadratic objective functions whenever the underlying linear problem can be solved efficiently.

Lang Tran, TU Dortmund (with Christoph Buchheim)

Convex piecewise quadratic integer programming

We consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same Hessian matrix. A fast algorithm for minimizing such functions over all integer vectors is presented. This algorithm can be embedded in an extended outer approximation scheme for solving general convex integer programs, where suitable approximations are used to underestimate the original objective function instead of classical linear approximations. Our algorithm is based on a fast branch-and-bound approach for convex quadratic integer programming proposed by Buchheim, Caprara and Lodi (2011). The main feature of the latter approach consists in a fast incremental computation of continuous global minima, which are used as lower bounds. We explain the generalization of this idea to the case of k convex quadratic functions. The idea is implicitly reduced to the problem of minimizing a sum of 2^k convex quadratic integer programs. Each node of the branch-and-bound algorithm can be processed in O(2^{kn}). Experimental results for increasing sizes of k are shown. Compared to the standard MIQP solver of CPLEX, running times can be improved considerably.

Hyemin Jeon, University of Wisconsin-Madison (with Jeffrey Linderoth, Andrew Miller)

Convex quadratic programming with variable bounds

The set $S = \{ (x,y,z,v) \in \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \mid x \geq y \geq 0, x \leq 2 \}$ for some matrix $Q \geq 0$ is used as subject to many applications including portfolio management and data mining. In the reformulated set $S = \{ (y,t) \in \mathbb{R}^2 \mid y \geq 0, t = g(y) \}$, $0 \leq g(y) = \sum_{i=1}^{n} (y_i^2 + 1) \}$. For some matrix $Q \geq 0$ is used as subject to many applications including portfolio management and data mining. In the reformulated set $S = \{ (y,t) \in \mathbb{R}^2 \mid y \geq 0, t = g(y) \}$, $0 \leq g(y) = \sum_{i=1}^{n} (y_i^2 + 1) \}$. For some matrix $Q \geq 0$ is used as subject to many applications including portfolio management and data mining. In the reformulated set $S = \{ (y,t) \in \mathbb{R}^2 \mid y \geq 0, t = g(y) \}$, $0 \leq g(y) = \sum_{i=1}^{n} (y_i^2 + 1) \}$.
Mixed-integer nonlinear programming

Topics in mixed-integer nonlinear programming III
Chair Duan Li, The Chinese University of Hong Kong

Duan Li, The Chinese University of Hong Kong (with Xiaoling Sun, Xiaojin Zheng)
MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: A semidefinite program approach

We consider in this research the cardinality constrained quadratic programming problem (P1) that arise naturally in various real-world applications such as portfolio selection and subset selection in regression. We first investigate how to construct tighter semidefinite program (SDP) relaxation of the problem by applying a special Lagrangian decomposition scheme to the diagonal decomposition of the problem. We show that for any fixed diagonal decomposition, the dual problem can be reduced to a second-order cone program (SOCP), which is the continuous relaxation of the perspective reformulation of (IP). This leads to an SDP formulation for computing the best diagonal decomposition in the perspective reformulation. Numerical results comparing the performance of different MIQP reformulations of the problem show that the proposed SDP approach can help to improve the performance of the standard MIQP solvers for cardinality constrained quadratic programs.

Vikas Sharma, Thapar University (with Kalpana Dahiyia, Vanita Verma)
A duality based approach for a class of bilevel programming problems

This paper proposes a globally convergent algorithm for a class of bilevel programming problem where the upper level objective function is linear fractional and lower level objective function is linear with an additional restriction on decision variables that are integers for upper level and continuous for lower level. The proposed algorithm makes use of duality theory, to transform the given bilevel problem into a nonlinear programming problem, which can be solved by solving a series of linear fractional programming problems with linear constraints, to obtain a global optimal solution of the original bilevel programming problem. A numerical example is also discussed which illustrates the feasibility and efficiency of the proposed algorithm.

Gertr Kamari, Thapar University, Patiala
Symmetric duality for multiobjective second-order fractional programming

In this paper, a pair of symmetric dual multiobjective second-order fractional programming problems is formulated and appropriate duality theorems are established. These results are then used to discuss the minimax mixed integer symmetric dual fractional programs.

Applications of vector and set optimization
Organizer/Chair Andreas Löhne, Martin-Luther-Universität Halle-Wittenberg - Invited Session

Sonia Radjef, Université USD of Oran (with Mohand Ouamer Bid)
The direct support method to solve a linear multiobjective problem with bounded variables

We propose a new efficient method for defining the solution set of a multiobjective problem, where the objective functions involved are linear, the set of feasible points is a set of linear constraints and the decision variables are upper and lower bounded. The algorithm is a generalization of the direct support method, for solving a linear mono-objective program. Its particularity is that it avoids the preliminary transformation of the decision variables. It handles the bounds such as they are initially formulated. The method is really effective, simple to use and permits to speed-up the resolution process. We use the suboptimal criterion of the method in single-objective programming to find the subefficient extreme points and the subweakly efficient extreme points of the problem. This algorithm is applied to solve a problem of production planning in the Ifn Darty.

Andreas Löhne, Martin-Luther-Universität Halle-Wittenberg
BENSOLVE – A solver for multi-objective linear programs

BENSOLVE is a MOLP solver based on Benson’s outer approxima-
We consider the geometry optimization of branched, and potentially curved, sheet metal products. Such products can be produced continuously and in integral style by using the new technologies linear flow splitting and linear bend splitting, which are explored within the framework of the Collaborative Research Centre (CRC) 666. The geometry of such sheet metal parts can be parameterized by means of free form surfaces, more specifically, by tensor products of cubic B-splines. The mechanical behaviour is described by the three dimensional linear elasticity equations. We formulate the associated PDE-constrained problem for optimizing the stiffness of the considered structure. Then, an algorithm for solving this shape optimization problem with a globalization strategy based on cubic regularization terms is presented. Furthermore, the exact constraints of the problem are used. We conclude by presenting numerical results.

Modeling of transboundary pollutant displacement for groups of emission sources

Location of emission pollution sources, together with objects or areas that require compliance with environmental norms, often leads to their disruption. The task of reducing the excess pollution emissions to the optimum is complicated with the presence of wind shifts, which weaken or strengthen the general or local contamination. One part of the pollution can be controlled to leave the territory, and, on the contrary, it is possible the invasion of pollution plumes from neighboring areas. (transboundary displacements). Wind shifts incorporated directly into a stochastic semi-infinite optimization algorithm. Environmental objects are represented as a map of zones with arbitrary boundaries. This approach includes the replacement of the original pollution sources with lots of virtual sources with a total capacity equivalent to the initial emissions. Possible local directions of wind shifts are presented in the form of maps of the streamlines of wind area, accounted later in the numerical experiment. Objective function of semi-infinite program minimizes costs of pollution control with wind shifts.

Variational methods in optimization

In this work we drop the condition of convexity and consider both Moreau-Yosida and Lasry-Lions regularizations. In the framework of a generalized Hessian, but note that this property is weaker than the existence of a classical Hessian, since we suppose only the existence of the first partial derivatives. We give sufficient conditions for the regularizations to have a generalized Hessian as well. We emphasize that these result are useful for the convergence analysis of approximate numerical methods for solving nonsmooth optimization problems.
tive contracts traded on Power Exchanges has been growing since the inception of the restructuring of the sector, the liquidity of electricity markets can drastically differ depending on the situation. We analyze the situation by formulating a spatial stochastic equilibrium model of the restructured power sector with a financial market consisting of futures and financial transmission rights. We prove the existence of an equilibrium in which all players optimize convex risk measures and show that the futures prices obey a risk neutral valuation property. We then turn to illiquidity and use a definition based on the limitation of transaction volumes. This changes the model into a Generalized Nash equilibrium (GNE) implying that several equilibrium may exist. The non arbitrage property is lost in the illiquid case. Those two features are signs of a badly functioning market. The formalism also allows one to model a market applying bid/ask spreads. Eventually we illustrate these different ideas on a six node example.

Andreas Ehrenmann, GDF SUEZ (with Yves Smeers)

Risk adjusted discounting

Capacity expansion models in the power sector were among the first applications of operations research to the industry. We introduce stochastic equilibrium versions of these models that we believe provide a relevant context for looking at the current very risky market where the power industry invests and operates. We then look at the insertion of risk related investment practices that developed with the new environment and may not be easy to accommodate in an optimization context. Specifically, we consider the use of plant specific discount rates due to different risk exposure. In a first step we introduce an iterative approach that facilitates the use of exogenously given discount rates within an capacity expansion model. This corresponds to the industry practice of assigning specific hurdle rates. As a second step we allow for discount rates being set endogenously in the equilibrium model including stochastic discount rates in the equilibrium model. This approach is compatible with the standard CAPM from finance as long as all agents use the same (market induced) stochastic discount rate. We close with a numerical illustration.

PDE-constrained opt. & multi-level/multi-grid meth.

Optimization applications in industry V

Organizer/Chair Dietmar Hömberg, Weierstrass Institute for Applied Analysis and Stochastics - Invited Session

Andr Roesch, University Duisburg-Essen (with Hendrik Felberrott)

A shape and topology optimization method for inverse problems in tomography

We propose a general shape optimization approach for the resolution of different inverse problems in tomography. For instance, in the case of Electrical Impedance Tomography (EIT), we reconstruct the electrical conductivity while in the case of Fluorescence Diffuse Optical Tomography (FDOT), the unknown is a fluorophore concentration. These problems are in general severely ill-posed, and a standard cure is to make additional assumptions on the unknowns to regularize the problem. Our approach consists in assuming that the functions to be reconstructed are piecewise constants. Thanks to this hypothesis, the problem essentially boils down to a shape optimization problem. The sensitivity of a certain cost functional with respect to small perturbations of the shapes of these inclusions is analyzed. This may not be easy to accommodate in an optimization context. Specifically, we consider the use of plant specific discount rates due to different risk exposure. In a first step we introduce an iterative approach that facilitates the use of exogenously given discount rates within an capacity expansion model. This corresponds to the industry practice of assigning specific hurdle rates. As a second step we allow for discount rates being set endogenously in the equilibrium model including stochastic discount rates in the equilibrium model. This approach is compatible with the standard CAPM from finance as long as all agents use the same (market induced) stochastic discount rate. We close with a numerical illustration.

Stephanie Hokenmaier, Linde AG (with Barbara Kaltenbach)

Optimization with discontinuities and approximations in process engineering

Process simulators are indispensable in the daily work of process engineers. The Engineering Division of The Linde Group, which is one of the world leading companies in planning and building process plants, has been developing the in-house process simulation pro-

gram OPTISIM® for the simulation and optimization of chemical processes. Increasing demands on the optimizer concerning problem size, efficiency and robustness, especially with the occurrence of discontinuities and the use of approximations during simulation and optimization, lead to a closer look towards new optimization methods. In this context the global convergence properties of Biegler and Wächter, used in the optimizer IPOPT, was considered under the assumption of perturbed equality constraints and derivatives, which models their approximate evaluation as well as to some extent also the discontinuities. Furthermore some numerical results will be shown.

Applications of robust optimization V

Chair Adrian Schich, TU Darmstadt

Akiho Takekda, Keio University (with Takafumi Kanamori, Hiroyuki Mitsugi)

Robust optimization-based classification method

The goal of binary classification is to predict the class (e.g., +1 or -1) to which new observations belong, where the identity of the class is unknown, on the basis of a training set of data containing observations whose class is known. A wide variety of machine learning algorithms such as support vector machine (SVM), minimax probability machine (MPM), Fisher discriminant analysis (FDA), exist for binary classification. The purpose of this paper is to provide a unified classification model that includes the above models through a robust optimization approach. This unified model has several benefits. One is that the extension and improvements intended for SVM become applicable to MPM and FDA, and vice versa. Another benefit is to provide theoretical results to above learning methods at once by dealing with the unified model. We also propose a non-convex optimization algorithm that can be applied to non-convex variants of existing learning methods and show promising numerical results.

Adrian Schich, TU Darmstadt (with Stefan Ulbrich)

Shape optimization under uncertainty employing a second order approximation for the robust counterpart

We present a second order approximation for the robust counterpart of general uncertain NLP with state equation given by a PDE. We show how the approximated worst-case functions, which are the essential part of the approximated robust counterpart, can be formulated as trust-region problems that can be solved efficiently. Also, the gradients of the approximated worst-case functions can be computed efficiently combining a sensitivity and an adjoint approach. However, there might be points where these functions are nondifferentiable. Hence, we introduce an equivalent formulation of the approximated robust counterpart as MPEC, in which the objective and all constraints are differentiable. This formulation can further be extended to model the presence of actuators that are capable of applying forces to a structure in order to counteract the effects of uncertainty. The method is applied to shape optimization in structural mechanics to obtain optimal solutions that are robust with respect to uncertainty in acting forces and material parameters. Numerical results are presented.

Adrian Schich, TU Darmstadt (with Stefan Ulbrich)

Sparse optimization & compressed sensing

Structured models in sparse optimization

Organizer/Chair John Duchi, University of California, Berkeley - Invited Session

Rodolphe Jenatton, CNRS - CMAP (with Francis Bach, Julien Mairal, Guillaume Obozinski)

Proximal methods for hierarchical sparse coding and structured sparsity

Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced tree-structured sparse regularization norm, which has proven useful in several applications. This norm leads to regularized problems that are difficult to optimize, and we propose in this paper efficient algorithms for solving them. More precisely, we show that the proximal operator associated with this norm is computable exactly via a dual approach that can be viewed as the composition of elementary proximal operators. Our proximal operator has a complexity very close to linear, in the number of atoms, and allows the use of accelerated gradient techniques to solve the tree-structured sparse approximation problem at the same computational cost as traditional ones using the L1-norm. We also discuss extensions of this dual approach for more general settings of structured
sparsity. Finally, examples taken from video/image processing and topic modeling illustrate the benefit of our method.

Minh Pham, Rutgers University (with Xiaodong Lin, Andzej Ruszczynski)

Alternating linearization for structured regularization problems

We adapt the alternating linearization method for proximal decomposition to structured regularization problems, in particular, to the generalized lasso problem. The method is related to two well-known operator splitting methods, the Douglas–Rachford and the Peaceman–Rachford method, but it has descent properties with respect to the objective function. Its convergence mechanism is related to that of bundle methods of nonsmooth optimization. We also discuss implementation for very large problems, with the use of specialized algorithms and sparse data structures. Finally, we present numerical results for several synthetic and real-world examples, including a three-dimensional fused lasso problem, which illustrate the scalability, efficacy, and accuracy of the method.

John Duchê, University of California, Berkeley (with Elad Hazan, Yoram Singer)

Adaptive subgradient methods for stochastic optimization and online learning

We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent advances in stochastic optimization and online learning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. We give several efficient algorithms for empirical risk minimization problems with common and important regularization functions and domain constraints. We experimentally study our theoretical analysis and show that adaptive subgradient methods significantly outperform state-of-the-art, yet non-adaptive, subgradient algorithms.

Olga Mysdnyk, New Jersey State University Rutgers

Stochastic optimization

Network design, reliability, and PDE constraints

Chair Olga Mysdnyk, New Jersey State University Rutgers

Stochastic network design under probabilistic constraint with continuous random variables.

Stochastic network optimization problem is formulated, where the demands at the nodes are continuously distributed random variables. The problem is to find optimal node and arc capacities under probabilistic constraint that insures the satisfaction of all demands on a high probability level. The large number of feasibility inequalities is reduced to a much smaller number (elimination by network topology), equivalent reformulation takes us to a specially structured LP. It is solved by the combination of an inner and outer approximation procedure providing us with both lower and upper bounds for the optimum in each iteration. Numerical example is presented. The network design method is applicable to find optimal capacity expansion problems in interconnected power systems, water supply, traffic, transportation, evacuation and other networks.

Zuzana Sabatová, Chalmers University of Technology (with Pavel Popela)

Spatial decomposition for differential equation constrained stochastic programs

When optimization models are constrained by ordinary or partial differential equations (ODE or PDE), numerical method based on discretising domain are required to obtain non-differential numerical description of the differential parts; we chose the finite element method. The real problems are often very large and exceed computational capacity. Hence, we employ the progressive hedging algorithm (PHA) – an efficient decomposition method for solving scenario-based stochastic programs – which can be implemented in parallel to reduce the computing time. A modified PHA was used for an original concept of spatial decomposition for approximating differential constraints. We solve our problem with raw discretization, decompose it into overlapping parts of the domain, and solve it again iteratively by PHA with finer discretization – using values from the raw discretization as boundary conditions – until a given accuracy is reached.

The spatial decomposition is applied to a civil engineering problem: design of beam cross section dimensions. The algorithms are implemented in GAMS and the results are evaluated by width of overlap and computational complexity.

Rasool Tahmasbi, Amirkabir University of Technology (with S. Mehdi Hashemi)

Network flow problems with random arc failures

Networks have been widely used for modeling real-world problems such as communication, transportation, power, and water networks, which are subject to component failures. We consider stochastic network flow problems, in which the arcs fail with some known probabilities. In contrast to previous research that focuses on the evaluation of the expected maximum flow value in such networks, we consider the situation in which a flow is computed and maintained before the realization of the uncertainty. We present the concept of expected value of a given flow and seek for a flow with maximum expected value. We show the problem of computing the expected value of a flow is NP-hard. We examine the “value of information”, as the relative increase in the expected flow value which we allow implementing a maximum flow for a non-expected origin-destination pair. We show that the value of information can be around 61% on some instances. While it is significantly hard to compute the expected maximum flow value and to determine a flow with maximum expected value, we apply a simple simulation-based method to approximate these values.
two values. We give computational results to demonstrate the ability of this method.

Telecommunications & networks

An incremental algorithm for the facility location problem
We consider a network design problem that arises in the design of last mile telecommunication networks. It combines the capacitated network design problem (CNDP) with the single-source capacitated facility location problem (SSCFLP). We will refer to it as the Capacitated connected facility location problem (CapConFL). We develop a basic integer programming model based on multi-commodity flows. Based on valid inequalities for the subproblems, CNDP and SSCFLP, we derive several new classes of valid inequalities for the CapConFL. We use them in a branch-and-cut framework and show their applicability on a set of benchmark instances.

Wad. J 3.302
Local access networks
Organizer/Chair Stefan Gollitzer, University of Vienna - Invited Session
Stefan Gollitzer, University of Vienna (with Bernard Gendron, Ivana Lizubic)
Capacitated network design with facility location
We consider a network design problem that arises in the design of last mile telecommunication networks. It combines the capacitated network design problem (CNDP) with the single-source capacitated facility location problem (SSCFLP). We will refer to it as the Capacitated connected facility location problem (CapConFL). We develop a basic integer programming model based on multi-commodity flows. Based on valid inequalities for the subproblems, CNDP and SSCFLP, we derive several new classes of valid inequalities for the CapConFL. We use them in a branch-and-cut framework and show their applicability on a set of benchmark instances.

Mohsen Rezapour, Technical University of Berlin (with Andreas Bley, S. Mehdi Hashemi)
Approximation algorithms for connected facility location with buy-at-bulk edge costs
We consider a generalization of the Connected Facility Location problem (ConFL), where we need to design a capacitated network with a tree configuration to route client demands to open facilities. In addition to choosing facilities to open and connecting them by a Steiner tree, where each edge of the Steiner tree has infinite capacity, we need to buy cables from an available set of cables with different costs and capacities to route all demands of clients to open facilities via individual trees. We assume that the cable costs obey economies of scale. The objective is to minimize the sum of facility opening, connecting the open facilities and cable installation costs. In this presentation, we give the first approximation algorithm for the problem with different types of cables. We also consider the simplified version of the problem where capacity of an edge is provided in multiples of only one cable type and give a better constant factor approximation algorithm for this case.

Alfonsz Arulvathan, TU Berlin (with Olaf Maurer, Martin Skutella)
An algorithmic approach to the facility location problem
We are given an instance of a facility location problem. We provide an incremental algorithm to obtain a sequence of customers and facilities along with their assignments. The algorithm guarantees that the cost of serving the first k customers in the sequence with their assigned facilities in the sequence is within a constant factor from the optimal cost of serving any k customers. The problem finds applications in facility location problems equipped with planning periods, where facilities are opened and customers are served in an incremental fashion.

Organizer/Chair Radek Cibulka, University of Limoges. Invited Session

Wad. J 3.295
Non-smooth analysis with applications in engineering
Organizer/Chair Radek Cibulka, University of Limoges - Invited Session
Alfredo Izusi, Instituto de Matematica Pura e Aplicada (with Roger Behling)
The effect of calmness on the solution set of nonlinear equations
We address the problem of solving a continuously differentiable multi-objective optimization problem. We provide an incremental algorithm to obtain a sequence of customers and facilities along with their assignments. The algorithm guarantees that the cost of serving the first k customers in the sequence with their assigned facilities in the sequence is within a constant factor from the optimal cost of serving any k customers. The problem finds applications in facility location problems equipped with planning periods, where facilities are opened and customers are served in an incremental fashion.

Amos Uderzo, University of Milano-Bicocca
On some calmness conditions for nonsmooth constraint systems
We study the application of implicit and inverse function theorems to systems of complementarity equations. The goal is to characterize the so-called topological stability of those systems. Here, stability refers to homeomorphy of the solution set under small perturbations of the defining functions. We discuss the gap between the nonsmooth versions of implicit and inverse function theorems in the complementarity setting. Namely, for successfully applying the nonsmooth implicit function theorem one needs to perform first a linear coordinate transformation. We illustrate how this fact becomes crucial for the nonsmooth analysis.

Organizer/Chair Abderrahim Hantoute, University of Chile (with Rafael Correa)
On convex relaxation of optimization problems
We relate a given optimization problem inf x f to its lsc convex relaxation inf x (c(x) + co(f)), where (c(x) + co(f)) is the lsc convex hull of f. We establish a complete characterization of the solutions set of the relaxed problem by means exclusively of “some kind” of the solution of the initial problem. Consequently, under some natural conditions, of coercivity type, this analysis yields both existence and characterization of the solution of the initial problem. Our main tools rely on the subdifferential analysis of the so-called Legendre-Fenchel function.

C. R. Jeffery Pang, National University of Singapore
First order analysis of set-valued maps and differential inclusions
The framework of differential inclusions encompasses modern optimal control and the calculus of variations. Its analysis requires the use of set-valued maps. For a set-valued map, the tangential derivative and coderivatives separately characterize a first order sensitivity analysis property, or more precisely, a pseudo strict differentiability property. The characterization using tangential derivatives requires fewer assumptions. In finite dimensions, the coderivative characterization establishes a bijective relationship between the convexified limiting coderivatives and the pseudo strict derivatives. This result can be used to estimate the convexified limiting coderivatives of limits of set-valued maps. We apply these results to the study of differential inclusions by calculating the tangential derivatives and coderivatives of the reachable map, which leads to the subdifferential and subderivative dependence of the value function in terms of the initial conditions. These results in turn further our understanding of the Euler–Lagrange and transversality conditions in differential inclusions.

Vladimír Šik what I mean by nonsmooth analysis:
We study the application of implicit and inverse function theorems to systems of complementarity equations. The goal is to characterize the so-called topological stability of those systems. Here, stability refers to homeomorphy of the solution set under small perturbations of the defining functions. We discuss the gap between the nonsmooth versions of implicit and inverse function theorems in the complementarity setting. Namely, for successfully applying the nonsmooth implicit function theorem one needs to perform first a linear coordinate transformation. We illustrate how this fact becomes crucial for the nonsmooth analysis.
In a recent paper, Couïtoux gives a beautiful $\frac{1}{2}$-approximation algorithm to the problem of finding a minimum-cost set of edges such that each connected component has at least k vertices in it. The algorithm improved on previous 2-approximation algorithms for the problem. In this paper, we show how to reinterpret Couïtoux’s analysis as dual-fitting and also show how to generalize the algorithm to a broader class of graph problems previously considered in the literature.

Stanisława Kowalik, University of Athens (with Ioide Adler, Dimitrios Thilikos)

Planar disjoint-paths completion

Take any graph property represented by a collection P of graphs. The corresponding problem completion problem asks typically for the minimum number of edges to add to a graph so that it belongs to P. Several such problems have been studied in the literature.

We introduce the completion version of Disjoint Paths on planar graphs. Given a plane graph G, k pairs of terminals, and a face F of G, find the minimum set of edges, if one exists, to be added inside F so that the embedding remains planar and the pairs become connected by k disjoint paths in the augmented network.

We give an explicit upper bound on the number of additional edges needed if a solution exists. This bound is a function of k, independent of the size n of G. Second, we show that the problem is fixed-parameter tractable, i.e., it can be solved in time $f(k)poly(n)$.

Naonori Kakimura, University of Tokyo (with Kazuhisa Makino, Kento Seimi)

Computing knapsack solutions with cardinality robustness

In this paper, we study the robustness over the cardinality variation for the knapsack problem. For the knapsack problem and a positive number $\alpha \leq 1$, we say that a feasible solution is α-robust if, for any positive integer k, it includes an α-approximation of the maximum k-knapsack solution, where a k-knapsack solution is a feasible solution that consists of at most k items. In this talk, we show that, for any $\alpha > 0$, the problem of deciding whether the knapsack problem admits a $(1+\varepsilon)$-robust solution is weakly NP-hard, where ε denotes the rank quotient of the corresponding knapsack system. Since the knapsack problem always admits a α-robust knapsack solution, this result provides a sharp border for the complexity of the robust knapsack problem. On the positive side, we show that a max-robust knapsack solution can be computed in pseudo-polynomial time, and present a fully polynomial-time approximation scheme (FPTAS) for computing a max-robust knapsack solution.

Naonori Kakimura, University of Tokyo (with Kazuhisa Makino, Kento Seimi)

Large structured induced subgraphs with close homomorphism statistics

A particular attention has been recently devoted to the study of the graph homomorphism statistics. Let $\text{hom}(F, G)$ denote the number of homomorphisms of F to G. The problem we address here is whether a graph G contains an induced subgraph $G[A]$ such that:

- for every small test graph F, $\text{hom}(F, G[A])$ is not ‘too different’ from $\text{hom}(F, G)$:

$$|F| \leq \rho \Rightarrow \log \text{hom}(F, G[A]) > (1 - \varepsilon) \log \text{hom}(F, G);$$

- the subgraph $G[A]$ is highly structured in the sense that it is obtained from a small graph H by a gross at most $c(\varepsilon, \rho)$ by applying some blowup-like operations.

We prove that classes of graphs which are nowhere dense (meaning that for every integer p there is a p subdivision of a finite complete graph that is isomorphic to no subgraph of a graph in C) have the property that for every integer p and every $\rho > 0$ every sufficiently large graph in the class has such an induced subgraph.

Michael Chertok, Los Alamos National Laboratory (with Adam Yedidia)

Computing the permanent with belief propagation

We discuss schemes for exact and approximate computations of permanents, and compare them with each other. Specifically, we analyze the Belief Propagation (BP) approach and its Fractional BP generalization to computing the permanent of a non-negative matrix. Known bounds and conjectures are verified in experiments, and some new theoretical relations, bounds and conjectures are proposed.

Amin Coja-Oghlan, University of Warwick (with Konstantinos Panagiotou)

Catching the k-NAESAT threshold

The best current estimates of the thresholds for the existence of solutions in random CSPs mostly derive from the first and the second moment method. Yet apart from a very few exceptional cases these methods do not quite yield matching upper and lower bounds. Here we present an enhanced second moment method that allows us to narrow the gap to an additive $2 \sqrt{\log n \log \log n}$ in the random k-NAESAT problem, one of the standard benchmarks in the theory or random CSPs. This is joint work with Konstantinos Panagiotou.

Thu. 1.3010

Approximation algorithms

Chair: Naonori Kakimura, University of Tokyo

David Williamson, Cornell University (with James Davis)

A dual-fitting $\frac{1}{2}$-approximation algorithm for some minimum-cost graph problems

We prove that classes of graphs which are nowhere dense (meaning that for every integer p there is a p subdivision of a finite complete graph that is isomorphic to no subgraph of a graph in C) have the property that for every integer p and every $\rho > 0$ every sufficiently large graph in the class has such an induced subgraph.

Michael Chertok, Los Alamos National Laboratory (with Adam Yedidia)

Computing the permanent with belief propagation

We discuss schemes for exact and approximate computations of permanents, and compare them with each other. Specifically, we analyze the Belief Propagation (BP) approach and its Fractional BP generalization to computing the permanent of a non-negative matrix. Known bounds and conjectures are verified in experiments, and some new theoretical relations, bounds and conjectures are proposed.

Amin Coja-Oghlan, University of Warwick (with Konstantinos Panagiotou)

Catching the k-NAESAT threshold

The best current estimates of the thresholds for the existence of solutions in random CSPs mostly derive from the first and the second moment method. Yet apart from a very few exceptional cases these methods do not quite yield matching upper and lower bounds. Here we present an enhanced second moment method that allows us to narrow the gap to an additive $2 \sqrt{\log n \log \log n}$ in the random k-NAESAT problem, one of the standard benchmarks in the theory or random CSPs. This is joint work with Konstantinos Panagiotou.

Thu. 1.3005

Robust network design

Organizer/Chair: Michael Jünger, Universität zu Köln - Invited Session

Manuel Kotschick, RWTH Aachen University (with Grit Ciffler, Arie Koster, Iksam Tahiti)

Robust metric inequalities for network design under demand uncertainty

In this talk, we generalize the metric inequalities for the classical network design problem to its robust counterpart. Furthermore, we show that they describe the robust network design problem completely in the capacity space, where a straight-forward generalization of the classical metric inequalities is not sufficient. We present a new algorithm to solve robust metric inequalities as equality constraints for the capacity space formulaation of the robust network design problem. In computational experiments, we analyze the added value of this new class of valid inequalities within a branch-and-cut approach to solve the robust network design problem.

Daniel Schmidt, Universität zu Köln (with Eduardo Alvarez-Miranda, Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frank Liers, Andrea Lodi, Tiziano Parriani)

Single commodity robust network design: Models and algorithms

We study a model that aims at designing cost-minimum networks that are robust under varying demands. Given an undirected graph G, a finite number of scenarios and a cost function, we want to find the cheapest possible capacity installation on the edges of G such that the demands of all scenarios can be satisfied by a single-commodity flow. This problem is known in the literature as single commodity robust net- work design. We propose two tools for optimizing over this model: Firstly, we develop a large neighborhood search heuristic that allows for trading compution time for solution quality. Secondly, we show how to op- timize exactly with a branch-and-cut algorithm that is based on a new integer programming formulation. Both approaches undergo computational evaluation.

Laura Sanita, University of Waterloo (with Jaroshawn Byeka, Fabrizio Grandoni, Thomas Rothvoß)

Steiner tree approximation via iterative randomized rounding

The Steiner tree problem is one of the most fundamental NP-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to 1.55 [Robins, Zelikovsky - 05]. All these algorithms are purely combina- torial. In this talk we present an LP-based approximation algorithm for Steiner tree with an improved approximation factor. Our algorithm is based on a, seemingly novel, iterative randomized rounding technique. We consider an LP relaxation of the problem, which is based on the no- tion of directed components. We sample one component with probability proportional to the value of the associated variable in a fractional solution: the sampled component is contracted and the LP is updated con- sequently. We iterate this process until all terminals are connected. Our algorithm delivers a solution of cost at most $\ln(4) + \epsilon \leq 1.39$ times the cost of an optimal Steiner tree.

Thu. 1.3008

Resource placement in networks

Organizer/Chair: David Johnson, AT&T Labs - Research - Invited Session

David Johnson, AT&T Labs - Research (with Lee Breslau, Ilias Diakonikolas, Nick Duffield, Yu Gu, MohammadTaghi Hajiaghayi, Howard Karloff, Marco Rossende, Subhabrata Sen)

Disjoint path facility location: Theory and practice

We consider the following problem: Given a directed graph $G = (V, A)$ with weights on the arcs, together with subsets C [customers] and F [potential facility locations] of V, find a subset F' of F such that, for every e in C, either e is in F' or there exist two vertices f, f' in F' such that

Thu. 1.4030

Resource placement in networks
that no shortest path from \(v \) to \(s \) shares any vertex other than \(v \) with any shortest path from \(v \) to \(F \) (a restriction required when routing is done by the OSPF protocol with path-splitting). This “cover by pairs” problem has potential applications to network monitoring and to the distribution of time-critical streaming content. Theoretical results suggest that no algorithm can be expected to get within any polylogarithmic factor of optimal for our problem, and MIP-based optimization approaches become infeasible for graphs with more than about 100 vertices. However, a collection of heuristics we devised succeeded in finding optimal solutions to all the instances in our testbed of synthetic and real-world instances with up to 1000 vertices, as verified by computing a [much easier] MIP-based lower bound. We describe the applications, theory, algorithms, bounds, and experimental results.

David Applegate, AT&T Labs – Research (with Alan Archer, Vijay Gopalakrishnan, Seungjun Lee, K.K. Ramakrishnan)

Using an exponential potential function method to optimize video-on-demand content placement

For a large-scale Video-On-Demand service, as the library size grows, it becomes important to balance the disk space necessary to store content locally at the requesting node with the bandwidth required to serve requests from remote nodes. This gives rise to the problem of deciding which content to place at which serving nodes, taking into account the resource constraints (disk and bandwidth) and content attributes (request pattern, size, and bandwidth). We model this optimization problem as a mixed-integer program. However, even for moderately large instances (20,000 videos, 50 serving nodes), the linear relaxation becomes intractable for off-the-shelf linear programming solvers, both in terms of time and memory use. Instead, we approximately solve the linear relaxation by using a Lagrangian decomposition approach based on exponential potential functions, and then round that solution to an integer solution.

Computational experiments on a testbed of synthetic and real-world instances show that this decomposition approach typically reduces the running time by orders of magnitude, while achieving solutions within 2% of optimal with no constraint violated by more than 1%.

Thu.1.H 3012
Exact algorithms for hard problems
Chair: Réal Carbonneau, GÉRAD and HEC Montréal (Université de Montréal)

Réal Carbonneau, GÉRAD and HEC Montréal (Université de Montréal) (with Gilles Caporossi, Pierre Hansen)

Global optimally clustered regression by branch and bound optimization with heuristics, sequencing and ending subset

Clusterwise regression is a clustering technique which fits multiple linear or hyperplanes to mutually exclusive subsets of observations. It is a cubic problem, but can be re-formulated as a mixed logical-quad program. An extension and generalization of Brusco’s repetitive branch and bound algorithm (RBBA) is proposed for global optimization of the clusterwise regression problem. Branch and bound optimization is enhanced by heuristics, observation sequencing and ending subset optimization. Heuristics can improve the upper bound, observation sequencing can improve the search path and can increase fathoming, while the ending subsets can recursively strengthen the lower bounds of the search. Additionally, symmetry breaking and incremental regression calculations are employed to further speed up the optimization. Experiments demonstrate that the proposed optimization strategy is significantly faster than CPLEX and that the combination of all the components is significantly faster than each one individually. The proposed approach can optimize much larger datasets than what is possible using CPLEX.

Marczana Fügenschuh, Booth University of Applied Sciences (with Michael Ahmbruster, Christoph Helbigm, Alexander Martin)

LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: A computational comparison

While semidefinite relaxations are known to deliver good approximations for some hard optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit structural properties of sparsity. In order to evaluate the relative strengths of linear and semidefinite approaches for large sparse instances, we set up a common branch-and-cut framework for linear and semidefinite relaxations of the minimum graph bisection problem. Extensive numerical experiments show that our semidefinite branch-and-cut approach is a superior choice to the classical simplex approach for large sparse test instances from VLSI design and numerical optimization.

Adaline Cerveira, UTAD (with Agostinho Aga, Fernando Bastos, Joaquim Grinche)

A two-stage branch and bound algorithm to solve truss topology design problems

Our paper considers a classic problem in the field of Truss topology design, the goal of which is to determine the stiffest truss, under a given load, with a bound on the total volume and discrete requirements in the cross-sectional areas of the bars. To solve this problem we propose a new two-stage branch and bound algorithm. In the first stage we perform a branch and bound algorithm on the nodes of the structure. This is based on the following dichotomy study: either a node is in the final structure or not. In the second stage, a branch and bound on the bar areas is conducted. The existence of either of a node in this structure is ensured by adding constraints on the cross-sectional areas of its incident bars. For stability reasons, when a free node exists in the structure, we impose that at least two incident bars on it. These constraints are added during the first stage and lead to a tight model. We report the computational experiments conducted to test the effectiveness of this two-stage approach, enhanced by the rule to ensure stability, as compared to a classical branch and bound algorithm, where branching is only performed on the bar areas.

Thu.1.H 3013
Combinatorial optimization in railways II
Organizer: Chair: Ralf Borndörfer, Zuse Institute Berlin – Invited Session

Renny Rammann, TU Braunschweig (with Uwe Zimmermann)

Minimal shunting operations for freight train composition

The problem of assigning freight train schedules in dense rail networks provides an enormous challenge. Resulting optimization models include a tremendous number of eligible train routes and departure times restricted by sparse infrastructure capacities. From our ongoing cooperation with the Deutsche Bahn (DB) within a three-year project, we outline first results focusing on the composition of rail cars in freight trains. According to requests of the customers of the DB, rail cars are routed from origin to destination throughout Germany by assigning them to a suitable sequence of previously scheduled freight trains. Additionally, the sequence of the rail cars within a freight train may be chosen. The real challenge consists in assigning rail cars to freight trains with choice of their sequence within the train minimizing the total number of time-consuming shunting operations in the visited rail yards. To our knowledge, the resulting NP-hard problem was previously not studied in the literature. We present new mixed integer programming formulations, some heuristics as well as computational experience for practical data from the DB. We conclude the talk with some remarks on future research.

Andreas Bärmann, FAU Erlangen-Nürnberg (with Andreas Heidt, Alexander Martin, Sebastian Pokutta, Christoph Thuerer)

Approximate robust optimization and applications in railway network expansion

This talk is concerned with the application of robust optimization to railway network expansion planning. We introduce a methodology that linearizes the ellipctic uncertainty sets describing the demand uncertainty to maintain the linearity of the problem.

Dealing with data uncertainty is of great importance in infrastructure development which can be affected by inaccuracy in demand forecast. The robust optimization framework immunizes the model against all data scenarios in a given uncertainty set. In this talk we introduce a methodology that linearizes elliptic uncertainty sets. For this purpose we apply the approach of Ben-Tal and Nemirovski for the linearization of the second order cone. In the case of a linear optimization model this allows for solving the robustified model as a linear program again. The benefits especially arise in discrete optimization, as we can maintain the warm start capabilities of the simplex method.

We present computational results for an implementation of the method in the context of a railway network expansion application in cooperation with Deutsche Bahn AG. We also outline applications in air traffic management and energy systems optimization.

Toresten Klug, Zuse Institute Berlin (with Ralf Borndörfer, Amin Fügenschuh, Thomas Schlechte)

An approach for solving the freight train routing problem

We consider the following freight train routing problem. Given is a transportation network with fixed routes for passenger trains and a set of freight train requests, each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of expected delays and running times is minimal. Previous research concentrated on microscopic train routing for junctions or major stations. Only recently approaches were developed...
to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network. In this terms macroscopic means complex structures are aggregated into smaller elements and the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a rough routing through the network without the precise timings. We propose a best insertion heuristic and a mixed integer programming model for the freight train routing problem, compare them, and present some computational results using different state of the art MIP-solvers.

Combinatorial optimization

Smoothed analysis of algorithms

Organizers/Chairs: Manfred Neuhaus, DIMACS; Heiko Röglin, University of Bonn - Invited Session

Tjark Vredeveld, Maastricht University (with Tobias Brunsch, Heiko Röglin, Cyriel Rutten)

Smoothed analysis of local search

In this talk, we consider the concept of smoothed performance guarantees and apply it to the performance guarantees of local optima. Smoothed analysis was introduced by Spielman and Teng (JACM 2004) as a hybrid between the worst-case and average-case analysis, to capture the good behavior of algorithms that have a bad worst case performance. Up to now, smoothed analysis has been mainly applied to the running time of algorithms. We will use smoothed analysis to investigate the approximation ratio of an algorithm, that is, the ratio between the value of an approximate solution and the optimal solution value. In the last decade, there has been a strong interest in understanding the worst case behavior of local optima. We extend this research by investigating whether or not this worst case behavior is robust. We will apply the concept of smoothed performance guarantees to several local optima for some scheduling problems. As a by-product, we also get a smoothed price of anarchy for some scheduling games.

Tobias Brunsch, University of Bonn (with Heiko Röglin)

Improved smoothed analysis of multiobjective optimization

We present several new results about smoothed analysis of multiobjective optimization problems. Particularly, we consider problems in which a linear and one arbitrary objective function are to be optimized over a set $S \subseteq \{0,1\}^n$ of feasible solutions. The coefficients of the linear objectives are subject to random perturbations specified by an adversary whose power is limited by a perturbation parameter ϕ. We improve the previously best known bound for the smoothed number of Pareto-optimal solutions to $O(n^2d^d\phi^d)$ for natural perturbation models. Additionally, we show that for any constant c the c-th moment of the smoothed number of Pareto-optimal solutions is bounded by $O(n^2(d+c)^d\phi^d)$. This improves the previously best known bounds significantly. Furthermore, we address the criticism that the perturbations in smoothed analysis destroy the zero-structure of problems by giving a polynomial bound for the smoothed number of Pareto-optimal solutions for zero-preserving perturbations. One consequence of this result is that the smoothed number of Pareto-optimal solutions is polynomially bounded for polynomial objective functions.

Kai Plöckenreit, Fraunhofer ITWM

A probabilistic PTAS for shortest common superstring

We consider approximation algorithms for the shortest common superstring problem (SCS). It is well-known that there is a constant $\beta > 1$ such that there is no efficient approximation algorithm for SCS achieving a factor of at most f in the worst case, unless $\text{NP} = \text{P}$ and we study SCS on random inputs and present an approximation scheme that achieves, for every $\epsilon > 0$, a $1+\epsilon$-approximation in expected polynomial time. This result applies only to the letters are chosen independently at random, but also to the more realistic mixing model, which allows for dependencies among the letters of the random strings. Our result is based on a sharp tail bound on the optimal compression, which improves a previous result by Frieze and Szpankowski.

Thu.1.TA 3021

Tobias Brunsch, Heiko Röglin, University of Bonn

Smoothed analysis of local search

Tobias Brunsch, University of Bonn (with Heiko Röglin)

Improved smoothed analysis of multiobjective optimization

We present several new results about smoothed analysis of multiobjective optimization problems. Particularly, we consider problems in which a linear and one arbitrary objective function are to be optimized over a set $S \subseteq \{0,1\}^n$ of feasible solutions. The coefficients of the linear objectives are subject to random perturbations specified by an adversary whose power is limited by a perturbation parameter ϕ. We improve the previously best known bound for the smoothed number of Pareto-optimal solutions to $O(n^2d^d\phi^d)$ for natural perturbation models. Additionally, we show that for any constant c the c-th moment of the smoothed number of Pareto-optimal solutions is bounded by $O(n^2(d+c)^d\phi^d)$. This improves the previously best known bounds significantly. Furthermore, we address the criticism that the perturbations in smoothed analysis destroy the zero-structure of problems by giving a polynomial bound for the smoothed number of Pareto-optimal solutions for zero-preserving perturbations. One consequence of this result is that the smoothed number of Pareto-optimal solutions is polynomially bounded for polynomial objective functions.

Kai Plöckenreit, Fraunhofer ITWM

A probabilistic PTAS for shortest common superstring

We consider approximation algorithms for the shortest common superstring problem (SCS). It is well-known that there is a constant $\beta > 1$ such that there is no efficient approximation algorithm for SCS achieving a factor of at most f in the worst case, unless $\text{NP} = \text{P}$ and we study SCS on random inputs and present an approximation scheme that achieves, for every $\epsilon > 0$, a $1+\epsilon$-approximation in expected polynomial time. This result applies only to the letters are chosen independently at random, but also to the more realistic mixing model, which allows for dependencies among the letters of the random strings. Our result is based on a sharp tail bound on the optimal compression, which improves a previous result by Frieze and Szpankowski.

Thu.1.A.4 313

Chao Ding, National University of Singapore (with Defeng Sun, Jane Ye)

First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this talk we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a major analogue of the mathematical program with [vector] complementarity constraints (MPCC) and includes MPCC as a special case. We derive explicit expressions for the strong-, Mordukhovich- and Clarke- $\{S-, M- \text{ and } C\}$-stationary conditions and give constraint qualifications under which a local solution of SDCMPC is a $S-\text{ and } C$-stationary point.

Stephan Dempe, TU Bergakademie Freiberg (with Alain Zemkoho)

Optimality conditions for bilevel programming problems

Bilevel programming problems are hierarchical optimization problems where the feasible region is (in part) restricted to the graph of the solution set mapping of a second parametric optimization problem. To solve them and to derive optimality conditions for these problems this parametric optimization problem needs to be replaced with its (necessary) optimality conditions. This results in a (one-level) optimization problem. In the talk different approaches to transform the bilevel programming will be suggested, and relations between the original bilevel problem and the one replacing it will be investigated. Necessary optimality conditions being based on these transformations will be formulated.

Jane Ye, University of Victoria (with Guifu Lin, Mengwei Xu)

On solving bilevel problems with a nonconvex lower level program

By using the value function of the lower level program, we reformulate a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint as a single level optimization problem with a nonsmooth inequality constraint and a convex set constraint. To deal with such a nonsmooth and nonconvex optimization problem, we design a smoothing projected gradient algorithm for a general optimization problem with a nonsmooth inequality constraint and a convex set constraint. We show that, if the sequence of the penalty parameters is bounded or the extended Mangasarian-Fromovitz constraint qualification holds at the accumulation point of the iteration points, then any accumulation point is a stationary point of the nonsmooth optimization problem. We apply the smoothing projected gradient algorithm to the bilevel program if the calmness condition holds and to an approximate bilevel program otherwise.

Thu.1.JA 2036

Linear programming: Theory and algorithms

Chair Tomonari Kitahara, Tokyo Institute of Technology

Andrè Tits, University of Maryland, College Park (with Pierre-Antoine Absil, Moyun He, Ming-Teo Laio, Diane O’Leary, Sungwoo Park, Luke Wittenberg)

The power of constraint reduction in interior-point methods

Constraint reduction is a technique by which, within an interior-point method, each search direction is computed based only on a small subset of the inequality constraints, containing those deemed most likely to be active at the solution. A dramatic reduction in computing time may result for severely imbalanced problems, such as fine discretizations of semi-infinite problems.

In this talk, we survey recent advances by the authors, including an algorithm with polynomial complexity. The power of constraint reduction is demonstrated on real-world applications, including filter design. Numerical comparison with both simplex and “unreduced” interior point is reported.

Barbara Abdessamad, IMB Université de Bourgogne

Strict quasi-concavity and the differential barrier property of gauges in linear programming

Concave gauge functions were introduced to give an analytical representation to cones. In particular, they give a simple and a practical representation of the positive orthant. The purpose of the present paper is to present another approach to penalizing the positivity constraints of a linear program by using an arbitrary strictly quasi-concave gauge representation. Throughout the paper, we generalize the concept of the central path and the analytic center in terms of these gauges, introduce the differential barrier concept and establish its relationship with strict quasi-concavity.

Tomonari Kitahara, Tokyo Institute of Technology (with Shinji Mizuno)

A proof by the simplex method for the diameter of a $[0,1]$-polytope

Naddef (1989) showed that the Hirsch conjecture is true for $(0,1)$-polytopes by proving that the diameter of any $(0,1)$-polytope in d-dimensional Euclidean space is at most d. In this short paper, we give a simple proof for the diameter. The proof is based on the number of solutions generated by the simplex method for a linear programming problem. Our work is motivated by Kitahara and Mizuno (2011), in which they got upper bounds for the number of different solutions generated by the simplex method.

Thu.1.1A 209
Conic programming

New results in copositive and semidefinite optimization
Organizer/Chair Mirjam Dür, University of Trier - Invited Session
Luuk Jiigen, Rijksuniversiteit Groningen [with Peter Dickinson, Mirjam Dür, Roland Hildebrand]
Scaling relationship between the copositive cone and Parrilo’s first level approximation
Several NP-complete problems can be turned into convex problems by formulating them as optimization problems over the copositive cone. Unfortunately checking membership in the copositive cone is a co-NP-complete problem in itself. To deal with this problem, several approximation schemes have been developed. One of them is the hierarchy of cones introduced by P. Parrilo, membership of which can be checked via semidefinite programming. We know that for matrices of order $n > 4$ the zero order parillo cone equals the copositive cone. In this talk we will investigate the relation between the hierarchy and the copositive cone for order $n > 4$. In particular a surprising result is found for the case $n = 5$.

Faizan Ahmed, University of Twente [with Georg Still]
On connections between copositive programming and semi-infinite programming
In this presentation we will discuss about the connections between copositive programming(CP) and Linear Semi-infinite Programming(LSIP). We will view copositive programming as a special instance of linear semi-infinite programming. Discretization methods with known for solving LSIP (approximately). The connection between CP and LSIP will lead us to interpret certain approximation schemes for CP as a special instance of discretization methods for LSIP. We will provide an overview of error bound for these approximation schemes in terms of the mesh size. Examples will illustrate the structure of the programs.

Boril Jargalsaikhan, University of Groningen [with Mirjam Dür, Georg Still]
Conic programming: Genericity results and order of minimizers
We consider generic properties of conic programs like SDPs and copositive programs. In this context, a property is called generic, if it holds for “almost all” problem instances. Genericity of properties like non-degeneracy and strict complementarity of solutions has been studied. In this talk, we discuss genericity of Slater’s condition in conic programs, in particular for SDP and copositive programs. We also discuss the order of the minimizers in SDP and copositive programs, which has important consequences for the convergence rate in discretization methods.

Instance-specific tuning, selection, and scheduling of solvers
Organizer/Chair Meinolf Sellmann, IBM Research - Invited Session
Meinolf Sellmann, IBM Research [with Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz]
Solver portfolios
We discuss the idea of selecting and scheduling solvers based on the features of a given input instance. In particular, we review the recently propose SAT Solver Selector (S3) and its parallel counterpart, p3S.

Yuri Malitsky, University College Cork [with Meinolf Sellmann]
Instance-specific algorithm configuration
The presentation focuses on a method for instance-specific algorithm configuration (ISAC). ISAC is a general configurator that focuses on tuning different categories of parameterized solvers according to the instances they will be applied to. Specifically, this presentation will show that the instances of many problems can be decomposed into a representative vector of features. It will further show that instances with similar features often cause similar behavior in the applied algorithm. ISAC exploits this observation by automatically detecting the different sub-types of a problem and then training a solver for each variety. Using ideas from traditional counterparts.

Lin Xu, University of British Columbia [with Holger Hoos, Frank Hutter, Kevin Leyton-Brown]
Evaluating component solver contributions to portfolio-based algorithm selectors
Portfolio-based algorithm selection can exploit complementary strengths of different solver and often represent the state of the art for solving many computationally challenging problems. In this work, we argue that a state-of-the-art method for constructing such algorithm selectors for the propositional satisfiability problem (SAT), SATzilla, also gives rise to an automated method for quantifying the importance of each of a set of available solvers. We entered the latest version of SATzilla into the analysis track of the 2011 SAT competition and draw two main conclusions from the results that we obtained. First, automatically-constructed portfolios of sequential, non-portfolio competition entries perform substantially better than the winners of all three sequential categories. Second, and more importantly, a detailed analysis of these portfolios yields valuable insights into the nature of successful solver designs in the different categories. For example, we show that the solvers contributing most to SATzilla were often not the overall best-performing solvers, but instead solvers that exploit novel solution strategies to solve instances that would remain unsolved without them.

Risk management in financial markets
Organizer/Chairs Nikos Trichakis, Harvard Business School; Dan Iancu, Stanford University - Invited Session
Gerry Tsoukalas, Stanford University [with Kay Giesecke, Jiang Wang]
Dynamic portfolio execution
We analyze the problem of dynamic portfolio execution for a portfolio manager facing adverse market impact and correlated assets. We focus on the market microstructure and show that supply/demand information, contained in the assets’ limit order books, can be utilized to improve execution efficiency. Adopting a partial-equilibrium framework, we show that the multivariate problem requires an extended liquidity model which cannot be efficiently solved via the usual dynamic programming methods. We provide an equivalent static reformulation of the problem that is solvable in polynomial time. We find that a strategic manager can take advantage of asset cross-elasticities to mitigate adverse market impact and significantly reduce risk-adjusted execution costs. We also introduce and analyze an important trade-off that arises in heterogeneous portfolios, between the manager’s need to minimize costs, and his desire to remain well-distributed throughout the horizon. We develop a simple risk management tool which gives managers dynamic control over this trade-off.

Zachary Feinstein, Princeton University [with Birgit Rudloff]
Set-valued dynamic risk measures
Set-valued risk measures appear naturally when markets with transaction costs are considered and capital requirements can be made in a basket of currencies or assets. We discuss the definition for such functions and the financial interpretation. Results for primal and dual representations of set-valued dynamic risk measures are deduced. Defini- tions of different time consistency properties in the set-valued framework are given. It is shown that in the set-valued case the recursive form for multivariate risk measures as well as an additive property for the acceptance sets is equivalent to a stronger time consistency property called multi-portfolio time consistency. As an example we consider the superhedging problem in markets with proportional transaction costs.

Vishal Gupta, Massachusetts Institute of Technology [with Dimitri Bertsimas]
A data-driven approach to risk preferences
Accurately specifying risk preferences is critical to financial applications; yet, risk preferences are not directly observable. Typical industry practice asks investors to self-describe as “conservative” or “risky”. In this work we take a data-driven approach. Using ideas from inverse optimization, we construct risk measures that are consistent with an investor’s historical portfolio holdings. When applied to a single in- vestor’s portfolio, our technique recovers a coherent risk measure approx- imately describing her behavior. This risk measure can then be used to inform subsequent reallocation or to cluster similar investors. When applied to the market portfolio, our approach provides an alterna- tive derivation of the popular Black-Litterman estimator. Unlike the original Bayesian derivation, our approach requires no probabilistic as- sumptions, and generalizes beyond the mean-variance paradigm. In- deed, we propose “BL-type estimators in environments characterized by volatility uncertainty. Computational experience suggests portfolios built from these estimators offer a better risk-reward tradeoff than their traditional counterparts.
We study truthful mechanisms for domains with additive valuations, like scheduling mechanisms on unrelated machines, or additive combinatorial auctions. Providing a global, Roberts-like characterization of such mechanisms is a classic, long open problem. Among others, such a characterization could yield a definitive bound on the makespan approximation ratio of truthful scheduling. We then move to the design of truthful mechanisms. For deterministic mechanisms, we obtain a negative result showing that a truthful 2/3-approximation of this guarantee is impossible. We complement this with a constant approximation for a constant number of goods. Finally we also establish some negative results for randomized algorithms.

On worst-case allocations in the presence of indivisible goods

We study a fair division problem with indivisible goods. In such settings, proportional allocations do not always exist, i.e., allocations where every agent receives a bundle of goods worth to him at least 1/n, with n being the number of agents. Hence one would like to find worst case guarantees on the value that every agent can have. We focus on an algorithmic and mechanism design aspect of this problem. In the work of [Hill 1987], an explicit function was identified, such that for any instance, there exists an allocation that provides at least this guarantee to everybody. The proof however did not imply an efficient algorithm for finding such allocations. Following upon the work of Hill, we first provide a slight strengthening of the guarantee we can make for every agent, as well as a polynomial time algorithm for computing such allocations. We then move to the design of truthful mechanisms. For deterministic mechanisms, we obtain a negative result showing that a truthful 2/3-approximation of this guarantee is impossible. We complement this with a constant approximation for a constant number of goods. Finally we also establish some negative results for randomized algorithms.

Characterizing anonymous scheduling mechanisms for two tasks

We study truthful mechanisms for domains with additive valuations, like scheduling mechanisms on unrelated machines, or additive combinatorial auctions. Providing a global, Roberts-like characterization of such mechanisms is a classic, long open problem. Among others, such a characterization could yield a definitive bound on the makespan approximation ratio of truthful scheduling. We investigate special classes of allocation functions, and show that any allocation that is either locally efficient (envy-free) or anonymous (‘player-symmetric’) must be an special affine minimizer, i.e. a weighted version of the VCG allocation. This is the first characterization result for truthful unrelated scheduling on more than two machines.

Interestingly, for the ‘mirrored’ problem of additive combinatorial auctions our characterization admits mechanisms different from affine minimizers. Thus our result demonstrates the inherent difference between the scheduling and the auctions domain, and inspires new questions related to truthfulness in additive domains.

Using lotteries to approximate the optimal revenue

We investigate the problem of time–optimal deceleration of a dynamics of asymmetric body with a spherical cavity filled with highly viscous fluid (for small Reynolds numbers). In addition, the rigid body is subjected to the action of a small retarding torque of linear resistance of the medium. The rotations are controlled by a bounded torque, which can be exerted by vernier jet engines. The functional Schwartz inequality turns out very useful in synthesizing control laws for deceleration of quasi-rigid bodies. Approximate solutions of perturbed minimum-time problems on rotation deceleration of rigid bodies relative to the center of mass, including objects with internal degrees of freedom, which have applications in dynamics of space- and aircrafts, are obtained. A number of mechanical models are invariant with respect to the angular momentum. In our problem the asymptotic approach made is possible to determine the control, time (Bellman’s function), evolutions of the magnitude of the elliptic functions modulus, and dimensionless kinetic energy and kinetic moment. The qualitative properties of the optimal motion were found.

Mechanisms for resource allocation problems

There has been much recent work on the revenue-raising properties of truthful mechanisms for selling goods. Typically the revenue of a mechanism is compared against a benchmark (such as, the maximum revenue obtainable by an omniscient seller selling at a fixed price to at least two customers), with a view to understanding how much lower the mechanism’s revenue is than the benchmark, in the worst case. Here we study this issue in the context of lotteries, where the seller may sell a probability of winning an item. We are interested in two general issues. Firstly, we aim at using the true optimum revenue as benchmark for our auctions. Secondly, we study the extent to which the additional expressive power resulting from lotteries, helps to improve the worst-case ratio.

We study this in the well-known context of digital goods, where the production cost is zero. We show that in this scenario, collusion-resistant lotteries (these are lotteries for which no coalition of bidders exchanging side payments has an advantage in lying) are as powerful as truthful ones.

On worst-case allocations in the presence of indivisible goods

On worst-case allocations in the presence of indivisible goods

On worst-case allocations in the presence of indivisible goods

Characterizing anonymous scheduling mechanisms for two tasks

Characterizing anonymous scheduling mechanisms for two tasks

Using lotteries to approximate the optimal revenue

Using lotteries to approximate the optimal revenue

Game theory

Game theory

Global optimization

Global optimization

Mean-field approaches to large scale dynamic auctions and mechanisms

Mean-field approaches to large scale dynamic auctions and mechanisms

Mean field equilibria of dynamic auctions with learning

Mean field equilibria of dynamic auctions with learning

Advances in global optimization I

Advances in global optimization I

Optimal bidding strategies and equilibria in repeated auctions with budget constraints

Optimal bidding strategies and equilibria in repeated auctions with budget constraints

Optimal deceleration of an asymmetric gyrostat in a resistive medium

Optimal deceleration of an asymmetric gyrostat in a resistive medium

Location on networks, Global optimization problems

Location on networks, Global optimization problems

Thu.1 MA 065

Organizer/Chair Giorgos Christodoulou, University of Liverpool - Invited Session

Carmine Ventre, University of Teeside (with Paul Goldberg)

Using lotteries to approximate the optimal revenue

There has been much recent work on the revenue-raising properties of truthful mechanisms for selling goods. Typically the revenue of a mechanism is compared against a benchmark (such as, the maximum revenue obtainable by an omniscient seller selling at a fixed price to at least two customers), with a view to understanding how much lower the mechanism’s revenue is than the benchmark, in the worst case. Here we study this issue in the context of lotteries, where the seller may sell a probability of winning an item. We are interested in two general issues. Firstly, we aim at using the true optimum revenue as benchmark for our auctions. Secondly, we study the extent to which the additional expressive power resulting from lotteries, helps to improve the worst-case ratio.

We study this in the well-known context of digital goods, where the production cost is zero. We show that in this scenario, collusion-resistant lotteries (these are lotteries for which no coalition of bidders exchanging side payments has an advantage in lying) are as powerful as truthful ones.

Vangelis Markakis, Athens University of Economics and Business (with Christos-Alexandros Psomas)

On worst-case allocations in the presence of indivisible goods

We study a fair division problem with indivisible goods. In such settings, proportional allocations do not always exist, i.e., allocations where every agent receives a bundle of goods worth to him at least 1/n, with n being the number of agents. Hence one would like to find worst case guarantees on the value that every agent can have. We focus on an algorithmic and mechanism design aspect of this problem. In the work of [Hill 1987], an explicit function was identified, such that for any instance, there exists an allocation that provides at least this guarantee to everybody. The proof however did not imply an efficient algorithm for finding such allocations. Following upon the work of Hill, we first provide a slight strengthening of the guarantee we can make for every agent, as well as a polynomial time algorithm for computing such allocations. We then move to the design of truthful mechanisms. For deterministic mechanisms, we obtain a negative result showing that a truthful 2/3-approximation of this guarantee is impossible. We complement this with a constant approximation for a constant number of goods. Finally we also establish some negative results for randomized algorithms.

Annamaria Kovacs, Goethe University, Frankfurt/M. (with Giorgos Christodoulou)

Characterizing anonymous scheduling mechanisms for two tasks

We study truthful mechanisms for domains with additive valuations, like scheduling mechanisms on unrelated machines, or additive combinatorial auctions. Providing a global, Roberts-like characterization of such mechanisms is a classic, long open problem. Among others, such a characterization could yield a definitive bound on the makespan approximation ratio of truthful scheduling. We investigate special classes of allocation functions, and show that any allocation that is either locally efficient (envy-free) or anonymous (‘player-symmetric’) must be an special affine minimizer, i.e. a weighted version of the VCG allocation. This is the first characterization result for truthful unrelated scheduling on more than two machines.

Interestingly, for the ‘mirrored’ problem of additive combinatorial auctions our characterization admits mechanisms different from affine minimizers. Thus our result demonstrates the inherent difference between the scheduling and the auctions domain, and inspires new questions related to truthfulness in additive domains.

Alexandre Protolinos, KTH (with Ramki Gummadi, Peter Key)

Optimal bidding strategies and equilibria in repeated auctions with budget constraints

How should agents bid in repeated sequential auctions when they are budget constrained? A motivating example is that of sponsored search auctions, where advertisers bid in a sequence of generalized second price (GSP) auctions. These auctions have many idiosyncratic features that distinguish them from other models of sequential auctions. (1) Each bidder competes in a large number of auctions, where each auction is worth very little. (2) The total bidder population is large, which means it is unrealistic to assume that the bidders could possibly optimize their strategy by modeling specific opponents. (3) The presence of a virtually unlimited supply of these auctions means bidders are necessarily expense constrained. Motivated by these three factors, we first frame the generic problem as a discounted Markov Decision Process and provide a structural characterization of the associated value function and the optimal bidding strategy, which specifies the extent to which agents underbid from their true valuation due to budget constraints. We then show the existence of Mean Field Equilibria for both the repeated second price and GSP auctions with a large number of bidders.

Thu.1 MA 643

Mean-field approaches to large scale dynamic auctions and mechanisms

Mean-field approaches to large scale dynamic auctions and mechanisms

Mean field equilibria of dynamic auctions with learning

Mean field equilibria of dynamic auctions with learning

Global optimization

Global optimization

Advances in global optimization I

Advances in global optimization I

Optimal bidding strategies and equilibria in repeated auctions with budget constraints

Optimal bidding strategies and equilibria in repeated auctions with budget constraints

Optimal deceleration of an asymmetric gyrostat in a resistive medium

Optimal deceleration of an asymmetric gyrostat in a resistive medium

Location on networks, Global optimization problems

Location on networks, Global optimization problems

Thu.1 MA 095

Game theory

Game theory

Global optimization

Global optimization

Mean field equilibria of dynamic auctions with learning

Mean field equilibria of dynamic auctions with learning

Game theory

Game theory

Thu.1.2053

Organizer/Chair Pål Buri, TU Berlin and University of Debrecon

Dmytro Leishchenko, Odessa State Academy of Civil Engineering and Architecture (with Leonid Akulenko, Alla Rachinskaya, Yarina Zinkevich)

Optimal deceleration of an asymmetric gyrostat in a resistive medium

We investigate the problem of time–optimal deceleration of rotations of a dynamically asymmetric body with a spherical cavity filled with highly viscous fluid [for small Reynolds numbers]. In addition, the rigid body is subjected to the action of a small retarding torque of linear resistance of the medium. The rotations are controlled by a bounded torque, which can be exerted by vernier jet engines. The functional Schwartz inequality turns out very useful in synthesizing control laws for deceleration of quasi-rigid bodies. Approximate solutions of perturbed minimum-time problems on rotation deceleration of rigid bodies relative to the center of mass, including objects with internal degrees of freedom, which have applications in dynamics of space- and aircrafts, are obtained. A number of mechanical models are invariant with respect to the angular momentum. In our problem the asymptotic approach made is possible to determine the control, time (Bellman’s function), evolutions of the magnitude of the elliptic functions modulus, and dimensionless kinetic energy and kinetic moment. The qualitative properties of the optimal motion were found.

Emilio Carriazo, Universidad de Sevilla (with Rafael Blanquero, Amaya Napoles)

Location on networks, Global optimization problems

We address some low-dimensional location problems on networks.
Contrary to classical location models such as the p-median or p-center, for which finite dominating sets exist, we consider models (e.g., the Huff problem, the p-median problem with continuously distributed demand) which can be written as (piecewise) d.c. optimization problems.

Structural properties are analyzed, and a branch-and-bound algorithm which exploits the d.c. structure of the objective to obtain bounds is described. Computational results are given, showing that problems on large networks are solvable in reasonable time as soon the number of facilities is small.

Pál Burai, TU Berlin and University of Debrecen

Necessary and sufficient condition on global optimality without convexity and second order differentiability

The main goal of this talk is to give a necessary and sufficient condition of global optimality for unconstrained optimization problems, when the objective function is not necessarily convex. We use Gâteaux differentiability of the objective function and its bidual (the latter is known from convex analysis).

Thu.1.H 0110

Commercial mathematical programming solvers II
Organizers: Hans Mittelmann, Arizona State University - Invited Session

Hans Mittelmann, Arizona State University

Selected benchmarks in continuous and discrete optimization

From our benchmarks at http://plato.asu.edu/bench.html we will quote the discrete and some of the continuous benchmarks. The discrete benchmarks are basically part of MIPLIB 2010. The continuous benchmarks include LP/GP, QCP, SOCP, and SDP.

Joachim Dahl, MOSEK A/S

Extending the conic optimizer in MOSEK with semidefinite cones

We discuss the conic optimizer in MOSEK with a special emphasis on the recent semidefinite capabilities in the solver.

Thu.1.H 0158

Presolve for linear and mixed-integer programming

Robert Bixby, Gurobi Optimization, Inc. [with Zonghao Gu, Ed Rothberg]

For linear programming, presolve typically amounts to reducing the size of the model; however, for mixed-integer programming the changes can be much more fundamental, producing a model “strengthening”, where this strengthening doesn’t simply speed the solution process, but can be the difference between a model being solvable and hopeless. We will examine the effect of presolve, including the effects of some of the key reductions as well as some of the more interesting new reductions that have been discovered over the last several years.

Vinicius Forte, Universidad Federal do Rio de Janeiro

Vertex coloring polytopes over trees and block graphs

Many variants of the vertex coloring problem have been defined, such as precoloring extension, μ-coloring, [γ, μ]-coloring, and list coloring. These problems are NP-hard, as they generalize the classical vertex coloring problem. On the other side, there exist several families of graphs for which some of these problems can be solved in polynomial time. The standard integer programming model for coloring problems uses a binary variable $x_{v\ell}$ for each vertex v and each color ℓ to indicate whether v is assigned color ℓ or not. An extension of this model considers binary variables $w_{v\ell\ell'}$ for each color ℓ to indicate whether color ℓ' is used or not. In this work we study this formulation for the polytopes corresponding to the polytopes mentioned above. In particular, we prove that if the classical vertex coloring problem yields an integer polytope for a family of graphs, then the same holds for μ-coloring, [γ, μ]-coloring, and list coloring over the same family. We prove that the polytope associated to these problems over trees is integer, and we provide empirical evidence suggesting that the same holds for block graphs.

Guillaume Sagot, Zuse Institut Berlin (ZIB)

PICOS: A python interface to conic optimization solvers

PICOS is a new user-friendly modeling language written in python, which interfaces several conic and integer programming solvers, similarly to YALMIP under MATLAB. PICOS offers the possibility to enter an optimization problem as a high level model, and to solve it with several different solvers. This can be very useful to quickly implement some models and test their validity on simple examples. Furthermore, with PICOS one can take advantage of the python programming language to easily read and write data, construct a list of constraints by using list comprehensions, make use of local variables.

In this talk, I will give a tutorial on PICOS, showing how to enter different optimization problems such as linear programs (LP), mixed integer programs (MIP), second order cone programs (SOCP), semidefinite programs (SDP), quadratically constrained quadratic programs (QCQP) or geometric programs (GP) in PICOS, and how to solve these problems with several solvers, including cvxopt, scip, mosek and cplex.

Thu.1.H 1023

Integer & mixed-integer programming

Chair: Vinicius Forte, Universidad Federal do Rio de Janeiro [with Abílio Lucena, Nelson Maculan]
receives exactly two colors, and the acyclic chromatic number $\chi_a(G)$ of a graph G is the minimum number of colors in any such coloring of G. Given a graph G and an integer k, determining whether $\chi_a(G) \leq k$ or not is NP-complete even for $k = 3$. The acyclic coloring problem arises in the context of efficient computations of sparse and symmetric matrix problems via graph theoretic methods. In this work we present an integer programming approach for this problem by introducing a natural integer programming formulation and presenting six facet-inducing families of valid inequalities. We study the disjunctive rank of these families of valid inequalities for the polytope associated to this formulation. We also introduce the concept of disjunctive anti-rank and study the anti-rank of these families.

Branch-and-price II: Column and row generation

Pedro Munari, University of Sao Paulo (with Jacek Gondzio)

Using interior point methods in branch-price-and-cut framework

Branch-price-and-cut framework has proven to be a very powerful method for solving integer programming problems. It combines decomposition techniques with the generation of both columns and valid inequalities and relies on strong bounds to guide the search in the branch-and-bound tree. In this talk, we present how the performance of branch-price-and-cut framework can be improved by using the primal-dual interior point method. We discuss in detail how the challenges involved in combining the primal dual interior point method with the integer programming techniques are addressed. The effort to overcome the difficulties pays off in a number of advantageous features offered by the new approach. We present the computational results of solving the well-known instances of the Vehicle Routing Problem with Time Windows, a challenging integer programming problem. The results confirm that the proposed approach delivers the best overall performance when compared with other branch-price-and-cut frameworks available in the literature.

Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

We develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming (LP) problems. These problems typically arise in the context of LP formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of LPs as problems with column-dependent-rows. To solve these problems efficiently, we need to be able to generate both columns and rows on-the-fly. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for our proposed column-and-row generation algorithm. We then introduce in detail a set of pricing subproblems, and prove the optimality of the algorithm. We conclude by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems.

Ruslan Sadykov, INRA Bordeaux - Sud Ouest (with François Vandenbcke)

Column generation for extended formulations

Working in an extended variable space allows one to develop tight reformulations for mixed integer programs. However, a direct treatment by a MIP solver is not possible because of the size of the reformulation. If the extended formulation stems from a decomposition principle: a subproblem admits an extended formulation from which is derived the extended formulation for the original problem, then, one can implement column generation for this extended formulation by transposing the equivalent procedure for the Dantzig-Wolfe reformulation. Pricing sub-problem solutions are expressed in the variables of the extended formulation and added to the current restricted version of the extended formulation along with the active sub-problem constraints. This so-called "column-and-row generation" procedure is revisited here in an unifying presentation and extended to the case of working with an approximate extended formulations. Numerical comparison of column-and-row generation with standard column generation shows that lifting pricing problem solutions in the space of the extended formulation permits their recombination into new sub-problem solutions and results in faster convergence.
(or attribute) characterizing the sequence. Hence, we obtain an object-property table where objects are sequences and properties are motifs extracted from sequences. This table can be used to apply standard machine learning tools to perform data mining tasks such as classification. Previous works described motif extraction methods for sequences classification, but none of these discussed the robustness of these methods when perturbing the input data. In this work, we introduce the notion of stability of the generated motifs in order to study the robustness of motif extraction methods. We express this robustness in terms of the ability of the method to reveal any change occurring in the input data and also its ability to target the interesting motifs. We use these criteria to evaluate and experimentally compare four existing methods.

Kamran Pregoncello, LUMS- CNRS (with Arno Berry, Anujit Biswas)

Clique separator decomposition and applications to biological data

The study of gene interactions is an important research area in biology. Nowadays, high-throughput techniques are available to obtain gene expression data, and clustering is a first mandatory step towards a better understanding of the functional relationships between genes. We propose a new approach using graphs to model this data, and decompose the graphs by means of clique minimal separators. A clique separator is a clique whose removal increases the number of connected components of the graph; the decomposition is obtained by repeatedly copying a clique separator into the components it defines, until only subgraphs with no clique separators are left: these subgraphs will be our clusters. The advantage of our approach is that this decomposition can be computed efficiently, is unique, and yields overlapping clusters. The latter enables us to visualize the data by a meta-graph where two clusters are adjacent if they intersect. In addition, clique separators help to identify special genes, called fusion genes, in sequence similarity networks, in the context of evolutionary history. Our first results applying this approach to transcriptomic data are promising.

Luyi Gui, Georgia Institute of Technology (with Ozlem Ergun)

Analysis of decentralized network systems

Organizers:Chair Özlem Ergun, Georgia Tech; Luyi Gui, Georgia Institute of Technology - Invited Session

Daniela Saban, Columbia University (with Nicolas Stier-Moses)

The competitive facility location game: Equilibria and relations to the 1-median problem

We consider a competitive facility location problem on a network in which consumers are located on the vertices and wish to connect to the nearest facility. Knowing this, competitive players locate their facilities on vertices that capture the largest possible market share. The competitive facility location problem was first proposed by Hotelling in 1929, where two ice-cream sellers compete on a mile of beach with demand uniformly distributed along the shore. It is well-known that a generalization of that game on a tree always admits an equilibrium. Furthermore, a location profile is an equilibrium if and only if both players locate their facilities in a 1-median of the tree. In this work, we further explore the relationship between the 1-median problem and the equilibria in competitive facility location games with two players. We generalize the previous result to the class of strongly chordal graphs, which strictly contain trees. In addition, we show that for certain classes of graphs in which an equilibrium does not always exist (such as cycles), if there is an equilibrium, it must satisfy that both players select vertices that solve the 1-median problem.

Luyi Gui, Georgia Institute of Technology (with Özlem Ergun)

A robustness analysis of a capacity exchange mechanism in multicommodity networks under demand uncertainty

We study the coordination of a decentralized multicommodity network system with individually-owned capacities by designing a capacity exchange mechanism under which capacity is traded according to predetermined unit prices. The goal is to maximize the social efficiency, measured by the total routing revenue, of the flow composed by individual players' selfish routing of their own commodities motivated by the mechanism. A practical challenge to do this arises from uncertainties in demand, as in many cases the mechanism is designed before the demand is revealed. Hence, it is desirable that the capacity exchange mechanism is robust, i.e., it can effectively coordinate the network under all potential demand scenarios using a fixed set of exchange prices. In this paper, we perform the following studies on the robustness of the capacity exchange mechanism under demand uncertainty. First, we characterize how network structure affects the robustness of the mechanism. Second, we investigate the computational side of designing a robust capacity exchange mechanism in any given network. We propose a general pricing algorithm and quantify the routing performance under the prices computed.

Douglas Fearig, Harvard Business School (with Ian Kast)

Managing air traffic disruption through strategic prioritization

In the U.S., air traffic congestion places a tremendous financial burden on airlines, passengers, and the economy as a whole. Outside of capacity increases, there are, broadly, two approaches to address congestion. The first is to manage existing capacity more effectively, while the second is to incentivize airlines to schedule fewer flights. In our work, we show how to accomplish both through strategic prioritization, a competitive scheme that allows airlines to make flight priority decisions in advance of operations. When there is a disruption, the specified priorities allow the regulator to reallocate capacity more efficiently. Additionally, maintaining these trade-offs can reduce the congestion-related costs to be internalized by each airline, thus reducing over-scheduling. Specifically, our approach requires airlines to bid for a proportional allocation of a fixed pool of prioritization minutes at each airport. We then modify the existing capacity rationing scheme by treating prioritized flights as if they had been scheduled earlier than their actual time. We demonstrate the benefits of this approach through both simulation and theoretical results.

Pierre Bonami, CNRS - Aix Marseille University

On disjunctive cuts for mixed integer convex programs

We study the separation of disjunctive cuts for mixed integer nonlinear programs where the objective is linear and the relations between the decision variables are defined by a convex feasible region. Our method can be seen as a practical implementation of the classical lift-and-project technique to the nonlinear case. To derive each cut we use a combination of a nonlinear programming subproblem and a linear outer approximation. One of the main features of this approach is that the nonlinear programming subproblems solved to generate cuts are typically not more complicated than the original continuous relaxation. In particular they do not require the introduction of additional variables and maintain the properties of the nonlinear functions describing the feasible region. We propose several strategies for using the technique and present computational evidence of its practical interest. In particular, the cuts allow us to improve the state of the art branch-and-bound of the solver Bonmin, solving more problems in faster computing times on average.

Ashutosh Mahajan, Argonne National Lab (with Sven Leyffer)

Algorithms for solving convex MINLPs with MINOTAUR

MINTOAUR is an open-source software toolkit for implementing algorithms for solving mixed-integer nonlinear optimization problems. We will describe the design features of the toolkit and present two new algorithms. The first is a new tree-search algorithm for solving convex MINLPs. Rather than relying on computationally expensive nonlinear solves at every node of the branch-and-bound tree, our algorithm solves a quadratic approximation at every node. We show that the resulting algorithm retains global convergence properties for convex MINLPs, and we present numerical results on a range of test problems. The second is an algorithm for presolving MINLPs. In order to improve the formulation of a MINLP in the presolve, we directly manipulate the computational graph of nonlinear functions. Extensive computational results showing effects of presolving on different algorithms for convex MINLPs are provided using what we call ‘extended performance-profiles’. We show improvements of up to two orders of magnitude in running time for some classes of problems.

Andrew Miller, Université Bordeaux 1 (with Hyemin Joon, Jeff Linderoth)

Valid inequalities for a nonseparable quadratic set

We describe approaches for finding strong valid inequalities for the convex hull of a quadratic mixed integer nonlinear set containing two integer variables that are linked by linear constraints. This study is motivated by the fact that such sets appear can be defined by a convex quadratic program, and therefore strong inequalities for this set may help to strengthen the formulation of the original problem. A number of the inequalities that we define for this set are nonlinear (specifically conic). The techniques used to define strong inequalities include not only ideas related to perspective reformulations of MINLPs, but also disjunctive and lifting arguments. Initial computational tests will be presented.
Thu.1.MA 042

MINLP theory and algorithms
Organizer/Chair Giacomo Nannicini, Singapore University of Technology and Design - Invited Session
Emiliano Traversi, TU Dortmund (with Christoph Buchheim)

Separable underestimators for quadratic combinatorial optimization
We propose a method to obtain separable underestimators for quadratic combinatorial optimization problems. By exploiting separability we can provide lower bounds by solving an integer linear program and use them in a branch and bound scheme. This is useful in practice when the underlying linear counterpart is easy to solve. We investigate the tightness of the bounds and their effect on the running time of the algorithm. Computational results are provided concerning the quadratic binary unconstrained problem and the quadratic spanning tree problem.

Stefano Coniglio, Politecnico di Milano (with Francesc Margó)

Spatial branch-and-bound for nonconvex Euclidean norm constrained mathematical programs
We are interested in mathematical programs involving Euclidean point-to-hyperplane distances. In particular, we focus on the Euclidean Linear Classification problem (ELC) of finding a hyperplane which best separates two sets of points by minimizing the sum of its Euclidean distance to the points on the wrong side. Given a point \(w \in \mathbb{R}^n \) and hyperplane with parameters \((w, y) \in \mathbb{R}^{n+1}\), their distance is \(|w^T - y| \) subject to \(w^T w \geq 1 \), whose feasible region is the nonconvex complement of the unit ball.

First, we observe that standard spatial branch-and-bound (sBB) methods employ not tight relaxations which yield nontrivial bounds only after many iterations. Then, we propose a novel sBB method where the complement of the unit ball is approximated with the convex hull of \(P \) and, at each sBB iteration, we refine it by adding a new vertex to \(P \) which corresponds to the new infeasible solution. Compared to a standard sBB on random ELC instances, our method reduces, on average, the computing time by 36%, the number of tree nodes by 63%, and the tree depth by 55%.

Thu.1.MA 0107

Linear algebra for optimization
Organizer/Chair Dominique Orban, GERAD and Ecole Polytechnique de Montreal - Invited Session
Martin Stoll, MPI Magdeburg (with John Pearson, Tyrone Rees, Andrew Wathen)

Preconditioning for time-dependent PDE-constrained optimization problems
In this talk, we motivate and test effective preconditioners to be used within a Krylov subspace algorithm for solving a number of saddle point systems, which arise in PDE-constrained optimization problems. We consider a variety of setups for different time-dependent PDEs such as the distributed control problem involving the heat equation, the Neumann boundary control problem subject to the heat equation and a distributed control problem with Stokes equations as the PDE-constraint. Crucial to the performance of our preconditioners in each case is an effective approximation of the Schur complement of the matrix system. In each case, we propose the preconditioning approach and provide numerical results, which demonstrate that our solvers are effective for a range of regularization parameter values, as well as mesh sizes and time-steps.

Santiago Akle, ICME Stanford University (with Michael Saunders)

Preconditioning for iterative computation of search directions within interior methods for constrained optimization
Our primal-dual interior-point optimizer PDCCO has found many applications for optimization problems of the form

\[
\min \phi(x) \text{ s.t. } A x = b, \quad 1 \leq x \leq u,
\]

in which \(\phi(x) \) is convex and \(A \) is a sparse matrix or a linear operator. We focus on the latter case and the need for iterative methods to compute dual search directions from linear systems of the form

\[
A D A^T \Delta y = r,
\]

\(D \) diagonal and positive definite.

Although the systems are positive definite, they do not need to be solved accurately and there is reason to use MINRES rather than CG (see PhD thesis of David Fong (2011)). When the original problem is regularized, the systems can be converted to least squares problems and there is similar reason to use LMSQR rather than LSQR.

Since \(D \) becomes increasingly ill-conditioned as the interior method proceeds, there is need for some kind of preconditioning. We examine the partial Cholesky approach of Bellavia, Gondzio and Morini (2011) and explore some alternatives that are better suited to applications in which \(A \) is a linear operator.

Dominique Orban, GERAD and Ecole Polytechnique de Montreal (with Chen Greif, Eric Moulding)

Spectral analysis of matrices arising in regularized interior-point methods
Interior-point methods feature prominently in the solution of inequality-constrained optimization problems, and involve the need to solve a sequence of \(3 \times 3 \) block indefinite systems that become increasingly ill-conditioned with the iterations. To solve these systems, it is common practice to perform a block Gaussian elimination, and either solve the resulting reduced \(2 \times 2 \) block indefinite system that has a typical saddle-point form, or further reduce the system to the normal equations and apply a symmetric positive definite solver. In this paper we explore whether the step of reducing the system from a \(3 \times 3 \) block matrix to a \(2 \times 2 \) block matrix necessarily pays off. We use energy estimates to obtain bounds on the eigenvalues of the coefficient matrices, and conclude that, at least in terms of spectral structure, it may be better to keep the matrix in its original unreduced form rather than perform a partial elimination before solving it.

Thu.1.H 0112

Convex nonlinear optimization I
Chair Ganesh Perumal, Infosys Limited / International Institute of Information Technology, Bangalore
Stefan Stefanov, Neofit Rilski South-Western University

Convex separable minimization with box constraints
Convex under minimization problems with a convex separable objective function subject to a convex separable inequality constraint of the form “less than or equal to” / linear equality constraint / linear inequality constraint of the form “greater than or equal to”, respectively, and bounds on the variables (box constraints). Such problems arise in both theoretical considerations and in practical problems. For the first and the second problem, a necessary and sufficient condition is proved for a feasible solution to be an optimal solution to the respective problem, and a sufficient condition is proved for a feasible solution to be an optimal solution to the third problem. Algorithms of polynomial computational complexity are presented.
complexity for solving these three problems are proposed and convergence of algorithms is proved. Some particular problems of the form under consideration as well as numerical results are presented.

Ganesh Persam, Infosys Limited / International Institute of Information Technology, Bangalore (with G. N. Srinivasa Prasanna)

A decomposition technique for convex optimization problems

In this presentation, we give a decomposition technique that is applicable to general convex optimization problems. The feasible space is divided into small sub-spaces and information about a particular sub-space containing the optimal solution is estimated from the cost function and the constraint set. The properties of such sub-spaces and their existential proof are explained. The complexity of applying this decomposition technique is also discussed.
far from the boundaries. The effectiveness of the approach is demonstrated by examples of existing large, real networks.

Ken McKinnon, Edinburgh University (with Waquas Bukhsh, Andreas Grothey, Paul Todtten) An MINLP approach to islanding electricity networks

Intentional islanding is attracting an increasing amount of attention as a means of preventing large-scale blackouts in electricity transmission networks. In this talk, a mathematical formulation for islanding is presented, in which suspected unhealthy components of the network are considered while a load shed is minimized. To achieve balanced, feasible islands, nonlinear AC power flow equations should be included, resulting in an MINLP problem. In the proposed MILP formulation, these terms are approximated by piecewise linear functions. The approach is demonstrated by results on test networks.

Elad Hazan, Technion – Israel Institute of Technology (with Elad Achiel, Andreas Pitter) Optimization and model reduction methods for heat source determination in welding

The physical phenomena in welding can yet cannot completely be described by mathematical models. In industrial applications, it is therefore common to describe the effects of the heat energy by means of a parameterized volume source. Its parameters are obtained in several steps by a calibration of computed and experimental temperature data extracted out of transverse sections and thermo-elements. In each step, a time-dependent partial differential equation (PDE) on a three-dimensional domain has to be solved. The industrial standard practice is to use standard Finite Element methods for simulation of the PDE and to apply the calibration manually leading to overall times of up to several weeks for the procedure.

In this talk, we will formulate the procedure as an optimization problem with a finite-dimensional optimization variable and infinite-dimensional equality constraints, and we will discuss theoretical aspects of the problem. We will then develop and apply optimization strategies combined with model reduction methods such as Proper Orthogonal Decomposition, H2-norm model reduction and Balanced Truncation to solve the problem efficiently.

Thu.1.MA 004

Robust optimization, estimation and machine learning
Organizer/Chair Aharun Ben-Tal, Technion – Israel Institute of Technology - Invited Session
Shimrit Shiron, Technion – Israel Institute of Technology (with Aharun Ben-Tal) A robust optimization approach for tracking under bounded uncertainty

Classical dynamic control theory assumes that the system is afflicted with white noise and minimizes estimation mean square error, usually by applying the Kalman filter (KF). In some applications, such as tracking, the assumption of white, unbounded noise is unrealistic. In these cases a worst case analysis, specifically the maximal error norm, might be a better measure of performance. In tracking applications ignoring worst case occurrences might have grave implications. Large errors decrease the probability of successfully tracking an object, especially in presence of clutter or when tracking multiple objects. In order to analyze the worst case scenario for a general dynamic control problem, given the filter, we need to solve a non-convex Quadratic Constrained Quadratic Problem. Since this problem is generally NP-hard we try to utilize the problem’s block characteristics in order to find upper and lower bounds. We find these bounds through Semidefinite Programming and Block-wise Asymptotic. We compared the KF results to a greedy worst case filter (UBF) and found that, in most cases, UBF indeed performs better in regard to worst case analysis.

Thu.1.MA 415

Optimization applications in industry VI
Organizer/Chair Dietmar Hömberg, Weierstrass Institute for Applied Analysis and Stochastics - Invited Session
Ekaterina Kostina, University of Marburg (with H.-G. Bock, G. Kriwet, J.P. Schlöder) Optimization methods for nonlinear model predictive control of non-stationary partial differential equations

Many spatio-temporal processes in the natural and life sciences, and engineering are described by the mathematical model of non-stationary PDE. It would be of high practical relevance as well as a mathematical challenge to use such models for a process optimization subject to numerous important inequality restrictions. However, in the presence of disturbances and modeling errors the real process will never follow the off-line computed optimal solution. Thus the challenge is to compute feedback controls that take these perturbations into account. We present a new optimization method for the NMPC. The NMPC principle is to solve a complete optimal control problem whenever new information about perturbations is available and to apply the first instant of the optimal control as a feedback law. However the frequency of perturbation information is orders of magnitude higher than even a single optimization iteration. Therefore we discuss multi-level iterations strategy to make NMPC computations real-time feasible for PDE optimal control problems.

Georg Vossen, Niedersachsen University of Applied Sciences (with Axel Hack, Andreas Pitter)
sublinear-time algorithms for linear classification, support vector machine training, and other related optimization problems, including general semi-definite programming and robust linear programming. These new algorithms are based on a primal-dual approach, and use a combination of novel sampling techniques and the randomized implementation of online learning algorithms. We give lower bounds which show our running times to be nearly best possible.

Chiranjib Bhattacharyya, Indian Institute of Science (with Aadit Ben-Tal, Sahely Bhadra, Arkadi Nemirovski)

Making SVM Classifiers robust to uncertainty in kernel matrices

We consider the problem of uncertainty in the entries of the Kernel matrix, arising in Support Vector Machine (SVM) formulation. Using Chance Constraint Programming and a novel large deviation inequality we derive a robust formulation which requires only second order statistics of the uncertainty. The formulation in general is non-convex, but in several cases of interest it reduces to a convex program. To address the non-convexity issue we propose a robust optimization based procedure. Specifically the uncertainty is modeled as a positive affine combination of given positive semi-definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. Subsequently using the Robust Optimization methodology, the SVM problem can be posed as a convex concave saddle point problem. We show that the problem admits an efficient first order algorithm for this problem, which achieves an $O(1/T^2)$ reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure datasets show that the proposed formulations achieve desired robustness.

Alexandre D'Aspremont, CNRS – Ecole Polytechnique

Computable bounds for sparse recovery

This talk will focus on a geometrical interpretation of recent results in high dimensional statistics and show how some key concepts controlling model selection performance can be approximated using convex relaxation techniques. We will also discuss the limits of performance of these methods and describe a few key open questions.

Fatma Kilinc Karzan, Carnegie Mellon University (with Anatoli Juditsky, Arkadi Nemirovski)

Verifiable sufficient conditions for ℓ_1-recovery of sparse signals

In this talk, we will cover some of the recent developments in large-scale optimization motivated by the compressed sensing paradigm. The majority of results in compressed sensing theory rely on the ability to design/use sensing matrices with good recoverability properties, yet there is not much known in terms of how to verify them efficiently. This will be the focus of this talk. We will analyze the usual sparse recovery framework as well as the case when a priori information is given in the form of sign restrictions on the signal. We will propose necessary and sufficient conditions for a sensing matrix to allow for exact ℓ_1-recovery of sparse signals and utilize them. These conditions, although difficult to evaluate, lead to sufficient conditions that can be efficiently verified via linear or semidefinite programming. We will analyze the properties of these conditions while making connections to disjoint bilinear programming and introducing a new and efficient bounding schema for such programs. We will finish by presenting limits of performance of these conditions and numerical results.

Anatoli Juditsky, LMK, Université J. Fourier (with Fatma Kilinc-Karzan, Arkadi Nemirovski)

Accuracy guarantees and optimal ℓ_1-recovery of sparse signals

We discuss new methods for recovery of sparse signals which are based on ℓ_1 minimization. Our emphasis is on verifiable conditions on the problem parameters (sensing matrix and sparsity structure) for accurate signal recovery from noisy observations. In particular, we show how the certificates underlying sufficient conditions of exact recovery in the case without noise are used to provide efficiently computable bounds for the recovery error in different models of imperfect observation. These bounds are then optimized with respect to the parameters of the recovery procedures to construct the estimators with improved statistical properties. To justify the proposed approach we provide oracle inequalities which link the properties of the recovery algorithms to the best estimation performance in the Gaussian observation model.

Verifiable sufficient conditions for ℓ_1-recovery of sparse signals (Fatma Kilinc Karzan, Anatoli Juditsky, Arkadi Nemirovski)

Computable bounds for sparse recovery (Alexandre D'Aspremont)

Verifiable sufficient conditions for ℓ_1-recovery of sparse signals (Fatma Kilinc Karzan, Anatoli Juditsky, Arkadi Nemirovski)

Computable bounds for sparse recovery (Alexandre D'Aspremont)
eral description of the algorithm and present computational studies re-

Suvrajeet Sen, University of Southern California (with Zhizhong Zhou)

Multi-stage stochastic decomposition

In this paper, we propose a statistically motivated sequential sam-

ple method that is applicable to multi-stage stochastic linear pro-

grams, and we refer to it as the Multi-stage Stochastic Decomposition
(MSD) algorithm. As with earlier SD methods for two-stage stochas-

tic linear programs, this approach preserves the main computational
features of SD: asymptotic convergence of the solutions can be proven
(with probability one) without any iteration requiring more than a small
sample-size. Our asymptotic analysis shows the power of regularization
in overcoming some of the assumptions (e.g., independence between
stages) associated with other sample-based algorithms for multi-stage
stochastic programming.

Thu.1 H 3502

Networks in production, logistics and transport

Organizer/Chair Sven Krume, University of Kaiserslautern - Limited Session

Sabine Bütter, University of Kaiserslautern

Online network routing amongst unknown obstacles

We consider variants of online network optimization problems con-
peting to graph exploration. In the problem, there is a special vertex r ∈ V, penalties p: V → R, and the goal is to find a closed tour T such that r ∈ V(T) and such that the cost C(T) + p(r) is minimized. An online algorithm learns from a blocked edge only when reaching one of its endpoints. The bus operator has the option to avoid visiting each node v ∈ V by paying a refund of p(v) to the tourists. The goal is to minimize the sum of the travel costs and the refunds. We show that no deterministic or randomized algorithm can achieve a bounded competitive ratio for the CTOP on general graphs and give O(1)-competitive algorithms for special networks. We also relate the problem to other (classical) online network and routing problems.

Thomas Worth, TU Kaiserslautern (with Sven Krume, Heike Spöter)

Bottleneck routing games

We consider Nash and strong equilibria in weighted bottleneck rout-
ing games in single commodity networks. In such a game every player
chooses a path from the common source vertex to the sink vertex in
a graph with directed edges. The cost of an edge depends on the total
weight of players choosing it and the personal cost every player tries
to minimize is the cost of the most expensive edge in her path, the bottle-
neck value.

To derive efficient algorithms for finding equilibria in unweighted
games, we generalize a transformation of a bottleneck game into a spe-
cial congestion game introduced by Caragiannis et al. (2005).

For weighted routing games we show that Greedy methods give
Nash equilibria in extension-parallel and series-parallel graphs. On the
other hand, computing a strong equilibrium is co-NP complete in gen-
eral graphs, even for linear latency functions.

Furthermore, we show that the Price of Anarchy can be arbitrari-
ably high for different situations and give tight bounds depending on
the topology, the number and weights of the users and the degree of the
polynomial latency functions.

Marco Bender, University of Göttingen (with Sabine Bütter, Sven Krume)

Online delay management: Beyond competitive analysis

We consider the Online Delay Management Problem on a network
with a path topology that is served by a line-rail. In this problem, the
number of delayed passengers is not known beforehand but revealed in
an online fashion. The goal is to decide at which station a train should wait
in order to minimize the total delay of all passengers.

We introduce the concept of a lookahead which yields information
about delays at succeeding stations. Although lookahead does not lead to
better competitive ratios, we can justify the intuition that it is a feature that
does help an algorithm. To this end, we make use of comparative analy-

 Telcommunications & networks

Thu.1 H 3503

Allocation problems

Chair Anders Gufler, NTNU (Trondheim)

Hasan Tunar, University of Talcahu (with Nitin Kasap)

Volume discount pricing policy for capacity acquisition and task
allocation models in telecommunication with fuzzy QoS Constraints

In this paper, we analyze single period and single objective off-line cost minimiza-
tion problem of a firm under nondeterministic settings of the telecom-
munication network environment. In this paper, the quality of service
(QoS) levels guaranteed by network providers and the minimum QoS
level which is needed for accomplishing operations without interruption
are denoted as fuzzy numbers in order to absorb the imprecise nature of
the real world telecom problems. The mathematical formulation of
the aforementioned problem leads to the non-linear mixed integer pro-
grmming model with fuzzy constraints. Thus, we propose a fuzzy set
theory based novel heuristic algorithm procedure that have the capa-
bility of solving complex vendor selection and task allocation problems
in communication networks by considering volume discounts offered by
telecommunication capacity suppliers. Finally, the efficiency of algo-
rithm is tested on several test scenarios to demonstrate the applicability
of the methodology to assist decision makers.

Anders Gufler, NTNU (Trondheim) (with Bjørn Nygård)

Service deployment in cloud data centers regarding quality of
service (QoS) requirements

Cloud computing and its Software-as-a-Service (SaaS) model has made
impact on the way ICT services are being delivered to the users, and
gives providers more flexibility in scaling the services according to
the demand. In the provisioning, a SaaS provider needs to focus on
cost and energy-efficient operation of its private cloud, and ensure that
the services deployed on the nodes in the cloud have a QoS satisfying
the agreed requirements. In this talk, we mainly focus on decisions of a
SaaS provider related to the management of his services and cloud data
centers, but also acknowledge decisions related to bursting services into
public clouds. A service is modeled as a collection of distinct compo-
nents, and increased QoS is obtained by adding active or passive copies
of these, leading to several ways to satisfy the QoS requirements. We
will present (M)IP models of a problem where the goal is to minimize
the cost of running services in private and public clouds, while ensur-
ing satisfactory QoS. Firstly a direct formulation is created, and then
we reformulate the model, utilizing column generating techniques with
pregeneration of node patterns, by which we achieve better results.

Deepak Garg, Panjab University (with Harmandra Kumar, Manishoo Sharma)

Heuristic mathematical models for solving dynamic task assignment
problem in distributed real time systems

Efficient task scheduling is a crucial step to achieve high perfor-
mence for multiprocessor platform remains one of the challenging
problems despite of the numerous studies. In a distributed real time
system (DRTS) the tasks of a program must be assigned dynamically
to the heterogeneous processors, so as to utilize the computational ca-
pabilities and resources of the system efficiently. This paper deals with
dynamical task assignment problem for allocating the m tasks of dis-
btributed task to n heterogeneous processors (m ≫ n) to minimize
the total cost of the program, which permits each task to be migrated
from one processor to another during the execution of the program. To
design the mathematical model, phase wise execution cost (EC), inter-
task communication cost (ITCC), migration cost (MC) and residence cost
(RC) of each task on each processor has been taken in the form of ma-
trices.

Thu.1 H 2035

Structure and stability of optimization problems

Chair Jan-J. Ruckmann, University of Birmingham

Jan-J. Ruckmann, University of Birmingham

Max-type objective functions: A smoothing procedure and strongly
stable stationary points

We consider the minimization of A max-type function over a feasible
set W and apply the concept of strongly stable stationary points to
this class of problems. We use a logarithmic barrier function and con-
struct a family M of interior point approximations of W where M is
described by a single smooth inequality constraint. We show that there is a
one-to-one correspondence between the stationary points [and their
corresponding stationary indices) of the original problem and those with the feasible set \mathcal{P}.

Helmut Gfrerer, Johannes Kepler University Linz

Second-order conditions for a class of nonsmooth programs

We study infinite dimensional optimization problems with constraints given in form of an inclusion $0 \in F(x) - S(x)$, where F denotes a smooth mapping and S is a generalized polyhedral multifunction, e.g., the normal cone mapping of a convex polyhedral set. By using advanced techniques of variational analysis we obtain second-order characterizations, both necessary and sufficient, for directional metric subregularity of the constraint mapping. These results can be used to obtain second-order optimality conditions for the optimization problem.

Peter Fucak, Comenius University Bratislava

On metric regularity of the Kojima function in nonlinear semidefinite programming

The one-to-one relation between the points fulfilling the KKT conditions of an optimization problem and the zeros of the corresponding Kojima function is well-known. In the present paper we study the interplay between metric regularity and strong regularity of this a priori nonsmooth function in the context of semidefinite programming. Having in mind the topological structure of the positive semidefinite cone we identify a class of Lipschitz metrically regular functions which turn out to have coherently oriented B-subdifferentials. This class is broad enough to include the Kojima function corresponding to the nonlinear semidefinite programming problem.

Thu.1. H 2051

Optimization methods for nonsmooth inverse problems in PDEs

Organizers/Chairs Akhtar Khan, Rochester Institute of Technology; Christian Clason, Karl-Franzens-Universität Graz – Invited Session

Barbara Kaltenbacher, Alpen-Adria University Klagenfurt (with Bernd Hofmann, Frank Schöpfer, Thomas Schuster)

Iterative regularization of parameter identification in PDEs in a Banach space framework

Natural formulations of inverse problems for PDEs often lead to a Banach space setting, so that the well-established Hilbert space theory of regularization methods does not apply. The talk will start with an illustration of this fact by some parameter identification problems in partial differential equations. Then, after a short detour to variational regularization, we will mainly focus on iterative regularization methods in Banach spaces. We will dwell on gradient and Newton type methods as well as on their extension from the original Hilbert space setting to smooth and convex Banach spaces. Therewith, convexity of the Newton step subproblems is preserved while often nondifferentiability might be introduced, which results in the requirement of solving a PDE with non-smooth nonlinearity for evaluating the duality mapping. Convergence results for iterative methods in a Banach space framework will be discussed and illustrated by numerical experiments for one of the above mentioned parameter identification problems.

Bernd Hofmann, TU Chemnitz

On smoothness concepts in regularization

A couple of new results on the role of smoothness and source conditions in Tikhonov type regularization in Hilbert and Banach spaces are presented. Some aspect refers to the role of appropriate choice rules for the regularization parameter. The study is motivated by examples of nonlinear inverse problems from inverse option pricing and laser optics.

Christian Clason, Karl-Franzens-Universität Graz

Inverse problems for PDEs with uniform noise

For inverse problems where the data is corrupted by uniform noise, it is well-known that the L^∞ norm is a more robust data fitting term than the standard L^2 norm. Such noise can be used as a statistical model of quantization errors appearing in digital data acquisition and processing. Although there has been considerable progress in the regularization theory in Banach spaces, the numerical solution of inverse problems in L^∞ has received rather little attention in the mathematical literature so far, possibly due to the nondifferentiability of the Tikhonov functional. However, using an equivalent formulation, it is possible to derive optimality conditions that are amenable to numerical solution by a superlinearly convergent semi-smooth Newton method. The automatic choice of the regularization parameter ν using a simple fixed-point iteration is also addressed. Numerical examples illustrate the performance of the proposed approach as well as the qualitative behavior of L^∞ fitting.

Thu.2. H 3010

Scheduling, packing and covering

Organizers/Chair Nicole Magow, Technische Universität Berlin – Invited Session

Wiebe Höhn, TU Berlin (with Tobias Jacobs)

On the performance of Smith’s rule in single-machine scheduling with nonlinear cost

We consider the problem of scheduling jobs on a single machine. Given some continuous cost function, we aim to compute a schedule minimizing the weighted total cost, where the cost of each individual job is determined by the cost function value at the job’s completion time. This problem is closely related to scheduling a single machine with nonuniform processing speed. We show that for piecewise linear cost functions it is strongly NP-hard.

The main contribution of this article is a tight analysis of the approximation factor of Smith’s rule under any particular convex or concave cost function. More specifically, for these wide classes of cost functions we reduce the task of determining a worst case problem instance to a continuous optimization problem, which can be solved by standard algebraic or numerical methods. For polynomial cost functions with positive coefficients it turns out that the tight approximation ratio can be calculated as the root of a univariate polynomial. To overcome unrealistic worst case instances, we also give tight bounds that are parameterized by the minimum, maximum, and total processing time.

Christoph Dür, CNRS, Uni Lyon Pierre et Marie Curie

Packing and covering problems on the line as shortest path problems

A popular approach to understand a new problem is to model it as an integer linear program, and to analyze properties of the relaxed linear program. Sometimes one might discover the variable-constraint matrix is totally unimodular (TUM), which implies that the problem has a polynomial time solution, most likely with a flow structure. In some cases however the linear program is not TUM, but nevertheless has the property, that whenever it has a solution, all optimal extrem point solutions are integral. Again this leads to a polynomial time solution, just by solving the relaxed linear program. D. and Mathilde Hurand in 2006 found that some of these linear programs could be simplified as shortest path formulations. In 2011 Alejandro López-Ortiz and Claude-Guy Quimper showed how the special structure of these shortest path instances could be used to solve the problem within improved running time. In this talk the outline of these analysis and simplification techniques are presented, illustrated on packing and covering problems on the line.

Alexandre Souza, Apixo AG (with Matthias Hellewig)

Approximation algorithms for generalized and variable-sized bin covering

We consider the NP-hard Generalized Bin Covering problem: We are given m bin types, where each bin of type i has profit p_i and demand d_i. Here, n items, where item j has size s_j. A bin of type i is covered if the set of items assigned to it has total size at least the demand d_i. Then, the profit of p_i is earned and the objective is to maximize the total profit. To the best of our knowledge, only the cases $p_i = d_i = 1$ [Bin Covering] and $p_i = d_i$ [Variable-Sized Bin Covering] have been treated before. We study two models of bin supply: In the unit supply model, we have exactly one bin of each type and in the infinite supply model, we have arbitrarily many bins of each type.

We prove that there is a combinatorial 5-approximation algorithm for Generalized Bin Covering with unit supply, which has running time $O(mn\sqrt{m+n})$. For Variable-Sized Bin Covering, we show that the Next Fit Decreasing (NFD) algorithm is a $9/4$-approximation in the unit supply model. We also show that there is an APFATAS for Variable-Sized Bin Covering in the infinite supply model.

Thu.2. H 3004

Cycles in graphs

Chair Peter Recht, TU Dortmund

Eva-Maria Sprengel, TU Dortmund, Germany (with Peter Recht)

An optimal cycle packing for generalized Petersen graphs $P(n,k)$ with k even

For an undirected graph $G = (V,E)$ a maximum cycle packing is a collection of pairwise edge-disjoint cycles. The maximum cardinality of such a packing is denoted as the cycle packing number $w(G)$.

In general the determination of a maximum cycle packing and the cycle packing number, respectively, is NP-hard.

In this lecture we consider the family of generalized Petersen graphs $P(n,k)$ with k even. We give a lower and an upper bound on
the cycle packing number and outline the structure of one optimal cycle packing of such graphs.

Peter Recht, TU Dortmund (with Eva-Maria Sprengel)

A ‘sum-max-theorem’ for the cycle packing problem in Eulerian graphs

This lecture deals with the problem to determine a set $Z = \{ C_1, C_2, \ldots, C_d \}$ of edge-disjoint cycles of maximum cardinality $\nu(G)$ in a graph $G = (V, E)$. The problem is tackled by considering special subgraphs:

For a vertex $v \in V$, let $T(v)$ be a local trace at v, i.e. $T(v)$ is an Eulerian subgraph of G such that every walk $W(v)$, with start vertex v, can be extended to an Eulerian tour in $T(v)$. In general, maximal local traces are not uniquely defined but their packing numbers $\nu(T(v))$ are.

We prove that if G is an Eulerian every maximum edge-disjoint cycle packing Z of G induces maximum local traces $T(v)$ at for every $v \in V$. In the opposite, if the total size $\sum_{v \in V} \nu(T(v))$ is minimal then the set of induced edge-disjoint cycles in G must be maximum.

The determination of such a maximal trace leads to a multi-commodity flow-problem with quadratic objective function.

Lamia Aoudia, University of Sciences and Technologies Houari Boumediene (U.S.T.H.B) (with Meziane Adler)

4-cycle polytope on a graph

The aim of this work is to give a convex hull of 4-cycle on a wider class of complete bipartite graphs. Given a bipartite graph $K_{m,n}$, where $|V_1| = n$ and $|V_2| = m$, $E = V_1 \cup V_2$ and a weight function $w : E \to \mathbb{R}$, the minimum weighted 4-cycle problem consist on finding a 4-cycle $C \subseteq E$ such that $\sum_{e \in C} w(e)$ is minimum. This problem can easily be solved in polynomial time by complete enumeration of the the 4-cycles of C. For each 4-cycle C, let X^e denote the incidence vector of C defined by $X^e(v_1) = 1$ and $X^e(v_2) = 0$ if $e \in E$. The 4-cycle polytope $PC_{4,n,m}$, is the convex hull of the incidence vectors of the 4-cycles of $K_{m,n}$, i.e. $PC_{4,n,m} = \text{convex hull} \{X^e | e \in \{0,1\}^4 : C \text{ is a 4-cycle of } G \}$. The minimum weighted 4-cycle problem is clearly equivalent to the linear program

$$\min \{w(x) : x \in PC_{4,n,m} \}.$$

We are mainly interested by the facial structure of $PC_{4,n,m}$. Thus, we enumerate some inequalities defining facets of $PC_{4,n,m}$.

Carilfe Lavor, State University of Campinas (with Leo Liberti, Nelson Maculan, Antonio Mucherino)

A discrete approach for solving distance geometry problems related to protein structure

Nuclear Magnetic Resonance (NMR) experiments can provide distance information on the distances is a Molecular Distance Geometry Problem (MDGP) on the same ground set I and A. Our goal is to find a common independent set I of M_1 and M_2 such that $|I \cap A|$ is maximum among all common independent sets of M_1 and M_2 and such that (secondly) $|I|$ is maximum among all common independent sets of M_1 and M_2 satisfying the first condition. This problem can be solved by reducing it to the weighted matroid intersection problem. In this paper, we consider the following question: Is reduction to the weighted matroid intersection problem is inevitable? We prove that our problem can be solved by using a Dulmage-Mendelsohn decomposition without reduction to the weighted matroid intersection problem.

Naoyuki Kamiyama, Kyushu University

Matroid intersection with priority constraints

In this paper, we consider the following variant of the matroid intersection problem. We are given two matroids M_1 and M_2 on the same ground set S and a subset A of S. Our goal is to find a common independent set I of M_1 and M_2 such that $|I \cap A|$ is maximum among all common independent sets of M_1 and M_2 and such that (secondly) $|I|$ is maximum among all common independent sets of M_1 and M_2 satisfying the first condition. This problem can be solved by using a Dulmage-Mendelsohn decomposition without reduction to the weighted matroid intersection problem.

Brita Peis, TU Berlin (with Tobias Harks)

Resource buying games

In resource buying games, players jointly buy a subset of a given resource set. As in classical congestion games, each player has a predefined family of subsets of the resources from which she needs at least one to be available. However, a resource is only available if the sum of payments of all players cover the load-dependent cost of that resource. A strategy of a player is therefore a tuple consisting of one of her resource sets together with a payment vector indicating how much she is willing to contribute towards the purchase of each resource. During the talk, we study the existence and computability of pure Nash equilibria in resource buying games. Resource buying games reduce to connection games in the special case where the costs are fixed and the players’ resource sets are network-paths connecting two player-specific terminals. While there exist very simple connection games without PNE, we will see that PNEs exist and can be efficiently computed if each player’s strategy set is a disjoint set of matroids and the marginal cost of each resource is monotone.
auxiliary variables replace the quadratic monomials, yields an exact IP-formulation, but the resulting LP-bounds are weak in general. For BQP whose underlying linear problem is efficiently solvable, we propose an improved approach. We consider the corresponding problem with only one monomial in the objective function and observe that valid inequalities of the single monomial problem remain valid for the general case. With the aid of an extended formulation, a polynomial time separation algorithm for the single monomial problem is presented, which exploits the simple structure of the linear case and is extendable to BQP with a constant number of monomials. The idea of separating valid inequalities in the single monomial case is applied to the quadratic minimum spanning tree problem (QMST). We present a new class of facets for QMST with one monomial and, similarly to the linear case, exploit its combinatorial structure for obtaining an efficient separation algorithm. Computational results show the advantages of the resulting inequalities for QMST.

Chair Peter Gritzmann, TU München

Natalia Shakhlevich, University of Leeds (with Peter Brucker)

Combinatorial optimization under uncertainty

Organizer/Chair Bo Chen, University of Warwick - Invited Session

Xiuli Chao, University of Michigan (with Boryl Chen)

Dynamic pricing decision for a monopoly with strategic customers and price adjustment

We consider a monopoly firm selling a product over a finite planning horizon to a finite customer base. Each customer requires at most one product and decides whether and when to purchase the product. The customers are strategic and forward looking in making their purchasing decisions. The firm’s objective is to set the selling price in each period to maximize its total discounted revenue. We analyze the effect and benefits for the firm’s strategy to offer a price adjustment. Our research questions are the following: How does the price adjustment strategy affect the optimal selling price in each period and the consumer behavior who benefits and who is hurt by this price adjustment strategy? The problem is modeled as a dynamic game and we obtain Markov subgame perfect equilibrium. We show that, depending on the system parameters, the optimal pricing strategy has several interesting patterns. These results are then applied to answer the research questions raised above. We also offer the managerial insights yielded from this model.

Mahdi Nooteboom, Warwick Business School, Warwick University (with Bo Chen, Laura Galil)

A branch and cut approach for some heterogeneous routing problems under demand uncertainty

The Capacitated Vehicle Routing Problem (CVRP), with its many variants, is one of the most widely studied NP-hard problems in combinatorial optimisation due to its wide practical applications and tough computational challenges. An important generalisation of the classical CVRP is the so-called Heterogeneous Vehicle Routing Problem (HVRP), whose underlying linear problem is efficiently solvable, we propose an approach to find goods solution to combinatorial optimization problems as dual network flow problems defined on networks of a special structure.

Daniele Catanzaro, Université Libre de Bruxelles (with Roberto Aringhieri, Marco Di Summa, Raffaele Pesenti)

An exact algorithm to reconstruct phylogenetic trees under the minimum evolution criterion

We investigate one of the most important N^P-hard versions of the phylogeny estimation problem, called the Minimum Evolution Problem (MEP). Specifically, we investigate the theoretical foundation of the MEP and its relationships with the Balanced Minimum Evolution Problem. Moreover, we present a new exact algorithm to solution of the MEP based on a sophisticated combination of both a branch-price-and-cut approach and a non-isomorphic enumeration of all possible phylogenies for a set of taxa. This peculiar approach allows to break symmetries in the problem and to improve upon the performances of the best-so-far exact algorithm for the MEP. Hopefully, our findings will provide new perspective on the mathematics of the MEP and suggest new directions on the development of future efficient exact approaches to solution of the problem.

Peter Gritzmann, TU München (with Andreas Albers, Barbara Langfeld, Markus Wieglebmann)

On some discrete inverse problems: Combinatorial optimization in discrete and refraction tomography

Discrete Tomography is concerned with the retrieval of finite or finitely presented sets in some B^d from their X-rays in a given finite number of directions. In the talk we focus on recent results on uniquesness of reconstruction problems, in particular, in the case when a subset J of possible positions is already determined by the given data that allow us to settle conjectures of Kuba [1997] and of Brunetti & Daurat [2005]. Further, we indicate how new challenges in refraction tomography relate to issues in computational convexity.
to maximize the expected profit can be formulated as a concave maximization problem for the class of logconcave density functions. Conjoint choice data set on technological features for automotives, provided by General Motors is used to test the performance of the models.

Yuan Yuan, The Logistics Institute, Northeastern University (with Tang Lixin)

Integrated ship plan of strip coil consolidation and stowage

In iron and steel industry, finished products such as strip coils are mainly transported by ship. The planning of ship transportation includes coil transportation only limited information of consolidation planning. Consolidation planning is to determine which coils to be loaded on a given ship according to the delivery dates, destinations and storage locations of the coils. Stowage planning is to allocate exact position to each coil based on the constraints about the ship’s stability. Ordinary researches divided the problem into two subproblems, and discussed them sequentially. The solution obtained by solving the two problems may not be very good or there may be many shifts, or even not all the coils in consolidation plan could be loaded. This is because the size of coils is irregular and the constraints for balance are rigorous, but the frame of ship was not considered by consolidation planning. The situation motivates us to integrate the two subproblems. We formulate the problem and relax it by a second order cone programming approach. An approximate solution is obtained by a heuristic method.

Thu.2 MA 313

Iterative methods for variational inequalities

Organizers/Chairs: Igor Konnov, Kazan University, Vychacheslav Kalashnikov, ITESM, Campus Monterrey - Invited Session

Igor Konnov, Kazan University

Extended systems of primal-dual variational inequalities

A system of variational inequalities with general mappings, which can be regarded as an extension of Lagrangian primal-dual systems of constrained problems, is considered. Many equilibrium type problems can be written in this format. In particular, we show that this problem is suitable for modelling various complex systems including spatial telecommunication, transportation, and economic ones. However, the basic mappings can be multi-valued and even non-monotone in real applications. This fact creates certain difficulties for providing convergence of many existing iterative methods.

In this talk, we describe several families of iterative solution methods for the above system which are adjusted to the mappings properties. In particular, they are applicable both for the single-valued and for the multi-valued case. Next, the methods are convergent under mild conditions and admit efficient computational implementation especially for the spatially distributed problems.

Alexander Zaslavski, The Technion - Israeli Institute of Technology

The extragradient method for solving variational inequalities in the presence of computational errors

In a Hilbert space, we study the convergence of the subgradient method to a solution of a variational inequality, under the presence of computational errors. Most results known in the literature establish convergence of optimization algorithms, when computational errors are summable. In the present paper, the convergence of the subgradient method for solving variational inequalities is established for nonsummable computational errors. We show that the subgradient method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.

Vychacheslav Kalashnikov, ITESM, Campus Monterrey (with Yasin Acosta Sanchez, Nataliya Kalashnykova)

Finding a conjectural variations equilibrium in a financial model by solving a variational inequality problem

In this paper, a general multi-sector, multi-instrument model of financial flows and prices is developed, in which the utility function for each sector is assumed to be quadratic and constraints satisfy certain accounting identity that appears in flow-of-funds accounts. Each sector is assumed to be quadratic and constraints satisfy a certain condition.

Igor Konnov, Kazan University

Finding a conjectural variations equilibrium in a financial model by solving a variational inequality problem

In this paper, a general multi-sector, multi-instrument model of financial flows and prices is developed, in which the utility function for each sector is assumed to be quadratic and constraints satisfy certain accounting identity that appears in flow-of-funds accounts. Each sector is assumed to be quadratic and constraints satisfy a certain condition.
Addressing noise in derivative-free optimization

Organizers/Chairs Luis Nunes Vicente, University of Coimbra; Stefan Wild, Argonne National Laboratory - Invited Session

Stefan Wild, Argonne National Laboratory

Constitutional noise in simulation-based optimization

Efficient simulation of complex phenomena often results in computational noise. Noise destroys underlying smoothness that otherwise could benefit optimization algorithms. We present a non-intrusive method for estimating computational noise and show how this noise can be used to derive finite-difference estimates with provably good approximation guarantees. Building upon these results, we show how step sizes for model minimization and improvement can be selected. These techniques can also be used to determine when to transition from interpolation-based to regression-based surrogate models in derivative-free optimization.

Stephen Billups, University of Colorado Denver

Managing the trust region and sample set for regression model-based methods for optimizing noisy functions without derivatives

The presence of noise or uncertainty in function evaluations can negatively impact the performance of model-based trust-region algorithms for derivative-free optimization. One remedy for this problem is to use regularization models which are less sensitive to noise; and this approach can be enhanced by using weighted regression. But this raises questions of how to efficiently select sample points for model construction and how to manage the trust region radius, taking noise into account. This talk proposes strategies for addressing these questions and presents an algorithm based on these strategies.

Arie Inefrinzach, CERFACS Toulouse (with Serge Gratton, Philippe Joly)

A model-based trust-region algorithm for derivative-free optimization and its adaptation to handle noisy functions and gradients

Optimization algorithms are crucial to solve industrial optimization problems characterized by different requirements. Depending on the availability of the gradient, different algorithms have been developed such as Derivative-Free Optimization (DFO) or gradient-based algorithms. The software BC-DFO (Bound-Constrained Derivative-Free Optimization), using a self-correcting property of the geometry and an active-set strategy to handle bound constraints, has shown to be efficient on a set of test problems of the CUTEr collection. Here, we propose to extend this code by adding the possibility of handling noisy gradient information. It is well known that the L-BFGS method is a very efficient method for solving bound-constrained optimization problems when accurate gradient information is provided. Whereas, this is often not the case in practice. We would like to propose a family of algorithms which contains both, the derivative-free approach and the L-BFGS method, and which is therefore able to optimally take into account the error occurring in the cost function and/or gradient of the problem. We will present numerical experiments on academic and real-life test cases.

Aker Inefrinzach, CERFACS Toulouse (with Serge Gratton, Philippe Joly)

Optimization and economic applications

Organizer/Chair Ioannis Caragiannis, University of Patras & CIT - Invited Session

Sebastian Llorente, University of Seville

Choosing the best partner for a horizontal cooperation

In this paper Data Envelopment Analysis is used to select among different potential partners to form a joint venture which is the one that best fits the strategic goal of a horizontal cooperation. Since each potential partner has a different technology, it is needed to compare and select the one that performs better. This talk focuses on the usage of Data Envelopment Analysis in selecting the best partner for a horizontal cooperation.

Xiaoouan Meng, City University of Hong Kong (with Chuangyin Dang)

An interior-point path-following method for computing equilibria of an exchange economy with linear production technologies

The computation of economic equilibria plays an important role in all applications of general economic equilibrium models. Despite the fact that some numerical methods have been proposed, how to compute economic equilibria efficiently remains a challenging issue. In this paper, we develop an interior-point path-following method for constructing economic equilibria of an exchange economy with linear production technologies. The peculiar characteristic of our method is that we convert an exchange economy with linear production technologies to a pure exchange economy by ways of allocating the production to consumers’ endowments evenly. Resorting to an extra variable, we devise a new economy which deforms from a trivial exchange economy to the original one while the variable varies from 0 to 1. An application of Sard’s theorem and perturbations leads to the existence of a smooth interior-interior path, which starts from the unique equilibrium of the exchange economy and leads to an economic equilibrium of the exchange economy with linear production technologies. A predictor-corrector method is proposed to numerically follow the path. Efficiency of the method is demonstrated through numerical examples.

Nasser-eddein Tatar, King Fahd University of Petroleum and Minerals

Asymptotic stability for the endogenous Solow model with discrete and distributed delays

In the original Solow growth theory it is assumed that the rate of change of the labour supply is exogenous. This theory has serious limitations (failure to take account of entrepreneurs and strength institutions and failure to explain technological progress) which lead to the development of endogenous growth theories. These theories support that long-run economic growth depends on forces internal to the economic system which create technological progress. In this talk we consider a more realistic Solow model where the labour supply depends on the past levels of wage. We discuss both the discrete delay case and the distributed delay case. This latter model is known as the Vintage Capital Model and is widely used in economics. We shall establish some reasonable assumptions under which the economy converges to a steady-state rate of growth.

Vasili Gkatzelis, Courant Institute, NYU (with Richard Cole, Gagan Goel)

Truthful mechanisms for proportionally fair allocations

We study the problem of designing mechanisms to allocate a heterogeneous set of divisible goods among a set of agents in a fair manner. We consider the well-known solution concept of proportional fairness that has found applications in many real-world scenarios. Although finding a proportionally fair solution is computationally tractable, it cannot be implemented in a truthful manner. To overcome this, in this paper we develop mechanisms which are truthful and achieve proportional fairness in an approximate manner. We use a strong notion of approximation, requiring the mechanism to give each agent a good approximation of its proportionally fair utility. A motivating example is provided by the massive privatization auction in the Czech republic in the early 90s.

Giorgos Christodoulou, University of Liverpool (with Kurt Mehlhorn, Evangelia Pyrga)

Coordination mechanisms for selfish routing games

We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou’s network. We improve upon the value 4/3, for networks of parallel links, by means of Coordination Mechanisms.

Thu.2.H 3027

Optimization and economic applications

Organizer/Chair Ioannis Caragiannis, University of Patras & CIT - Invited Session

Sebastian Llorente, University of Seville

Choosing the best partner for a horizontal cooperation

In this paper Data Envelopment Analysis is used to select among different potential partners to form a joint venture which is the one that best fits the strategic goal of a horizontal cooperation. Since each potential partner has a different technology, it is needed to compare and select the one that performs better. This talk focuses on the usage of Data Envelopment Analysis in selecting the best partner for a horizontal cooperation.

Xiaoouan Meng, City University of Hong Kong (with Chuangyin Dang)

An interior-point path-following method for computing equilibria of an exchange economy with linear production technologies

The computation of economic equilibria plays an important role in all applications of general economic equilibrium models. Despite the fact that some numerical methods have been proposed, how to compute economic equilibria efficiently remains a challenging issue. In this paper, we develop an interior-point path-following method for computing economic equilibria of an exchange economy with linear production technologies. The peculiar characteristic of our method is that we convert an exchange economy with linear production technologies to a pure exchange economy by ways of allocating the production to consumers’ endowments evenly. Resorting to an extra variable, we devise a new economy which deforms from a trivial exchange economy to the original one while the variable varies from 0 to 1. An application of Sard’s theorem and perturbations leads to the existence of a smooth interior-interior path, which starts from the unique equilibrium of the exchange economy and leads to an economic equilibrium of the exchange economy with linear production technologies. A predictor-corrector method is proposed to numerically follow the path. Efficiency of the method is demonstrated through numerical examples.

Nasser-eddein Tatar, King Fahd University of Petroleum and Minerals

Asymptotic stability for the endogenous Solow model with discrete and distributed delays

In the original Solow growth theory it is assumed that the rate of change of the labour supply is exogenous. This theory has serious limitations (failure to take account of entrepreneurs and strength institutions and failure to explain technological progress) which lead to the development of endogenous growth theories. These theories support that long-run economic growth depends on forces internal to the economic system which create technological progress. In this talk we consider a more realistic Solow model where the labour supply depends on the past levels of wage. We discuss both the discrete delay case and the distributed delay case. This latter model is known as the Vintage Capital Model and is widely used in economics. We shall establish some reasonable assumptions under which the economy converges to a steady-state rate of growth.

Vasili Gkatzelis, Courant Institute, NYU (with Richard Cole, Gagan Goel)

Truthful mechanisms for proportionally fair allocations

We study the problem of designing mechanisms to allocate a heterogeneous set of divisible goods among a set of agents in a fair manner. We consider the well-known solution concept of proportional fairness that has found applications in many real-world scenarios. Although finding a proportionally fair solution is computationally tractable, it cannot be implemented in a truthful manner. To overcome this, in this paper we develop mechanisms which are truthful and achieve proportional fairness in an approximate manner. We use a strong notion of approximation, requiring the mechanism to give each agent a good approximation of its proportionally fair utility. A motivating example is provided by the massive privatization auction in the Czech republic in the early 90s.

Giorgos Christodoulou, University of Liverpool (with Kurt Mehlhorn, Evangelia Pyrga)

Coordination mechanisms for selfish routing games

We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou’s network. We improve upon the value 4/3, for networks of parallel links, by means of Coordination Mechanisms.
Game theory in supply chain management
Chair Tiru Arthanari, The University of Auckland

Tiru Arthanari, The University of Auckland (with Nagarajan Krishnamurthy)

Game theory and supply chain management: A survey
Recent years have seen an increasing interest in the applications of Game Theory to supply chain management (SCM) and allied areas. We survey some of these results. These include applications of Non-cooperative Games to SCM where, for example, there are competing entities and Nash equilibrium is sought. We also survey applications of Cooperative Games where, for example, the Shapley value is used to share costs or profits. Examples are [Thun, 2000] where the author discusses applications of Cooperative Game Theory to allocation profit among partners. [Cachon and Netessine, 2003] discuss non-cooperative as well as cooperative game theoretic concepts that have potential for applications to analyzing supply chains. [Esmaili, Aryanezhad and Zeephongsekul, 2009] propose several seller-buyer supply chain models which incorporate elements of competition as well as cooperation between buyer and seller. [Shuyong et al., 2008] use game theoretic tools to analyze the cost allocation problem in supply chain coordination. Stochastic Games, Bayesian Games etc. have been finding increasing applications in SCM too, and we discuss some of these as well. Illustrative applications are discussed.

David Carl, University of California at Riverside (with Tiru Arthanari)

Game theoretic modeling of supply chain cooperation among growers
Cooperation in supply chains is studied, by Lincoln (2010), using qualitative research methodology, based on case studies done in New Zealand. Recently, in the Horticultural New Zealand conference, the speakers explained how cooperation was working for their industries ([Farmers Weekly, 2010]). In this paper we examine the cooperation phenomenon from a game theoretic perspective and give a model that brings out the trajectory of equilibria that will lead to optimal participation among the coalition partners. The model considers a set of growers who can choose to form a coopetitive alliance to market their produce in some external regions, while competing within the internal regions. By means of the general analytical framework of competition, studied by Carl (2010 and 2011), and others, we show the strategies that can produce such a cooperation perspective for the growers, where these feasible solutions aim at offering a win-win outcome for the growers, letting them share the pie fairly within a growth path represented by a family of non-zero sum games. The strategy requires determining the proportion of their resources they will use and how the gain will be shared.

Ravindran Gomatham, Indian Statistical Institute (with Jayan Gunaratna)

Centrality in social networks
Centrality captures the intuitive notion of importance of nodes in a network. In the recent past there has been a flurry of activities in the science of Networks and its applications in diverse field of study thus making it a hot topic of interdisciplinary research.

In this paper we review and propose different approaches to finding influential nodes in complex networks particularly from a game theoretic point of view.

Andrei Orlov, Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences

On an approach to special nonlinear bilevel problems
An investigation of bilevel programming problems (BPPs) in the view of elaboration of the efficient numerical methods is a challenge of contemporary theory and methods of mathematical optimization. We consider classes of BPPs where the upper level goal function is d.c. (represented by difference of two convex functions) or convex quadratic, and the lower level goal function is convex quadratic. Also we investigate BPPs with equilibrium at the lower level. The new approach to elaboration of optimistic solution methods for these classes of BPPs is proposed. The approach is based on a possibility of equivalent representation of BPPs as nonconvex optimization problems with the help of optimum conditions for the lower level problem. These nonconvex problems are solved by using the global search theory in d.c. optimization problems developed in our group for some classes of nonconvex optimization. The approach allows building efficient methods for finding global solutions in d.c. optimization problems. Computational testing of the elaborated methods has shown the efficiency of the approach. This work is carried out under financial support of RFBR (project no. 11-01-00270a).

John Chinneck, Carleton University (with Victor Arkian, Laurence Smith)

Better placement of local solver launch points for global optimization
NLP solutions are quite sensitive to the launch point provided to the local solver, hence multi-start methods are needed if the global optimum is to be found. The drawback is that local solver launches are expensive. We limit the number of local solver launches by first using very fast approximate methods to explore the variable space to find a small number of promised locations for the local solver launches. We start with a set of random initial points, and then apply the Constraint Consensus (CC) method to quickly move to points that are close to feasibility. Clusters of the CC output points are then automatically identified; these generally correspond to disjoint feasible regions. Finally, the local solver is launched just once from each cluster, greatly improving efficiency. We frequently find a very good solution (if not the optimum solution) with very few local solver launches, and hence in relatively little time. Extensive empirical results are given.

Ariana Daopooni, Shahid Bahonar University of Kerman

Global optimization on the difference of sub-topical functions
We present the necessary and sufficient conditions for the global minimum of the difference of strictly sub-topical functions. Also, we will use the Toland-Singer formula to characterize the dual problem. Our main theoretical tool is abstract convexity.

Ronald Hochstein, WI Vienna University of Economics and Business

Optimization modeling using R
Simplifying the task of modeling optimization problems is an important task. Many commercial products have been created to support the modeling process, but none of these products has been adopted by a significantly large number of users. As soon as real-world decision problems under uncertainty have to be modeled, flexible and quick changes to the underlying model are necessary. Simplifications are crucial to implement such optimization models into some business process successfully. Furthermore, the learning overhead for users should be minimized. In this talk, we outline an approach on how to simplify optimization modeling using R and external optimization modeling languages as well as by building model generators for specific application problems. Examples from the areas of Finance and Energy will substantiate the applicability of the chosen approach.

Arnaud Schulz, IBM (with Vincent Beradier, Frederic Delhumeau)

Enterprise-class optimization-based solutions with CPLEX Optimization Studio and SPSS predictive analytics
The talk will focus on the integration of different analytics such as optimization (prescriptive analytics) and predictive analytics based on ILOG optimization and SPSS. The presentation will showcase the synergy of these two worlds. The key integration piece will be presented, that is, the connector between prescriptive (optimization) and predictive analytics (SPSS Modeler). exists in the OPL language, integrated in the the CPLEX Studio Integrated Development Environment. With this connector statistical algorithms/methods are available to feed with data any optimization model either written for math programming (CPLEX Optimizer) or constraint programming (CP Optimizer). This connector opens up the door for decision makers at line-of-business, IT professionals and analytics practitioners to take advantage of out-of-the-box capabilities for implementing custom planning and scheduling solutions, collaborative planning processes, to name a few.

Leo Lopes, SAS Institute

Network optimization and beyond in SAS/OR® Software
This paper demonstrates new features in the OPTMODEL procedure for network and combinatorial optimization. With OPTMODEL you can access a variety of network-based solvers by using only problem definitions instead of explicit formulations, greatly enhancing performance and scalability. You can also access most of the functionality of the SAS System by merging invocations of other SAS procedures with mathematical optimization constructs that are built into the PROC OPTMODEL modeling language. The results can populate sets and arrays that can be processed further both within the modeling language itself and by using the full power of the SAS System.
An important consideration when applying neural networks is to predict the effect of threshold and weight perturbations on them, i.e., which is the sharpest bound one may consider for weights and threshold to maintain the linearly separable function unchangeable for designing a more robust and safer neural network. Two parameters have been introduced for measuring the relative errors in weights and threshold of strict separating systems: the tolerance (Hu 1960) and the greatest tolerance (Freixas and Molinero 2008). Given an arbitrary separating system we study which is the equivalent separating system that provides maximum tolerance and maximum greatest tolerance. We present new results for the maximum tolerance and the maximum greatest tolerance, for instance, we present when the maximum tolerance and maximum greatest tolerance among all equivalent strict separating (natural) systems are attained. We also give the strict separating (natural) system that attains the maximum tolerance for \(n \) variables. Similar results appear for the maximum greatest tolerance. Finally, we also give new results for the number of variables \(n \) and the number of types of distinguished variables \(k \).

Anne Müller, Freie Universität Berlin

Cycle free flows in large-scale metabolic networks

Genome-scale metabolic networks are used to model all (usually around 2000) chemical reactions occurring in a biological cell. These networks are a generalization of directed hypergraphs (where the reactions are the arcs of the graph) and a specialization of realizable oriented matrices. We are interested in optimizing the flow through a given reaction in the network. We have the usual constraint of flow conservation and additionally the flow must not contain internal circuits. Internal circuits are flows that do not contain a specific subset of the reactions called exchange reactions.

We show that it is NP-hard to decide if a non-zero flow without internal circuits through a given reaction is possible. However, most genome-scale metabolic networks only contain few internal circuits. Using a specific branching strategy combined with a primal heuristic, we derive a tractability result that is also practically applicable. In fact, it very often suffices to solve only one LP.

For flux variability analysis, where we solve optimization problems for each reaction in the network, we obtain a speed-up of factor 30–300 to previous methods.

Stefan Wiesberg, Institut für Informatik, Universität Heidelberg (with Gerhard Reinelt)

Computing role structures in networks

In network analysis, an established way to obtain structural information is to partition the vertices into so-called regular equivalence classes. In such a partitioning, two nodes \(u \) and \(v \) belong to the same class if for every neighbor of \(u \), there is a neighbor of \(v \) in the same class, and vice versa. Thus, for any two classes \(C \) and \(D \), either every or no member of \(C \) has a neighbor in \(D \). The relationships between the classes can hence be visualized by a graph, the so-called role graph. It is of interest in several fields, for example in sociology, economy, or computer research. An NP-hard problem in this context is the following one: Given a network \(G \) and a finite set \(R \) of role graphs, which element of \(R \) represents the role structure of \(G \) in the best possible way? We present one of the first exact algorithms for this problem. It is based on an IP formulation with a quadratic objective function and solved by branch-and-cut. Significant running-time improvements compared to currently used methods are reported.

Jacques Desrosiers, HEC Montréal & GERAD (with Jean Bertrand Gauthier, Marco E. Lübbecke)

Row-reduced column generation for highly degenerate master problems

Column generation alternately solves a master problem and a pricing subproblem to add variables to the master problem as needed. The method is known to suffer from degeneracy, exposing what is known as tailing-off effect. Inspired by recent advances in coping with degeneracy in the primal simplex method, we propose a row-reduced column generation that takes advantage of degenerate solutions. The idea is to reduce the number of constraints to the current number of positive basis variables. The advantage of this row-reduction is a smaller basis, and thus a faster re-optimization of the master problem. This comes at the expense of a more involved pricing subproblem that needs to generate variables compatible with the row-reduction, if possible. Otherwise, incompatible variables may need to be added, and the row-reduction is dynamically updated. We show that, in either case, a strict improvement in the objective function value occurs.

Arne Müller, Freie Universität Berlin

Linear programming (LP) formulation for solving the pricing problems. In order to further improve the dual bound, cutting planes from the literature are separated during the solution process and their integration in the pricing problems is explained. Furthermore, we highlight a novel application for detecting structures in constraint matrices of MIPs and use heuristics tailored to this application for finding solutions during the branch-and-price algorithm. Finally, we present computational results both on graphs from the literature as well as from our application and discuss the peculiarities of these instance.

Mette Gamst, Technical University of Denmark (with Simon Spoorendonk)

An exact approach for aggregated formulations

Aggregating formulations is a powerful trick for transforming problems into more tractable forms. An example is Dantzig-Wolfe decomposition, which can be used to improve performance across many applications especially when part of a branch-and-price algorithm. Variable aggregation, however, may lead to mathematical formulations with a different solution space than that for the original formulation, i.e., the aggregated formulation may be a relaxation of the original problem. In a branch-and-bound context, variable aggregation can also lead to a formulation where branching is not trivial, for example when optimality cannot be guaranteed by branching on the aggregated variables.

In this presentation, we propose a general method for solving aggregated formulations, such that the solution is optimal to the original problem. The method is based on applying Benders' decomposition on a combination of the original and aggregated formulations. Put in a branch-and-bound context, branching can be performed on the original variables to ensure optimality. We show how to apply the method on well-known optimization problems.

Organizer/Chair: Jeff Linderoth, University of Wisconsin-Madison. Invited Session

Monia Giandomenico, University of L'Aquila (with Adam Letchford, Fabrizio Rossi, Stefano Smriglio)

An ellipsoidal relaxation for the stable set problem

A relevant amount of research has been focused on investigating strong relaxations for the stable set problem. In fact, polyhedral combinatorics techniques have been intensively developed since the early seventies in order to strengthen the natural linear formulation. Shortly afterwards, Lovász introduced a celebrated semidefinite programming relaxation, known as \(\theta \) relaxation. Later on, several attempts to strengthen it by adding linear inequalities have been investigated. The resulting upper bounds turn out to be very strong, but hardly accessible in practice. In this talk, we show that the Lovász \(\theta \) relaxation can be used to derive a new convex programming relaxation having the same optimal value. Moreover, the new relaxation has a more friendly structure, as its feasible region takes the form of an ellipsoid. We also investigate possible extension of this methodology to stronger relaxations.

Fabrizio Rossi, University of L’Aquila (with Monia Giandomenico, Adam Letchford, Stefano Smriglio)

A branch-and-cut for the stable set problem based on an ellipsoidal relaxation

The stable set problem gives rise to difficult integer programs. One major reason is that linear relaxations provide weak bounds even though at low computational cost, while semidefinite relaxations give good (sometimes excellent) bounds but too demanding to compute. The Lovász \(\theta \) relaxation provides a tradeoff between strength and computational tractability, even if embedding it within an enumeration scheme is not straightforward. In this talk, we present a new convex programming relaxation having the \(\theta \) bound as optimal value, whose feasible region takes the form of an ellipsoid. In principle,
this allows us to resort to a branch-and-cut algorithm in which each subproblem includes one convex quadratic constraint. However, the ellipsoid can also be used to derive valid inequalities for the stable set polytope: a hyperplane tangent to the ellipsoid can be exploited to generate strong cutting planes by a sequential strengthening procedure. We discuss the performance of the resulting (LP-based) branch-and-cut algorithm through extensive experiments.

Laurence Widdowson, CORE, Université Catholique de Louvain (with Mathieu Van Vyve, Hilde Tuyman)

Thu.2 217

Scheduling, assignment and matching in healthcare
Chair Sarah Kirchner, RWTH Aachen

Andrea Trautschold, University of Natural Resources and Life Sciences, Vienna (with Patrick Hirsch)

A branch-and-price approach for solving medium term home health care planning problems

Medium term home health care planning is important because of additional legal working time regulations. Moreover, the clients [resp. nurses] prefer to know their visiting days and times [resp. working days and times] beforehand. In Austria, the planning of these services is typically done manually. However, several constraints make the planning a hard computational task. Usually, the clients have to be visited several times a week for a certain treatment at a certain time by appropriately skilled nurses. Additionally, working time regulations such as maximum allowed working time, breaks, and rest periods have to be considered. Furthermore, some clients need to be visited by two or more nurses at the same time and some visits cannot start before a certain time gap after another visit has elapsed. The objective is to minimize the total travelling times of the nurses. In order to solve this problem efficiently an algorithm is developed combining a Branch-and-Price approach and a metaheuristic solution approach based on Variable Neighbourhood Search. The algorithm is tested with real life data and compared to the solutions obtained with standard solver software.

Nahid. Farajzadeh, RMIT University (with Leonid Churilov, John Hearne)

Optimal individual matching to evaluate treatment in the stroke trails

The aim of this work is to make an individual matching of patients with multiple attributes from two groups of therapy. The problem is investigating the outcomes of the two groups of patients in the stroke trails which some treated by alteplase and the others controlled by placebo. To address the problem we modeled the problem as an integer program using assignment formulation. Our proposed models will consider the trade-off between the three objectives: maximize the number of matches, minimize the age difference, and minimize the stroke severity index difference. We applied our models for two data sets EPI-THET and NINDS. To demonstrate the relationship between the sample size and the number of matches we did a simulation by generating thousands of patients and proved our assumptions.

Sarah Kirchner, RWTH Aachen (with Marco Lübbecke)

Appointment scheduling in a hospital environment

Currently, appointments for patients are scheduled locally in most german hospitals. In every hospital unit a scheduler assigns appointments sequentially to incoming treatment requests. As the settlement amount for a patient is determined by his diagnoses and received treatments and not by the length of his hospitalization it is desirable for hospitals to reduce the average length of hospitalization. Therefore it is necessary to coordinate appointments for all treatments on a patients care pathway. This problem can be seen as a new variant of the well known job shop scheduling problem where patients correspond to jobs and treatments for patients correspond to tasks of jobs. The problem is also related to scheduling problems with calendars, as resources in a hospital are mostly not available at night and treatments can not be interrupted when the resource becomes unavailable. The objective of our problem is to minimize the average number of days of hospitalization. In this talk we introduce this new scheduling problem and present first models and solution approaches.

Olga Perederieieva, The University of Auckland (with Matthias Ehrgott, Judith Wang)

Solving the time surplus maximisation bi-objective user equilibrium model for traffic assignment

The conventional approach to model traffic assignment assumes that all users have the same objective, i.e., to minimise their travel time or generalised cost, which usually represents a linear combination of time and monetary cost. In a tolled road network, this assumption cannot be adequate to represent realism required by the multi-objective definition of optimality, we reformulate the problem with a bi-objective user equilibrium (BUE) condition, which allows multiple solutions. More specifically, we propose a time-surplus maximisation model (TSMaxBUE) as a possible way to represent route choice behaviour in tolled road networks. In case of multiple route classes, we can obtain a time-based equilibrium model which can be solved by optimisation-based algorithms. To solve it we adopt path-based optimisation algorithms used for conventional traffic assignment, compare their performance and study how the solution space depends on the parameters of the model. In case of multiple user classes generally it is not possible to derive an equivalent optimisation formulation. Therefore, we propose to use a non-linear complementarity problem formulation to solve the TSMaxBUE model.

Alexander Gasnikov, Moscow Institute of Physics and Technology (with Ergunç Ünsal)

Stochastic optimization in the model of correspondences matrix calculation and traffic flow distribution

We considered two problems connecting to each other. The first problem is to interpret a gravitational matrix correspondence model and its proper generalization for Moscow city according to the conception of equilibrium of macro system. We propose an ergodic stochastic Markov dynamic of natural behavior of the residents. At the large values of time this dynamic leads to the stationary distribution measurement. And when the number of residents tends to infinity this measure is concentrated in a small vicinity of the most probable macro state. To find this state we have to solve an entropy optimization problem. For this problem we use proper dual barrier-multiplicative stochastic subgradient descent in dual space. The second problems consist in finding traffic flow (stochastic) assignment according to the BMW model and Nesterov–dePalma model. We show that substantially interpreted evolutionary games dynamic in this games theory models can be considered to be the mirror descent subgradient [with prox-function Kullbak–Leibler distance]. We also investigate the logit(Gibbs) best responses dynamic [Nash–Vardrop equilibrium isn’t assumed unique].

Sub-Wen Chiou, National Dong Hwa University

Modeling the performance reliability in an area traffic control road network under uncertainty

For an urban traffic road network, most of travel time delay is directly dependent on correct and continuous operations of effective signal settings at junctions. The reliability of a road network under area traffic control thus heavily relies on its vulnerability to a dangerous mix of probabilistic threats such as system random failures, adverse weather and natural disaster. Losing capacity in one or more signal-controlled road junctions could have a negative wide impact on the performance of road networks and increase total travel time on most road network users. The purpose of this paper is therefore on the focus of efforts to evaluate the performance of area traffic control road network under uncertainty which can be measured in terms of total travel time. The analysis of vulnerability of area traffic control road network is considered in this paper. The critical signal-controlled junctions of area traffic control road network are identified, when failed to perform its normal functions, could give rise to the maximum travel delay to road users.
Adam Letchford, Lancaster University (with Michael Soerensen)

Session 2.1: Aircraft collision avoidance

A mixed 0–1 nonlinear optimization approach is presented to solve the aircraft collision avoidance problem for the Air Traffic Management. Given the flight plans configuration, the problem consists of deciding a strategy such that every conflict situation is avoided. For this aim, we consider two possible maneuvers: velocity and angle changes, in a high nonconvex mixed integer nonlinear optimization (MINLO) approach that is based on a geometric construction. In order to determine which maneuvers will be followed, a ranked multiobjective approach is presented optimizing one of them by appending to it the constraint that satisfies the optimal objective function value of the other one with higher rank allowing an epsilon violation, such that the optimal solution of the higher rank objective can be used as a hot start for optimizing the other one. Some preliminary computational results will be presented by using a state-of-the-art nonconvex MINLO engine at each iteration, where a MINLO submodel is solved.

F. Javier Martín-Campos, University Complutense of Madrid (with Antonio Alonso-Ayuso, Lauraana F. Escudero)

On solving the aircraft collision avoidance problem for the ATM by horizontal maneuvers. A ranked multiobjective MINLO problem

A mixed 0–1 nonlinear optimization approach is presented to solve the aircraft collision avoidance problem for the Air Traffic Management. Given the flight plans configuration, the problem consists of deciding a strategy such that every conflict situation is avoided. For this aim, we consider two possible maneuvers: velocity and angle changes, in a high nonconvex mixed integer nonlinear optimization (MINLO) approach that is based on a geometric construction. In order to determine which maneuvers will be followed, a ranked multiobjective approach is presented optimizing one of them by appending to it the constraint that satisfies the optimal objective function value of the other one with higher rank allowing an epsilon violation, such that the optimal solution of the higher rank objective can be used as a hot start for optimizing the other one. Some preliminary computational results will be presented by using a state-of-the-art nonconvex MINLO engine at each iteration, where a MINLO submodel is solved.

Torsten Gellert, TU Berlin (with Rolf Möhring)

Aircraft mission planning

We present a military aircraft mission planning problem, where the problem is to find time efficient flight paths for a given aircraft fleet that should attack a number of ground targets. Due to the nature of the attack, two aircraft need to rendezvous at the target, that is, they need to be synchronized in both space and time. Each target is associated with multiple attack options, and there may also be precedence constraints between targets, limiting the order of the attacks. The objective is to maximize the outcome of the entire attack, while also minimizing the mission timespan.

Ng-Hassan Oulitteine, Linköping University (with Kaj Holmberg, Torbjörn Larsson, Kristian Lundberg)

Scheduling multiple cranes on a shared pathway

In many logistics applications, transport requests are conducted in parallel by several vehicles moving along a fixed shared pathway. Examples include cranes mounted on a common rail, like gantry cranes loading and unloading containers in intermodal transportation, or forklifts moving along a narrow passageway in large warehouses.

In theory, assigning transport requests to the vehicles of such systems and scheduling their execution amounts to finding K tours on a common line, where tours may never cross each other in time – dynamic collision constraints need to be respected. The goal is to minimize the makespan for a given set of transport requests. This problem contains other challenging tasks like partitioning jobs and assigning starting times.

We present a model capturing the core challenges in transport planning problems of this type and prove NP-hardness for the problem. The structural properties of the problem can be used to formulate a mixed integer program with starting time variables, but without any assignment of jobs to vehicles. Furthermore, we show some special cases where an optimal solution can be found in polynomial time.

Coralia Cartis, University of Edinburgh (with Nicholas Gould, Philippe Toint)

Calmness and exact penalization for constrained vector set-valued optimization problems

We examine the relationship between a quadratic program with complementarity constraints (QPCC) and its completely positive relaxation. We show that the two problems are equivalent under certain conditions, even if the complementary variables are unbounded. We describe the use of semidefinite programming to tighten up the quadratic relaxation of a QPCC when the quadratic objective function is convex. When the variables are bounded, a QPCC can be expressed as a mixed integer nonlinear program.

Nils-Hassan Oulitteine, Linköping University (with Kaj Holmberg, Torbjörn Larsson, Kristian Lundberg)

Aircraft mission planning

We present a military aircraft mission planning problem, where the problem is to find time efficient flight paths for a given aircraft fleet that should attack a number of ground targets. Due to the nature of the attack, two aircraft need to rendezvous at the target, that is, they need to be synchronized in both space and time. Each target is associated with multiple attack options, and there may also be precedence constraints between targets, limiting the order of the attacks. The objective is to maximize the outcome of the entire attack, while also minimizing the mission timespan.

John Mitchell, Rensselaer Polytechnic Institute (with Lijie Bai, Jong-Shi Pang)

Quadratic programs with complementarity constraints

We examine the relationship between a quadratic program with complementarity constraints (QPCC) and its completely positive relaxation. We show that the two problems are equivalent under certain conditions, even if the complementary variables are unbounded. We describe the use of semidefinite programming to tighten up the quadratic relaxation of a QPCC when the quadratic objective function is convex. When the variables are bounded, a QPCC can be expressed as a mixed integer nonlinear program.

Xiaoxiang Huang, Chongqing University

Calmness and exact penalization for constrained vector set-valued optimization problems

We examine the relationship between a quadratic program with complementarity constraints (QPCC) and its completely positive relaxation. We show that the two problems are equivalent under certain conditions, even if the complementary variables are unbounded. We describe the use of semidefinite programming to tighten up the quadratic relaxation of a QPCC when the quadratic objective function is convex. When the variables are bounded, a QPCC can be expressed as a mixed integer nonlinear program.

Nonlinear programming

On the evaluation complexity of constrained nonlinear programming

We present a short-step target-following algorithm for smooth and nonconvexly constrained programming problems that relies upon approximate first-order minimization of a nonsmooth composite merit function and that takes at most $O(r/(\epsilon)^2)$-problem-evaluations to generate an approximate KKT point or an infeasible point of the feasibility

Thu.2 H 0107

Algorithms and applications I

Organizers/Chair Yu-xiang Yuan, Chinese Academy of Sciences - Invited Session

Coralia Cartis, University of Edinburgh (with Nicholas Gould, Philippe Toint)

On the evaluation complexity of constrained nonlinear programming

We present a short-step target-following algorithm for smooth and nonconvexly constrained programming problems that relies upon approximate first-order minimization of a nonsmooth composite merit function and that takes at most $O(r/(\epsilon)^2)$-problem-evaluations to generate an approximate KKT point or an infeasible point of the feasibility.
A polynomial optimization subproblem in interior-point methods

We present a new trust region method for solving equality constrained optimization problems, which is motivated by the famous augmented Lagrangian function. Different from the standard augmented Lagrangian method where the augmented Lagrangian function is minimized at each iteration, the new method, for fixed Lagrange multiplier and penalty parameter, tries to minimize an approximation model to the augmented Lagrangian function in a trust region to generate new iterate. Besides, new update strategies for Lagrange multipliers and penalty parameters are proposed. Global convergence of the new algorithm is proved in this paper. Moreover, we analyze the behavior of penalty parameters and figure out in which case they are bounded. At last, we do some numerical experiments on the equality constrained problems from CUTEr collection. We also consider extending the idea to general constrained optimization. Some numerical results are reported too.

Zhijun Wu, Iowa State University (with Yiping Hao, Wen Zhou)

Optimization of computational strategies for evolutionary games

A two-phase point method is applied to solve large-scale linear programming problems. In this work we study a primal-dual path-following interior point method for nonlinear programming.

We are concerned with the KKT systems arising when an interior point method is applied to solve large-scale linear programming problems. We exploit the basic-nonbasic partition to design novel preconditioners for iterative methods applied to these systems. A two-phase iterative method is used which switches between different preconditioners. We provide a spectral analysis for the preconditioners and illustrate their practical behaviour on medium-scale problems from the Netlib collection.

Luz-Rafael Santos, IMECC/Unicamp

A polynomial optimization subproblem in interior-point methods

In this work we study a primal-dual path-following interior point method for linear programming. Our approach, based on Mehrotra’s predictor-corrector methods, combines three types of directions to generate a better one by making an extensive use of real-valued polynomials on variables (α, μ, σ), where α is the step length, μ defines a more general central path, and σ models the weight that a predictor direction should have. We develop a merit function that is a polynomial in (α, μ, σ) and that is used as a guide to combine those directions. This merit function is subjected to polynomial constraints, which are designed to keep the next point into a good neighbourhood of the central path – a generalization of Gondzio-Colombo’s symmetric neighbourhood. A polynomial optimization problem (POP) arises from this approach and its global solution, in each iteration, leads to the choice of the next direction. Different methods for solving the POP are being experimented and the computational experiments are promising.

Xiao Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (with Ya-xiang Yuan)

An augmented Lagrangian trust region method for nonlinear programming

We present a new trust region method for solving equality constrained optimization problems, which is motivated by the famous augmented Lagrangian function. Different from the standard augmented Lagrangian method where the augmented Lagrangian function is minimized at each iteration, the new method, for fixed Lagrange multiplier and penalty parameter, tries to minimize an approximation model to the augmented Lagrangian function in a trust region to generate next iterate. Besides, new update strategies for Lagrange multipliers and penalty parameters are proposed. Global convergence of the new algorithm is proved in this paper. Moreover, we analyze the behavior of penalty parameters and figure out in which case when they are bounded. At last, we do some numerical experiments on the equality constrained problems from CUTEr collection. We also consider extending the idea to general constrained optimization. Some numerical results are reported too.

Thiago Wu, Iowa State University (with Yiping Hao, Wen Zhou)

Computational strategies for evolutionary games

A two-phase point method is applied to solve large-scale linear programming problems. In this work we study a primal-dual path-following interior point method for nonlinear programming.

We are concerned with the KKT systems arising when an interior point method is applied to solve large-scale linear programming problems. We exploit the basic-nonbasic partition to design novel preconditioners for iterative methods applied to these systems. A two-phase iterative method is used which switches between different preconditioners. We provide a spectral analysis for the preconditioners and illustrate their practical behaviour on medium-scale problems from the Netlib collection.

Luz-Rafael Santos, IMECC/Unicamp

A polynomial optimization subproblem in interior-point methods

In this work we study a primal-dual path-following interior point method for linear programming. Our approach, based on Mehrotra’s predictor-corrector methods, combines three types of directions to generate a better one by making an extensive use of real-valued polynomials on variables (α, μ, σ), where α is the step length, μ defines a more general central path, and σ models the weight that a predictor direction should have. We develop a merit function that is a polynomial in (α, μ, σ) and that is used as a guide to combine those directions. This merit function is subjected to polynomial constraints, which are designed to keep the next point into a good neighbourhood of the central path – a generalization of Gondzio-Colombo’s symmetric neighbourhood. A polynomial optimization problem (POP) arises from this approach and its global solution, in each iteration, leads to the choice of the next direction. Different methods for solving the POP are being experimented and the computational experiments are promising.

Xiao Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (with Ya-xiang Yuan)
of stochastic bilevel problems. These problems can for example arise at the pricing of energy delivery contracts, when instead of a replication approach a game-theoretic approach to pricing is chosen. In the latter case, the exercise price set by the seller anticipates the exercise strategy of the buyer that will be triggered by this particular exercise price. This special, case where constraints on the seller’s risk are included in the model, is called risk averse bilevel problem. This particular type of bilevel problem where the seller’s constraints depend on the buyer’s exercise strategy has so far received little attention, since in general it leads to nonconvex optimization problems where the feasible set may be nonconnected. We demonstrate the properties and particular difficulties of this problem and present algorithms suitable for solving it. We apply an iterative solution method on some real data and investigate the numerical behavior.

Mark Jennings, Imperial College London (with David Fisk, Nilay Shah)
Optimization of technology investments and capital management in an urban energy system housing retrofit project: Use of rolling horizons in a London borough study

We consider formulations optimizing the technological and capital decisions taken when retrofitting urban energy systems at the large-scale. This study can be considered a minimum cost strategic capital management problem, incorporating a resource-task network representation of the housing stock’s demand and supply side energy systems. We use real data on existing housing conditions from a London borough seeking to minimise its housing stocks’ greenhouse gas emissions. We seek to answer two research questions: (i) what is the effect of rolling horizons on investments which retrofit housing technologies?, and (ii) to what degree does the abstraction of the temporally dynamic technological operations in separate LP, MILP, and MINLP formulations impact upon the optimisation’s fidelity, piecewise special ordered set branching error, and processing unit solution time respectively? Initial insights suggest that expected reductions in energy demand may be adversely affected by investor attitudes to shorter time horizons. MILP formulations of housing retrofit projects may offer the best tradeoffs between fidelity/accuracy and reasonable solution times.

Martin Frank, RWTH Aachen University (with Richard Barnard, Michael Herty)
Optimal radiotherapy treatment planning using minimum entropy models

We study the problem of finding an optimal radiotherapy treatment plan. A time-dependent Boltzmann particle transport model is used to model the interaction between radiative particles with tissue. This model allows for the modeling of inhomogeneities in the body and allows for anisotropic sources modeling distributed radiation and external beam sources. We study two optimization problems of the deviation from a spatially-dependent prescribed dose through a quadratic tracking functional; and minimizing the survival of tumor cells through the use of the linear-quadratic model of radiobiological cell response. For each problem, we derive the optimality systems. In order to solve the state and adjoint equations, we use the minimum entropy approximation; the advantages of this method are discussed. Numerical results for real patient data are presented.

Chamakuri Nagaiah, Johann Radon Institute for Computational and Applied Mathematics (RICAM) (with Karl Kunisch, Gerot Frank)
Numerical solutions for boundary control of bidomain equations in cardiac electrophysiology

The bidomain equations are widely accepted as one of the most complete descriptions of the cardiac bioelectric activity at the tissue and organ level. The model consists of a system of elliptic partial differential equations coupled with a non-linear parabolic equation of reaction-diffusion type, where the reaction term, modeling ionic transport is described by a set of ordinary differential equations. The numerical solution of the optimality system is described in detail and numerical experiments, which demonstrate the capability of influencing and terminating reentry phenomena, are presented. We employ the parallelization techniques to enhance the solution process of the optimality system and a numerical feasibility study

Peter Gross, Universität Wien (with Raimund Kovacevic, Georg Pfaff)
Risk averse bilevel problems in energy markets

Our work introduces risk averse bilevel problems as a special case of stochastic bilevel problems. These problems can for example arise at the pricing of energy delivery contracts, when instead of a replication approach a game-theoretic approach to pricing is chosen. In the latter case, the exercise price set by the seller anticipates the exercise strategy of the buyer that will be triggered by this particular exercise price. This special, case where constraints on the seller’s risk are included in the model, is called risk averse bilevel problem. This particular type of bilevel problem where the seller’s constraints depend on the buyer’s exercise strategy has so far received little attention, since in general it leads to nonconvex optimization problems where the feasible set may be nonconnected. We demonstrate the properties and particular difficulties of this problem and present algorithms suitable for solving it. We apply an iterative solution method on some real data and investigate the numerical behavior.
of the Lagrange-Newton-Krylov method in a parallel environment will be shown.

Malik Krichner, Zuse Institute Berlin (ZIB)

Large deformation diffeomorphic metric mapping using conforming adaptive finite elements

Automatic registration of anatomical objects is an important task in medical imaging. One crucial prerequisite is finding a pointwise mapping between different shapes. Currents are linear functionals providing a unified description of those shapes of any positive integer dimension $m \leq d$ embedded in \mathbb{R}^d. The Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework [Joshi and Miller, IEEE Transactions on Image Processing, 2000] solves the correspondence problem between them by evolving a displacement field on a velocity field. In this talk we propose three aspects making this ODE/PDE optimization problem numerically practical. We compute the temporal propagation of m-currents using a spatially discretized velocity field on conforming adaptive finite elements. A hierarchical approach from coarse to fine lattices improves performance and robustness of our method. The adaptive refinement process is driven by some residual estimator based on the Riesz representative of shape differences.

Thu.2.MA 015

Theory and methods for PDE-constrained optimization problems with inequalities

Organizer/Chair Michael Ulbrich, Technische Universität München - Invited Session

Francisco José Silva Alvarez, Dipartimento di Matematica “Guido Castelnuovo”, La Sapienza (with Terence Bayen, Frédéric Bonnans)

Characterization of quadratic growth for strong minima in the optimal control of semi-linear elliptic equations

In this work, we are concerned with the following optimal control problem:

$$
\min_u J(u) := \int_{\Omega} \ell(x, u(x), u(x))dx,
$$

under bounds constraints on the control u, and where y_u is the unique solution of

$$
-\Delta y(x) + \varphi(x, u(x), u(x)) = 0, \quad \text{for } x \in \Omega,
$$

$$
y(x) = 0, \quad \text{for } x \in \partial \Omega.
$$

We extend to strong solutions classical second order analysis results, which are usually established for weak solutions. We mean by strong solution a control u that satisfies:

There exists $\varepsilon > 0$ such that $J(u) \leq J(u_\varepsilon)$ for all u with $\|u - u_\varepsilon\| \leq \varepsilon$.

The study of strong solutions, classical in the Calculus of Variations, seems to be new in the context of the optimization of elliptic equations. Our main result is a characterization of local quadratic growth for the cost function J around a strong minimum.

Martin Weiser, Zuse Institute Berlin

Goal-oriented estimation for nonlinear optimal control problems

In optimal control problems with elliptic PDE constraints,

$$
\min_{y, u} f(y, u) \quad \text{s.t.} \quad c(y, u) = 0,
$$

the value of the cost functional is a natural quantity of interest for goal-oriented error estimation and mesh refinement. The talk will discuss the difference between the al-at-once error quantity $f(u^h, u^h) - f(u^h, u^h)$ and the error quantity $f(u^h, u^h) - f(u^h, u^h)$. Both qualitative and quantitative differences will be addressed for linear-elliptic problems.

In the second part, the black-box approach will be extended to smooth nonlinear problems and will result in a novel accuracy matching inexact Newton methods. Quantitative aspects are illustrated on numerical examples including inverse interior point regularizations of inequality constrained problems.

Florian Kuss, Technische Universität München (with Michael Ulbrich)

An infeasible interior point method for optimal control problems with state constraints

We present an infeasible interior point method for pointwise state constrained optimal control problems with elliptic PDEs. A smoothed constraint violation functional is used to develop a self-concordant barrier approach in an infinite-dimensional setting. For the resulting algorithm we provide a detailed convergence analysis in function space. This includes a rate of convergence and a rigorous measure for the proximity of the actual iterate to both the path of minimalizers and the solution of the problem. Moreover, we report on numerical experiments to illustrate the efficiency and the mesh independence of this algorithm.
(ADM) have been widely used in convex optimization. In this talk, we show that ADM can also be quite efficient for solving nonconvex problems such as phase retrieval problem in X-ray diffractive imaging and an integer programming problem in portfolio optimization.

Francesco Solombrino, RICAM (with Massimo Fornasier)

Linearly constrained nonsmooth and nonconvex minimization

Motivated by variational models in continuum mechanics, we introduce a novel algorithm for performing nonsmooth and nonconvex minimizations with linear constraints. We show how this algorithm realizes actually a natural generalization of well-known non-stationary augmented Lagrangian methods for convex optimization. The relevant features of this approach are its applicability to a large variety of nonsmooth and nonconvex objective functions, its guaranteed global convergence to critical points of the objective energy, and its simplicity of implementation. In fact, the algorithm results in a nested double loop iteration, where in the inner loop an augmented Lagrangian algorithm performs an adaptive finite number of iterations on a fixed quadratic and strictly convex perturbation of the objective energy, while the external loop performs an adaptation of the quadratic perturbation. To show the versatility of this new algorithm, we exemplify how it can be easily used for computing critical points in inverse free-discontinuity variational models, such as the Mumford-Shah functional, and, by doing so, we also derive and analyze new iterative thresholding algorithms.

Ming-Jun Lai, University of Georgia (with Louis Yang)

On the Schatten p-quasi-norm minimization for low rank matrix recovery

We provide a sufficient condition to show when the Schatten p-quasi-norm minimization can be used for matrix completion to recover the rank minimal matrix. The condition is given in terms of the restricted isometry property in the matrix version. More precisely, when the restricted isometry constant $\alpha_p < 1$, there exists a real number $\rho_0 < 1$ such that any solution of the ℓ_p minimization is the minimal rank solution for $p \leq \rho_0$.

Thu.2.MA 141

Two-stage stochastic programming and beyond

Organizer/Chair Rüdiger Schultz, University of Duisburg-Essen - Invited Session

Dimitri Drapkin, University of Duisburg-Essen (with Rüdiger Schultz)

Decomposition methods for optimization problems with stochastic order constraints induced by linear recourse

We develop linear programming equivalents for two-stage stochastic optimization problems with linear recourse and dominance constraints of first and second order. In the favourable case, where only continuous variables are present in the second stage, cutting-plane decomposition algorithms are proposed and discussed along with the computational results.

Charlotte Henkel, University of Duisburg-Essen (with Rüdiger Schultz)

Some remarks on linear stochastic bilevel programs

Compared to linear stochastic two-stage programs, linear stochastic bilevel problems (LSBP) exhibit a strongly increased complexity. Starting from a deterministic linear bilevel problem, we derive structural properties for LSBPs using state-of-the-art parametric optimization techniques. As an outcome, we obtain rather weak analytical results. This significantly affects risk measures and solution algorithms for this kind of problem. We emphasize our results by instructive examples.

Nadine Wollenberg, University of Duisburg-Essen (with Uwe Clausen, Rüdiger Schultz; Sascha Wohlgemuth)

Stochastic vehicle routing in forwarding agencies

The performance of forwarding agencies handling less-than-truckload freight is mainly influenced by uncertainty in terms of customer demand and travel times. In the talk we discuss two-stage stochastic integer programs with different objective functions such as minimizing the total travel time or minimizing the number of vehicles used for a feasible routing. For the ranking of the resulting stochastic cost profiles we employ different stochastic quality measures leading to risk neutral models and those quantifying some aversion against risk. Algorithmically, we rely on scenario decomposition achieved by Lagrangean relaxation of nonanticipativity. Some first computational experiments with realistic problem instances relevant for forwarding agencies in the Ruhr Area are presented.

Thu.2.MA 144

Large-scale and multi-stage stochastic optimization

Chair Alois Pichler, University of Vienna

Anna Timotina, University of Vienna

Multi-stage stochastic optimisation and approximations with applications

Multi-stage stochastic optimization problems play a very important role in management of financial portfolios, energy production, insurance portfolios etc. The exact analytical solution for such problems can be found only in very exceptional cases and the necessity of an approximation arises of mediately. The aim of this research is to study the approximation of the stochastic process by the probability valued finite tree. We use the concept of nested distribution to describe the information structure keeping the setup purely distributional and the concept of nested distance to measure the distance between nested distributions and to quantify the quality of approximation. We introduce the algorithm for calculating the nested distance between tree and stochastic process given by its distribution. Minimization of this distance can lead to the new method for generating values from some specific distribution along with Monte Carlo generating and Optimal Quantization. The main advantage of this algorithm is that it takes into account conditional distributions at each stage, that allows to approximate a large class of processes.

Jose Nino-Mora, Carlos III University of Madrid (Q 2810829-G)

Sufficient indexability conditions for real-state restless bandit projects via infinite-dimensional LP-based partial conservation laws

The multiarmed restless bandit (RB) problem concerns the optimal dynamic allocation of a shared resource to multiple stochastic projects, modeled as RBs, i.e., binary action (active/passive) Markov decision processes. Although the problem is generally intractable, a unified approach to construct heuristic policies based on the Whittle priority index, or extensions thereof, has been shown to perform well in a variety of models. Deploying such an approach requires to establish the indexability (i.e., existence of the index) for the constituent RBs, and to evaluate the index numerically. This work presents the first general sufficient conditions for indexability of real-state RBs, motivated by applications that have drawn recent research attention. The conditions are based on an infinite-dimensional LP extension of partial conservation laws, an approach formerly introduced by the author to provide sufficient indexability conditions for discrete-state RBs. The approach further provides a practical means to evaluate the index. Applications will be discussed.

Alois Pichler, University of Vienna

Approximation of stochastic processes

We deal with extremely large scale and high dimensional optimization, where managerial decisions are allowed at consecutive instants of time. The scenario, reflecting future states of the world, are considered random. It is well known how to deal with these types of stochastic optimization problems with an expectation in the objective, but we want to additionally address risk. The newly introduced notion of a process distance (Pflug) allows quantifying approximations. We address approximations, which allow reasonable computation times and give viable bounds in comparison to the original problem. The results are general enough to involve risk measures, which (historically) appeared first in finance and insurance. Finally the approximating processes can be improved by different means to improve their approximating quality.

Thu.2.MA 3002

Network clustering

Organizer/Chair Sergiy Butenko, Texas A&M University - Invited Session

Michael Ovelgonne, University of Maryland (with Andreas Geyer-Schulz)

Ensemble learning for combinatorial optimization: Modularity maximization and beyond

Modularity maximization is the NP-hard problem of identifying a graph partition with a maximal value of the quality measure modularity. Modularity maximization is a well-studied problem in the area of community detection in networks and attracted much attention in computer science as well as physics. A vast number of algorithms have been proposed for this problem. The core groups graph clustering (CGGC) scheme is an ensemble learning clustering method with very high optimization quality. This method combines the local solutions of several base algorithms to form a good start solution (core groups) for the final algorithm. Especially iteratively finding good restart points showed to result in very good optimization quality. We will draw an analogy between the discrete problem of modularity maximization with nonlinear optimization in finite dimensions. We will show that core groups
are the discrete counter-parts of saddle-points and that they constitute good restart points for greedy algorithms. While we developed the CGSC scheme for graph clustering, we believe this optimization scheme can be applied to many other combinatorial optimization problems as well.

Andrea Schumich, Karlslunde Institute of Technology (with Robert Görke, Doratha Wagner)

Experiments on density-constrained graph clustering

Clustering a graph means identifying internally dense subgraphs which are only sparsely interconnected. Formalizations of this notion lead to measures that quantify the quality of a clustering and to algorithms that actually find clusterings. Since, most generally corresponding optimization problems are hard, heuristic clustering algorithms are used in practice, or other approaches which are not based on an objective function. In this work we conduct a comprehensive experimental evaluation of the qualitative behavior of greedy bottom-up heuristics driven by cut-based objectives and constrained by intracluster density, using both real-world data and artificial instances. Our study documents that a greedy strategy based on local-movement is superior to one based on merging. We further reveal that the former approach generally outperforms alternative setups and reference algorithms from the literature in terms of its own objective, while a modularity-based algorithm competes surprisingly well. Finally, we exhibit which combinations of cut-based inter- and intracluster measures are suitable for identifying a hidden reference clustering in synthetic random graphs.

Elena Fernández, Technical University of Catalonia (with Carlos Luna Mata, Gerhard Reinelt)

Low complexity interference alignment algorithms for desired signal power maximization problem of MIMO channels

The interference alignment technique is newly brought into wireless communication to improve the communication capacity. For a K-user MIMO interference channel, we propose a low complexity interference alignment algorithm to solve the desired signal power maximization problem, which is a nonconvex complex matrix optimization problem. First we use a curt on penalty function technique to combine the objective function as desired signal power with the interference constraint, leaving only the orthogonal constraints. By introducing the Householder transformation, the matrix problem turns into vector optimization problem. Applying the alternating direction method and the two-dimensional subspace method, the computational complexity of the algorithm is greatly reduced. To overcome the disadvantage of this algorithm to converge slowly around the local optimal solution, it is combined with a higher complexity algorithm which helps to perfectly eliminate interference and satisfy the original constraints. Simulations show that compared to the existed algorithms, the hybrid algorithm needs less computing time and achieves good performance.

Cong Sun, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Updating shortest path subproblem solutions in large scale optimization

In many large scale optimization applications, one repetitively solves shortest path (SP) subproblems, with slowly varying and possibly concurrent characteristics. In such situations, it’s worthwhile to update the subproblem solutions, rather than solving from scratch. In this paper we describe simplex-like updating of the SP trees, using thread labels. We suggest three improvements to the standard approach:

1. Thread following link scan,
2. bucketed link scan, and
3. acyclic thread

In thread following link scan, we only need a single traversal of the thread to find all entering links. In the bucketed link scan, we do partial pricing. Instead of scanning all arcs, we keep and update a “bucket” of promising links. This gives suboptimal subproblem solutions, but speeds up the convergence. Every now and then, we do a complete scan, and then add and delete links to/from the buckets. In acyclic thread, the thread is modified to scan an acyclic graph, i.e., the graph of bucket links. The acyclic thread scans the nodes in the graph-induced order, and does not need to be updated, unless new arcs are added. We will present computational results for small to large scale traffic assignment problems.

Per Olov Lindberg, KTH Royal Inst. Technology (with Johan Holmgren)

Stability of constraint systems

Organized/Chair Rene Henrion, Weierstrass Institute Berlin - Invited Session

Alexey Lomovoi, Moscow State University (with Alexey Kurennoy)

Strong regularity and abstract Newton schemes for nonsmooth generalized equations

We suggest the inverse function theorem for generalized equations, unifying Robinson’s theorem for strongly regular generalized equations and Clarke’s inverse function theorem for equations with locally Lipschitzian mappings. This theorem is further applied in the context of very general Newton schemes, covering, among others, some methods which are usually not regarded as Newtonian. In particular, we derive new local convergence results for the augmented Lagrangian methods applied to optimization problems with locally Lipschitzian derivatives.

Rene Henrion, Weierstrass Institute Berlin (with Alexander Kruger, Jiri Outrata, Thomas Surowiec)

On (co-)derivatives of the solution map to a class of generalized equations

This talk is devoted to the computation of (co-)derivatives of solution maps associated with a frequently arising class of generalized equations. The constraint sets are given by (not necessarily convex) inequalities for which we do not assume the linear independence of gradients. On the basis of the obtained generalized derivatives, new optimality conditions for a class of mathematical programs with equilibrium constraints are derived, and a workable characterization of the isolated calmness of the considered solution map is provided. The results are illustrated by means of examples.

Marco A. Lopez, Alicante University (with A. Daniilidis, M.A. Goberna, R. Lucetelli)

Lower semicontinuity of the feasible set mapping of linear systems relative to their domains

The talk deals with stability properties of the feasible set of linear inequality systems having a finite number of variables and an arbitrary number of constraints. Several types of perturbations preserving consistency are considered, affecting respectively, all of the data, the left-hand side data, or the right-hand side coefficients. Our analysis is focussed on lower semi-continuity properties of the feasible mapping confined to its effective domain, dimensionality stability of the images and relations with Slater-type conditions. The results presented here are established in a joint paper with A. Daniilidis, M.A. Goberna, and R. Lucetelli.
of the predictive ability and the choice of the regularization parameter are discussed and illustrated by simulated and real data examples.

Christiane Pöschl, Alpen-Adria Universität Klagenfurt (with Vicent Caselles, Matteo Novaga)

TV-denosing and evolution of sets

Let $S \subset \mathbb{R}^2$ be the union of two convex sets with smooth boundary. We connect the levelsets of the minimizers u_λ of

$$
\frac{1}{2} \| u - x \|_2^2 + \lambda \| u \|_{TV}
$$

(1)
to the minimizers of a (simpler) set-minimization problem in order to obtain a geometrical characterization of the levelsets of u_λ. Moreover, we calculate explicit minimizers of (1), when S is the union of two non-intersecting circles/squares, using simple morphological operators. We also show how to construct the solutions for the more general case when S is nonconvex, starshaped set.

Messaoud Bounkhel, King Saud University (with Chong Li)

Regularity concepts of perturbed distance functions at points outside of the set in Banach spaces

In this talk I will present some new results on the (Fréchet, proximal, Clarke, Mordukhovich) subdifferential of the perturbed distance function $d_{\alpha}(.)$ determined by a closed subset S and a Lipschitz function $J(.)$. Using these results, I will establish some important relationships between the regularity of the set and the perturbed distance function at points outside of S in arbitrary Banach space.

Sangho Kum, Chungbuk National University

A geometric mean of parameterized arithmetic and harmonic means of convex functions

Recently Bauschke et al. (2008) introduced a new notion of proximal average, and studied this subject systemically from various viewpoints. The proximal average can be an attractive and powerful alternative to the classical arithmetic and epigraphical averages in the context of convex analysis and optimization problems. The present work aims at providing a further development of the proximal average. For that purpose, exploiting the geometric mean of convex functions by Atteia and Ras-soul i (2001), we develop a new algorithmic self-dual operator for convex functions termed “the geometric mean of parameterized arithmetic and harmonic means of convex functions”, and investigate its essential properties.

Nguyen Dong Yen, Institute of Mathematics, Vietnam Academy of Science and Technology (with Gue Myung Lee)

Coderivatives of a Karush-Kuhn-Tucker point set map and applications

The trust-region subproblem corresponding to the triple (A, b, α), where $A \in \mathbb{R}^{m \times n}$ is a symmetric matrix, $b \in \mathbb{R}^m$ a given vector, and $a > 0$ a real number, is the optimization problem

$$
\min \left\{ f(x) := \frac{1}{2} x^T A x + b^T x : \| x \| = a \right\}.
$$

(2)

One often encounters with (P) in the development of trust-region methods for nonlinear programs. Since the feasible region of (P) is a convex compact set with an infinite number of extreme points, the structure of its solution set [resp. of its Karush-Kuhn-Tucker point set] is quite different from that of quadratic programs with linear constraints. By using some tools from Variational Analysis, this paper investigates the stability of (P) with respect to the perturbations of all the three components of its data set (A, b, α).

Nguyen Dong Yen, Institute of Mathematics, Vietnam Academy of Science and Technology (with Gue Myung Lee)

A geometric mean of parameterized arithmetic and harmonic means of convex functions

Recently Bauschke et al. (2008) introduced a new notion of proximal average, and studied this subject systemically from various viewpoints. The proximal average can be an attractive and powerful alternative to the classical arithmetic and epigraphical averages in the context of convex analysis and optimization problems. The present work aims at providing a further development of the proximal average. For that purpose, exploiting the geometric mean of convex functions by Atteia and Ras-soul i (2001), we develop a new algorithmic self-dual operator for convex functions termed “the geometric mean of parameterized arithmetic and harmonic means of convex functions”, and investigate its essential properties.

Nguyen Dong Yen, Institute of Mathematics, Vietnam Academy of Science and Technology (with Gue Myung Lee)

Coderivatives of a Karush-Kuhn-Tucker point set map and applications

The trust-region subproblem corresponding to the triple (A, b, α), where $A \in \mathbb{R}^{m \times n}$ is a symmetric matrix, $b \in \mathbb{R}^m$ a given vector, and $a > 0$ a real number, is the optimization problem

$$
\min \left\{ f(x) := \frac{1}{2} x^T A x + b^T x : \| x \| = a \right\}.
$$

(2)

One often encounters with (P) in the development of trust-region methods for nonlinear programs. Since the feasible region of (P) is a convex compact set with an infinite number of extreme points, the structure of its solution set [resp. of its Karush-Kuhn-Tucker point set] is quite different from that of quadratic programs with linear constraints. By using some tools from Variational Analysis, this paper investigates the stability of (P) with respect to the perturbations of all the three components of its data set (A, b, α).

Nguyen Dong Yen, Institute of Mathematics, Vietnam Academy of Science and Technology (with Gue Myung Lee)

Coderivatives of a Karush-Kuhn-Tucker point set map and applications

The trust-region subproblem corresponding to the triple (A, b, α), where $A \in \mathbb{R}^{m \times n}$ is a symmetric matrix, $b \in \mathbb{R}^m$ a given vector, and $a > 0$ a real number, is the optimization problem

$$
\min \left\{ f(x) := \frac{1}{2} x^T A x + b^T x : \| x \| = a \right\}.
$$

(2)

One often encounters with (P) in the development of trust-region methods for nonlinear programs. Since the feasible region of (P) is a convex compact set with an infinite number of extreme points, the structure of its solution set [resp. of its Karush-Kuhn-Tucker point set] is quite different from that of quadratic programs with linear constraints. By using some tools from Variational Analysis, this paper investigates the stability of (P) with respect to the perturbations of all the three components of its data set (A, b, α).
Combinatorial optimization

Thu.3.N 3004

Optimization methods for geometric problems
Organizers/Chairs Sándor Fekete, TU Braunschweig, Alexander Kröller, TU Braunschweig - Invited Session

Dan Halperin, Tel-Aviv University

Multi-objective path optimization in motion planning: From the particular to the general

When planning collision-free paths for mobile objects (robots or other creatures) in environments cluttered with obstacles, it is often desirable to simultaneously consider several path-quality criteria. We start with a combination of criteria, which is commonplace in this setting: length and clearance. Namely, we wish that the path will be short and the moving object will be well away from the obstacles. We review several planning techniques specifically tailored to optimizing this combination. We then move on to a general optimization technique that simultaneously addresses a variety of objectives and does not assume some specific path-planning approach. It is based on a simple path-hybridization method, it is easy to implement, and it has proved itself highly effective for a wide range of problems, as we shall demonstrate.

Cid de Souza, University of Campinas (with Pedro de Rezende, Davi Tozoni)

Towards solving to optimality the art gallery with point-guards problem

We present our progress towards the development of an exact and effective algorithm to solve the NP-hard art gallery problem with point-guards (AGPG). A set of points is said to cover a polygon \(P \) if the union of their visibility polygons is \(P \). In AGPG, one seeks a minimum-sized set of points in \(P \) that covers \(P \). Despite its theoretical complexity, we give experimental evidence that AGPG can be solved to proven optimality even for large sized instances of a thousand vertices. To this end, we developed an algorithm which iteratively produces lower and upper bounds on the number of guards needed to cover \(P \). These bounds are computed via integer programming models and rely on a theoretical result showing that for a finite set \(W \) of witnesses in \(P \) there exists a minimum solution covering \(W \) for which the guards belong to a well-defined set of points whose size is polynomial in \(|W|\). We tested this algorithm on a benchmark composed of several classes of polygons of various sizes, all of which obtained from the literature. Our algorithm solves most of these instances in only tens of minutes in a standard desktop computer.

Alexander Kröller, TU Braunschweig (with Tobias Baumgartner, Sándor Fekete, Mahdi Moeini, Christian Schmidt)

Practical solutions and bounds for art gallery problems

The classical Art Gallery problem asks for the minimum number of guards that achieve visibility coverage of a given polygon. It is known to be NP-hard, even for very restricted and discrete special cases. Even though it has been extensively studied in almost 40 years, practical algorithms to find optimal solutions or almost-optimal bounds are not known. We present a primal-dual algorithm based on mathematical programming, which provides lower bounds on the necessary number of guards and - in case of convergence and no gap - ends with an optimal solution. It has been implemented and extensively tested on different classes of polygons; experimental results will be discussed. Additionally we show how to extend the procedure to practical applications of the Art Gallery Problem. These occur in laser scanning of buildings, but come with additional constraints - such as limited viewing range and loss in quality over distances.

Thu.3.N 3005

Recent advances in matching algorithms
Organizer/Chair Piotr Sankowski, University of Warsaw - Invited Session

Manoj Gupta, IIT Delhi (with Suresh Annamalai, Sandeep Sen)

Dynamically maintaining a matching with random arrivals: An approach based on strongly factor-revealing LPs

Karp, Vazirani, and Vazirani show that a simple ranking algorithm achieves a competitive ratio of \(1 - 1/e \) for the online bipartite matching problem in the standard adversarial model. Their result also implies that in the random arrivals model defined by Goel and Mehta, where the online nodes arrive in a random order, a simple greedy algorithm achieves a competitive ratio of \(1 - 1/e \). In this paper, we study the ranking algorithm in the random arrivals model, and show that it has a competitive ratio of at least \(0.954 \) in the random arrivals model. We extend our results to the problem of finding a maximum matching in a bipartite graph with random arrivals, and show that our algorithm achieves a competitive ratio of \(0.954 \). We also show that if the graph is a random bipartite graph, our algorithm achieves a competitive ratio of \(0.954 \). We also show that if the graph is a random bipartite graph, our algorithm achieves a competitive ratio of \(0.954 \).

Yusuke Kobayashi, University of Tokyo (with Xin Yin)

An algorithm for finding a maximum matching excluding complete partite subgraphs

For an integer \(t \) and a fixed graph \(H \), we consider the problem of finding a maximum \(t \)-matching not containing \(H \) as a subgraph, which we call the \(H \)-free \(t \)-matching problem. This problem is a generalization of the problem of finding a maximum \(2 \)-matching with no short cycles, which has been well-studied as a natural relaxation of the Hamiltonian circuit problem. When \(H \) is a complete graph \(K_{r+1} \) or a complete bipartite graph \(K_{r,t} \), in 2010, Bérczi and Végh gave a polynomial-time algorithm to a \(H \)-free \(t \)-matching problem on the competitive ratio of the maximum degree at most \(t + 1 \). Our main contribution is to extend this result to the case when \(H \) is a \(t \)-regular complete graph. We also show that the problem is NP-complete when \(H \) is a connected \(t \)-regular graph that is not complete partite. Since it is known that, for a connected \(t \)-regular graph \(H \), the degree sequences of all \(H \)-free \(t \)-matchings in a graph form a jump system if and only if \(H \) is a complete partite graph, our results show that the polynomial-time solvability of the \(H \)-free \(t \)-matching problem is consistent with this condition.

Shin-ilchi Tanigawa, Kyoto University (with Nasuki Katoh)

Rooted-tree decompositions with matroid constraints and the infinitesimal rigidity of frameworks with boundaries

As an extension of classical tree-partition problem, we consider decompositions of graphs into edge-disjoint rooted-trees with an additional matroid constraint. Specifically, suppose we are given a graph \(G = (V, E) \), a multiset \(R = \{v_1, \ldots, v_t\} \) of vertices in \(V \), and a matroid \(M \) on \(R \). We prove a necessary and sufficient condition for \(G \) to be decomposed into \(t \) edge-disjoint spanning trees \(T_1, \ldots, T_t \) such that \(\{u\} \) is a cycle, \(u \) in \(V \), and \(\{v_i\} \) is a base of \(M \) for each \(v_i \in V \) in \(V \). We prove that for each graph \(H \), there exists a graph decomposition into \(H \)-free \(t \)-matchings, and thus, our result is a proper extension of Nash-Williams' tree-partition theorem.

Such a matroid constraint is motivated by combinatorial rigidity theory. As a direct application of our decomposition theorem, we present characterizations of the infinitesimal rigidity of frameworks with non-generic "boundary", which extend classical Laman's theorem.
for generic 2-rigidity of bar-joint frameworks and Tay’s theorem for generic d-rigidity of body-bar frameworks.

Kiyohito Nagano, University of Tokyo (with Kanyzzy Akhta, Yoshinobu Kawahara)
Size-constrained submodular minimization through minimum norm bases
A number of combinatorial optimization problems in machine learning can be described as the problem of minimizing a submodular function. It is known that the unconstrained submodular minimization problem can be solved in strongly polynomial time. However, additional constraints make the problem intractable in many settings. In this paper, we discuss the submodular minimization under a size constraint, which is NP-hard, and generalizes the densest subgraph problem and the uniform graph partitioning problem. Because of NP-hardness, it is difficult to compute an optimal solution even for a prescribed size constraint. In our approach, we do not give approximation algorithms. Instead, the proposed algorithm computes optimal solutions for some of possible size constraints in polynomial time. Our algorithm utilizes the basic polyhedral theory associated with submodular functions. Additionally, we evaluate the performance of the proposed algorithm through computational experiments.

Combinatorial optimization
Thu.3 10:12
Arborescences
Chair Attila Bernáth, Warsaw University
Attila Bernáth, Warsaw University (with Gyula Pap)
Covering minimum cost arborescences
Given a digraph $D = (V, A)$ with a designated root node $r \in V$ and arc-costs $c : A \to \mathbb{R}$, we consider the problem of finding a minimum cardinality subset H of the arc set A such that H intersects every minimum c-cost r-arborescence. This problem is a special case of covering minimum cost common bases of two matroids, which is NP-complete even if the two matroids coincide, and the costs are all equal to 1. On the other hand we show that this special case is polynomially solvable: we give a polynomial algorithm for finding such an arc set H. The algorithm solves a weighted version as well, in which a nonnegative weight function $w : A \to \mathbb{R}$ is also given, and we want to find a subset H of the arc set such that H intersects every minimum c-cost r-arborescence, and $w(H)$ is minimum.

Mario Leston-Rey, Instituto de Matemática e Estatística da Universidade de São Paulo (with Yoshiko Wakabayashi)
Packing entering sets in kernel systems
In 1998, H. N. Gabow and K. S. Manu showed a strongly polynomial time algorithm to obtain in a capacitated digraph with m arcs and n vertices an r-arborescence. This problem is a special case of covering minimum cost common bases of two matroids, which is NP-complete even if the two matroids coincide, and the costs are all equal to 1. On the other hand, we show that this special case is polynomially solvable: we give a polynomial algorithm for finding such an arc set H. The algorithm solves a weighted version as well, in which a nonnegative weight function $w : A \to \mathbb{R}$ is also given, and we want to find a subset H of the arc set such that H intersects every minimum c-cost r-arborescence, and $w(H)$ is minimum.

Mikael Call, Linköping University (with Daniel Karch)
A polyhedral analysis of a unique shortest path routing polytope
Consider a strongly connected digraph and two spanning arborescences. The arborescences form a unique shortest path system (USPS) if there is a vector of arc costs that simultaneously yields the arborescences as unique shortest path arborescences. USPSs correspond to the bases of an independence system. We characterize a large class of facet defining rank inequalities for the associated polytope. In particular, these facets can be obtained by sequential lifting of circuit inequalities. Given a circuit inequality, we determine the facet induced by computing an optimal solution even for a prescribed size constraint. In our approach, we do not give approximation algorithms. Instead, the proposed algorithm computes optimal solutions for some of possible size constraints in polynomial time. Our algorithm utilizes the basic polyhedral theory associated with submodular functions. Additionally, we evaluate the performance of the proposed algorithm through computational experiments.

Thu.3 10:12
Combinatorial optimization
Thu.3 10:12
Thematic session
Scheduling and network flows over time
Chair Oscar Ibarra, University of Minnesota
Thu.3 10:12
Oscar Ibarra, University of Minnesota (with Speaker of Session)
Scheduling and network flows over time
We consider scheduling on an unreliable machine that may experience unexpected failures in processes and even full breakdowns. Our objective is to minimize the sum of weighted completion times for any non-decreasing, non-negative, differentiable cost function $f(C)$. We aim for a universal solution that performs well without adaptation for all cost functions for any possible machine behavior.

Global convergence of augmented Lagrangian methods applied to
Artur Pogosyan, Moscow State University (with Alexey Izmailov, Mikhail Solodov)
Semismooth Newton-type methods for lifted mathematical programs with complementarity constraints
We consider a reformulation of mathematical programs with complementarity constraints, where by introducing an artificial variable the constraints are converted into equalities and non-negative inequalities which are once but not twice differentiable. This approach can be regarded as a development of the lifted reformulation of complementarity constraints proposed earlier by O. Stein. We show that the Lagrange optimality system of such a reformulation is semismooth and BD-regular at the solution under reasonable assumptions. Thus, fast local convergence can be obtained by applying the semismooth Newton method. Moreover, it turns out that the squared residual of the Lagrange system is continuously differentiable (even though the system itself is not), which opens the way for a natural globalization of the local algorithm. However, from the practical viewpoint, it seems more promising to use a non-smooth exact penalty function instead of the squared residual of the Lagrange system which leads to the semismooth sequential quadratic programming method. Preliminary numerical results for problems from MacMPEC test collection demonstrate that the approach is very promising.

Evgeny Dikun, Moscow State University (with Alexey Izmailov, Mikhail Solodov)
Semismooth Newton-type methods for lifted mathematical programs with complementarity constraints
We consider a reformulation of mathematical programs with complementarity constraints, where by introducing an artificial variable the constraints are converted into equalities and non-negative inequalities which are once but not twice differentiable. This approach can be regarded as a development of the lifted reformulation of complementarity constraints proposed earlier by O. Stein. We show that the Lagrange optimality system of such a reformulation is semismooth and BD-regular at the solution under reasonable assumptions. Thus, fast local convergence can be obtained by applying the semismooth Newton method. Moreover, it turns out that the squared residual of the Lagrange system is continuously differentiable (even though the system itself is not), which opens the way for a natural globalization of the local algorithm. However, from the practical viewpoint, it seems more promising to use a non-smooth exact penalty function instead of the squared residual of the Lagrange system which leads to the semismooth sequential quadratic programming method. Preliminary numerical results for problems from MacMPEC test collection demonstrate that the approach is very promising.

Evgeny Dikun, Moscow State University (with Alexey Izmailov, Mikhail Solodov)
Global convergence of augmented Lagrangian methods applied to
optimization problems with degenerate constraints, including problems with complementarity constraints

We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationarity points of the problem under an error bound condition for the feasible set (which is weaker than constraint qualifications), assuming that the iterates have some modest features of approximate local minimizers of the augmented Lagrangian. For MPCC, we obtain a rather complete picture, showing that under the usual in this context MPCC-linear independence constraint qualification accumulation points of the iterates are C-stationary for MPCC (better than weakly stationary), but in general need not be M-stationary (hence, neither strongly stationary). Numerical results demonstrate that in terms of robustness and quality of the outcome augmented Lagrangian methods are absolutely competitive with the best existing alternatives and hence, they can serve as a promising global strategy for problems with degenerate constraints.

Walter Matini, George Mason University

Efficient computation of a canonical form for a generalized P-matrix

We use recent results on algorithms for Markov decision problems to show that a canonical form for a generalized P-matrix can be computed, in some important cases, by a strongly polynomial algorithm.

Thu.3.II 2036
Conic optimization and signal processing applications
Organizer/Chair Anthony Man-Chu So, The Chinese University of Hong Kong - Invited Session
Senshan Ji, The Chinese University of Hong Kong (with Anthony Man-Chu So)

Approximating a KKT point of Schatten p-quasi norm minimization in polynomial time, with applications to sensor network localization

In this talk, we consider the Schatten p-quasi norm minimization problem, which has previously found applications in compressed sensing and matrix completion. We propose a potential reduction algorithm to approximate a KKT point of the Schatten p-quasi norm minimization problem. We show that our algorithm is a fully polynomial-time approximate scheme, taking no more than \(O(\frac{\log(\frac{1}{\epsilon})}{\epsilon}) \) iterations to reach an \(\epsilon \)-KKT point or global minimizer. We then apply the algorithm to the sensor network localization problem. Our numerical results show that in many cases, the proposed algorithm can achieve better results than the standard semidefinite relaxation of the problem.

Wing-Kin Ma, The Chinese University of Hong Kong

Semidefinite relaxation in wireless communications: Forefront developments, advances and challenges

Semidefinite relaxation (SDR) is well-known to be an efficient high-performance technique for approximating a host of hard, nonconvex optimization problems. And one of its most recognized applications is probably MAXCUT. In fact, SDR has also made its way to signal processing and wireless communications, and the impact is tremendous – today we see not only numerous applications, but also new fundamental concepts and theory driven by the applications themselves. This talk will focus on transmit beamforming, now a key topic in communications. I will provide an overview on its scope, which is quite broad (classical multiuser downlinks, unicast and multicasting, multihop networks, etc.), and how we are currently using SDP to solve some of these problems. I will then describe some latest advances that link up fundamental theory with applications.

Yang Yang, The Hong Kong University of Science and Technology (with Daniel Palomar, Francisco Rubio, Gezauldio Scutari)

Multiportfolio optimization: A variational inequality approach

In this paper, we study the multiportfolio optimization problem with square-root market impact model using a game-theoretic approach. Contrary to the linear market impact model, available tools such as potential game theory are not applicable for the square-root model. We approach this problem using Variational Inequality, and give a comprehensive and rigorous analysis on the properties of the Nash Equilibrium such as existence and uniqueness, and devise efficient algorithms with satisfactory convergence property. A more general game problem where all accounts are subject to global constraints is also studied under the framework of Variational Inequality.

Conic programming
Thu.3.II 2038
Recent developments of theory and applications in conic optimization I
Organizers/Chairs Hayato Waki, Kyushu University; Masakazu Muramatsu, The University of Electro-Communications - Invited Session
Muddapu Gowda, University of Maryland, Baltimore County

On the nonhomogeneity and the bilinearity rank of a completely positive cone

Given a closed cone \(C \) in \(R^n \), the completely positive cone of \(C \) is the convex cone \(K \) generated by matrices of the form \(uu^T \), where \(u \) varies over \(C \). Examples of completely positive cones include the positive semidefinite cone (when \(C = R^n \)) and the cone of completely positive matrices (when \(C = R^{m \times m} \)). Completely positive cones arise, for example, in the reformulation of a nonconvex quadratic minimization problem over an arbitrary set with linear and binary constraints as a conic linear program. This talk deals with the questions of when (or whether) \(K \) is self-dual, irreducible, and/or homogeneous. We also describe the bilinearity rank of \(K \) in terms of that of \(C \).

Masakazu Muramatsu, The University of Electro-Communications (with Levent Tuncel, Hayato Waki)

A perturbed sums of squares theorem for polynomial optimization and its applications

We prove a property of positive polynomials on a compact set with a small perturbation. When applied to a POP, the property implies that the optimal value of the corresponding SDP relaxation with sufficiently large order is bounded below by \(f^* - \epsilon \) and from above by \(f^* + \epsilon(n+1) \), where \(f^* \) is the optimal value of the POP, \(n \) is the number of variables, and \(\epsilon \) is the perturbation. In addition to extending this property to some directions, we propose a new sparse SDP relaxation based on it. In this relaxation, we positively exploit the numerical errors naturally introduced by numerical computation. An advantage of our SDP relaxation is that they are of considerably smaller dimension than Lasserre’s, and in many situations than the sparse SDP relaxation proposed by Waki et al. We present some applications and the results of our computational experiments.

Farid Alizadeh, Rutgers University

Some geometric applications of abstract algebraic sum-of-squares cones

We have established that sum-of-squares (SOS) cones in abstract algebras are semidefinite representable. By combining this fact and the classical theorem of Yoneda, it can be shown that a wide variety of cones are in fact SOS with respect to some algebra, and thus SDP-representable. We review some applications of such cones in geometric optimization. We examine the minimum volume ellipsoid, the minimum volume rectangular box, the minimum volume simplex, etc., containing a space curve. We also examine the diameter of a space curve, distance of a point to a space curve, and possible optimization problems with constraints on such parameters. For instance we examine design of a space curve with constraints on its curvature. We will also comment on similar problem for higher dimensional surfaces.

Thu.3.II 2038A
Recent progress in direct search methods
Organizer/Chairs Luis Nunes Vicente, University of Coimbra; Stefan Wild, Argonne National Laboratory - Invited Session
Sébastien Le Digabel, Polytechnique Montréal (with Charles Audet, Andrea Iani, Christophe Tribou)

The mesh adaptive direct search algorithm with reduced number of directions

The Mesh Adaptive Direct Search (MADS) class of algorithms is designed for blackbox optimization where the objective function and constraints are typically computed by launching a time-consuming computer simulation. The core of each iteration of the algorithm consists of launching the simulation at a finite number of trial points. These candidates are constructed from MADS directions. The current and efficient implementation of MADS uses 2n directions at each iteration, where n is the number of variables. The scope of the present work is the reduction of that number to a minimal positive spanning set of \(n + 1 \) directions. This transformation is generic and can be applied to any method that generates more than \(n + 1 \) MADS directions.

José Mario Martínez, University of Campinas. (with Luis Felipe Benece, Ana Friedlander, Francesc Sobral)

Inexact restoration method for derivative-free optimization with smooth constraints

A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based
on the Inexact Restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only the constraints, in order to improve feasibility. In the second phase one minimizes a suitable objective function subject to a linear approximation of the constraints. The second phase must be solved using derivative-free methods. An algorithm introduced recently by Kolda, Lewis, and Torczon for linearly constrained derivative-free optimization is employed for this purpose. Under usual assumptions, convergence to stationary points is proved. A computer implementation is described and numerical experiments are presented.

Rohollah Garmanjani, University of Coimbra (with Luis Nunes Vicente)

Smoothing and worst case complexity for direct-search methods in non-smooth optimization

For smooth objective functions it has been shown that the worst case cost of direct-search methods is of the same order as the one of steepest descent. Motivated by the lack of such a result in the non-smooth case, we propose, analyze, and test a class of smoothing direct-search methods for the optimization of non-smooth functions. Given a parameterized family of smoothing functions for the non-smooth objective function, this class of methods consists of applying a direct search for a fixed value of the smoothing parameter until the step size is relatively small, after which the smoothing parameter is reduced and the process is repeated. One can show that the worst case complexity of cost of this procedure is roughly one order of magnitude worse than the one for direct search or steepest descent on smooth functions. The class of smoothing direct-search methods is also showed to enjoy asymptotic global convergence properties. Numerical experience indicates that this approach leads to better values of the objective function, apparently without an additional cost in the number of function evaluations.

Eligius Hendrix, Málaga University (with Leocadio Casado, Juan Francisco Herrera, Michiel Janssen)

On finding optimal portfolios with risky assets

Since the introductory work of Markowitz, the questions of finding optimal portfolios in order to maximise return and minimise risk, have been made explicit in terms of optimisation models. As long as returns are described by normal distributions, analytical expressions can be derived for finding optimal portfolio weights. The optimal mix is more difficult to find when we are dealing with so-called fat tails. This means that probabilities on extreme outcomes are typically higher than in the normal distribution, thus providing a challenge for the composition of low risk portfolios. One way to do so is to combine simulation of rare events with optimization tools. In this context, a specific weight adjusting algorithm is described and compared to the use of standard nonlinear optimization solving an equivalent problem.

Chen, Ye Lu, Ya-xiang Yuan)

Optimal hedging of foreign exchange risk in uncertain cash flows using stochastic programming

We build a stochastic programming framework for optimal hedging of foreign exchange risk in uncertain cash flows. By incorporating term premia we are able to estimate the cost of hedging, and we determine the optimal hedge by minimizing a convex combination of risk (measured as CVaR) and cost. The importance of expected returns for the optimal hedge is verified through numerical results. In this framework, trades are made at market prices and transaction costs are included. The framework offers great flexibility regarding distributional assumptions of the underlying risk factors and the types of financial instruments which can be included.

Mathias Borkhagen, Linköping University (with Jörgen Blomqvist)

An optimization based method for arbitrage-free estimation of the implied risk neutral density surface

Accurate pricing of OTC derivatives which is consistent with noisy market prices presents a major challenge. The pricing accuracy will crucially depend on using arbitrage-free inputs to the pricing engine. To this end we develop a general optimization based framework for estimation of the option implied risk neutral density (RND) surface, while satisfying no-arbitrage constraints. The developed framework is a generalization of existing models such as the Heston model. Thus, the method considers all types of realistic surfaces and is hence not constrained to a certain function class. Instead the RND is discretized making it possible to use standard solvers for the problem. The approach leads to an optimization model where it is possible to formulate the constraints as linear constraints. The linear constraints and the form of the objective function leads to an inherent problem structure which may be utilized to speed up calculations. We show that our method produces smooth local volatility surfaces that can be used for pricing and hedging of OTC derivatives. Statistical tests demonstrate that our method gives better results than the Heston model in terms of yielding stable RNDs.

Janos Mayer, University of Zurich (with Thorsten Hens)

Portfolio optimization with objective functions from cumulative prospect theory

We consider portfolio optimization problems with several assets, involving objective functions from the cumulative prospect theory (CPT) of Tversky and Kahneman (1992). These are numerically difficult optimization problems since the objective function to be maximized is neither concave nor smooth. We have implemented an adaptive simplex grid method for the solution of this type of problems and report on the results of a numerical study. Levy and Levy (2004) proved that under the assumption of normally distributed returns the CPT efficient set is a subset of the mean-variance (MV) frontier. In fact the authors state that there is no need for separate solution algorithms for CPT-optimization, since those problems are readily solvable by maximizing the CPT objective function along the MV frontier. We compare this suggestion with the direct CPT-optimization, for a real life data-set and for several investors and find that the two approaches lead to substantially different portfolios. This difference increases dramatically if we add a call option to our data-set and it diminishes almost completely for a data-set obtained by sampling from the corresponding normal distribution.

Daniel Granot, Sauder School of Business (with Eran Hananay)

Subgame perfect consistent stability

We introduce an approach to farsightedness that provides a non-cooperative foundation for this concept based on VNM-type stable and subgame perfect equilibrium. We refer to the set of outcomes derived by this approach as subgame perfect consistent set (SPCS), and demonstrate that it significantly improves upon Chwe’s farsighted reasoning as embodied in his largest consistent set. We further show that the SPCS approach leads, quite remarkably, to Pareto efficiency in various set-tings including Bertrand and Cournot competitions.

Daniel Granot, Sauder School of Business (with Eran Hananay)
Software piracy and mastermind
Chair Carola Winzen, Max-Planck-Institut für Informatik

Yael Perlman, Department of Management, Bar-Ilan University (with Konstantin Kogan, Yaacov Orlitcz)
Software piracy prevention and price determination
We consider a monopolistic producer offering software that is updated periodically, but, by the end of one period, a pirated version is available at a transaction cost. This presents the heterogeneous consumer with possible strategies for either buying a new product or pirating it. We address pricing and protection investment strategies to regain the profits affected by the piracy. In particular, we find that even when the transaction cost is exogenous, the producer does not necessarily want to fully price out the piracy. The decisive factor in such a case is the product newness relative to the transaction cost. If the producer is able to achieve high newness for the updated product relative to the transaction cost, then a high retail price ensures that he will gain the largest profit possible even though some of the demand will be lost due to piracy. On the other hand, when the transaction cost is endogenous, the producer may have two alternatives: pricing the software out or investing heavily in software protection. As newness levels rise, the option of pricing out the piracy becomes increasingly preferable.

Camila Winzen, Max-Planck-Institut für Informatik (with Benjamin Doerr, Reto Spohel, Henning Thomas)
Playing mastermind with many colors
We consider the black-peg version of Mastermind with n holes and \(k \leq n \) colors. For the most interesting case \(k = n \), by combining previous approaches of Chvátal [Combinatorica 3 (1983), 325–329] and Goodrich [Information Processing Letters 109 (2009), 675–678], we show that there exists a deterministic winning strategy that allows the code-breaker to find the secret code with \(O(n \log k)^{1/2} \) guesses. This improves the previously best known bounds of Chvátal, Goodrich, and others, which are all of order \(n \log n \); both for the black-peg version of Mastermind and the original game with both black and white answer- pegs. More generally, one of the key arguments, the success probability of random sampling, can be applied to the Mastermind game with any number \(k \leq n \log k^{1/2} \) of colors, and it yields a winning strategy using \(O(n \log k / \log(n/k)) \) guesses.

Tibor Csendes, University of Szeged (with Elvira Antal)
Symbolic simplification of nonlinear optimization problems
We present a Maple implementation of a symbolic algorithm that is capable to transform the original nonlinear global optimization problem into an equivalent form, that is simpler in the sense that it has less operations to be calculated. The algorithm can also recognize redundancy in the optimized variables, and in this sense it can decrease the dimensionality of the problem (if it is possible). The applied transformations can preserve the number of local minimizer points, and the solution of the transformed problem can easily be transformed back to the space of the original variables.

We have tested the code on the set of standard global optimization problems and on some custom made simplifiable problems. The results are convincing in terms that the algorithm concludes in almost all cases according to our knowledge on the problems.

Chu Nguyen, Eastern Asian University of Technology. (with Nguyen Chu, Pham Duong, Le Hue)
The interior exterior approach for linear programming problem
In this paper we present a new interior exterior algorithm for solving linear programming problem which can be viewed as a variation of simplex method in combination with interior approach. With the assumption that a feasible interior solution to the input system is known, this algorithm uses it and appropriate constraints of the system to construct a sequence of the so called station cones whose vertices tend very fast to the solution to be found. The computational experiments show that the number of iterations of the interior exterior algorithm is significantly smaller than that of the second phase of the simplex method. Additionally, when the number of variables and constraints of the problem increase, the number of iterations of the interior exterior approach increase in a slower manner than that of the simplex method.

Duy Van Nguyen, Universität Trier
Solving standard problem (STOP)
We consider the standard quadratic problem (STOP) which consists of globally minimizing an indefinite quadratic function over the simplex. We propose a finite but exponential solution algorithm in which the main task of each iteration is to check semidefiniteness of a \(k \times k \) symmetric matrix with \(k \leq n \). We show some illustrative examples and computational test results for the algorithm.

Camila Winzen, Max-Planck-Institut für Informatik (with Benjamin Doerr, Reto Spohel, Henning Thomas)
Playing mastermind with many colors
We consider the black-peg version of Mastermind with n holes and \(k \leq n \) colors. For the most interesting case \(k = n \), by combining previous approaches of Chvátal [Combinatorica 3 (1983), 325–329] and Goodrich [Information Processing Letters 109 (2009), 675–678], we show that there exists a deterministic winning strategy that allows the code-breaker to find the secret code with \(O(n \log k)^{1/2} \) guesses. This improves the previously best known bounds of Chvátal, Goodrich, and others, which are all of order \(n \log n \); both for the black-peg version of Mastermind and the original game with both black and white answer- pegs. More generally, one of the key arguments, the success probability of random sampling, can be applied to the Mastermind game with any number \(k \leq n \log k^{1/2} \) of colors, and it yields a winning strategy using \(O(n \log k / \log(n/k)) \) guesses.

Tibor Csendes, University of Szeged (with Elvira Antal)
Symbolic simplification of nonlinear optimization problems
We present a Maple implementation of a symbolic algorithm that is capable to transform the original nonlinear global optimization problem into an equivalent form, that is simpler in the sense that it has less operations to be calculated. The algorithm can also recognize redundancy in the optimized variables, and in this sense it can decrease the dimensionality of the problem (if it is possible). The applied transformations can preserve the number of local minimizer points, and the solution of the transformed problem can easily be transformed back to the space of the original variables.

We have tested the code on the set of standard global optimization problems and on some custom made simplifiable problems. The results are convincing in terms that the algorithm concludes in almost all cases according to our knowledge on the problems.

Chu Nguyen, Eastern Asian University of Technology. (with Nguyen Chu, Pham Duong, Le Hue)
The interior exterior approach for linear programming problem
In this paper we present a new interior exterior algorithm for solving linear programming problem which can be viewed as a variation of simplex method in combination with interior approach. With the assumption that a feasible interior solution to the input system is known, this algorithm uses it and appropriate constraints of the system to construct a sequence of the so called station cones whose vertices tend very fast to the solution to be found. The computational experiments show that the number of iterations of the interior exterior algorithm is significantly smaller than that of the second phase of the simplex method. Additionally, when the number of variables and constraints of the problem increase, the number of iterations of the interior exterior approach increase in a slower manner than that of the simplex method.

Duy Van Nguyen, Universität Trier
Solving standard problem (STOP)
We consider the standard quadratic problem (STOP) which consists of globally minimizing an indefinite quadratic function over the simplex. We propose a finite but exponential solution algorithm in which the main task of each iteration is to check semidefiniteness of a \(k \times k \) symmetric matrix with \(k \leq n \). We show some illustrative examples and computational test results for the algorithm.

Camila Winzen, Max-Planck-Institut für Informatik (with Benjamin Doerr, Reto Spohel, Henning Thomas)
Playing mastermind with many colors
We consider the black-peg version of Mastermind with n holes and \(k \leq n \) colors. For the most interesting case \(k = n \), by combining previous approaches of Chvátal [Combinatorica 3 (1983), 325–329] and Goodrich [Information Processing Letters 109 (2009), 675–678], we show that there exists a deterministic winning strategy that allows the code-breaker to find the secret code with \(O(n \log k)^{1/2} \) guesses. This improves the previously best known bounds of Chvátal, Goodrich, and others, which are all of order \(n \log n \); both for the black-peg version of Mastermind and the original game with both black and white answer- pegs. More generally, one of the key arguments, the success probability of random sampling, can be applied to the Mastermind game with any number \(k \leq n \log k^{1/2} \) of colors, and it yields a winning strategy using \(O(n \log k / \log(n/k)) \) guesses.

Tibor Csendes, University of Szeged (with Elvira Antal)
Symbolic simplification of nonlinear optimization problems
We present a Maple implementation of a symbolic algorithm that is capable to transform the original nonlinear global optimization problem into an equivalent form, that is simpler in the sense that it has less operations to be calculated. The algorithm can also recognize redundancy in the optimized variables, and in this sense it can decrease the dimensionality of the problem (if it is possible). The applied transformations can preserve the number of local minimizer points, and the solution of the transformed problem can easily be transformed back to the space of the original variables.

We have tested the code on the set of standard global optimization problems and on some custom made simplifiable problems. The results are convincing in terms that the algorithm concludes in almost all cases according to our knowledge on the problems.

Chu Nguyen, Eastern Asian University of Technology. (with Nguyen Chu, Pham Duong, Le Hue)
The interior exterior approach for linear programming problem
In this paper we present a new interior exterior algorithm for solving linear programming problem which can be viewed as a variation of simplex method in combination with interior approach. With the assumption that a feasible interior solution to the input system is known, this algorithm uses it and appropriate constraints of the system to construct a sequence of the so called station cones whose vertices tend very fast to the solution to be found. The computational experiments show that the number of iterations of the interior exterior algorithm is significantly smaller than that of the second phase of the simplex method. Additionally, when the number of variables and constraints of the problem increase, the number of iterations of the interior exterior approach increase in a slower manner than that of the simplex method.

Duy Van Nguyen, Universität Trier
Solving standard problem (STOP)
We consider the standard quadratic problem (STOP) which consists of globally minimizing an indefinite quadratic function over the simplex. We propose a finite but exponential solution algorithm in which the main task of each iteration is to check semidefiniteness of a \(k \times k \) symmetric matrix with \(k \leq n \). We show some illustrative examples and computational test results for the algorithm.
Thu.3 2013

Topography, clustering and separation

Chair Timo Berthold, ZIB / Matheon

Marcia Fampa, Universidade Federal do Rio de Janeiro (with Olinto Araújo, Viviane Kohler)

MILP formulation for the software clustering problem

We present a mixed integer linear programming (MILP) formulation for the Software Clustering Problem (SCP), where we divide the modu-

ules of a software system into groups or clusters, to facilitate the work of the software maintainers. We discuss a preprocessing that reduces the size of the instances of the SCP and introduce some valid inequalities that have been shown to be very effective in tightening the MILP formu-

lation. Numerical results presented compare the results obtained with the formulation proposed with the solutions obtained by the exhaustive algorithm supported by the freely available Bunch clustering tool, for benchmark problems.

Pedro Guillén, Universidade Politécnica de Madrid (UPM), Natural Computing Group (with Juan Castellanos, Alejandro De Santos, Eduardo Villa)

Natural languages with the morphosyntactic distance as a topological space

The main aim of this paper is to give a proof of the computability of morphosyntactic distance (M.D.) over an arbitrary set of data. Since here, M.D. (defined in the works de Santos, Villa and Guillén) can be defined over the elements of this group. Distance d induces a topological space, that we call morphosyntactic space. Based on this hypothesis, studying the properties of this space from a topological point of view. Let the associated lexical space built, that has a semigroup structure, and could be treated as a set, regardless of its algebraic properties. Using the fact that the meaning function is injective, it is possible to define on it the M.D. d.

In the first section, several topological properties of morphosyntactic space are proved: total disconnection, compactness and separability. Then a comparison is proposed between different structures and mor-

phosyntactic space.

Under the latter theorem, reasonable time to implement algorithms can be assumed over morphosyntactic space. In these conditions, it is easy to conclude that the model designed to define the morphosyntactic space is computable, and therefore the algorithm of M.D. is solvable.

Inácio Andruski-Guimarães, UTFPR – Universidade Tecnológica Federal do Paraná

Comparison of techniques based on linear programming to detect separation

Separation is a key feature in logistic regression. In fact, is well known that, in case of complete separation, iterative methods com-

monly used to maximize the likelihood, like for example Newton's method, do not converge to finite values. This phenomenon is also known as monotone likelihood, or infinite parameters. Linear program-

ming techniques to detect separation have been proposed in the litera-

ture for logistic regression with binary response variable. But, for polyto-
mous response variable, the time required to perform these techniques can be greater than that for fitting the model using an iterative method. The purpose with this job is to develop and implement an alternative approach to detect separation for the parameter estimation in polyto-
mous logistic regression. This approach proposes to use as covariates a reduced set of optimum principal components of the original covari-

ates. Principal components analysis allows the reduction of the number of dimensions and avoiding the multicollinearity of these variables. Ex-

amples on datasets taken from the literature show that the approach is feasible and works better than other techniques, in terms of amount of computing.

Organizer/Chair Marc Pfetsch, TU Darmstadt - Invited Session

Satya Mars, TU Darmstadt (with Jakob Schelbert, Lars Schewe)

Approaches to solve mixed integer semidefinite programs

We present a hybrid approach for solving mixed integer SDPs, which alternates between solving SDP- and LP-relaxations. Our framework can be used as a pure branch-and-cut-algorithm with solving SDP-relaxations. Furthermore it is possible to just use the linear approxima-
tions for solving. Our main focus lies on the comparison of the interac-
tion of the two relaxations. For this we present numerical results. Our studies are motivated by one main application. We consider problems from mechanical engineering in the context of truss topology design. The standard formulation of a truss problem is extended to discrete bar areas and actuators. These components are modeled via binary vari-

ables. Additionally we show results for other classes of MISDPs.

Nam Dung Hoang, Vietnam National University Hanoi (with Thoan Koch)

Steiner tree packing revisited

The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other prob-

lems, where there have been tremendous advances in practical prob-

lem solving, STTP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for com-

puting optimal solutions. In this talk we review some classical STTP

Thursday 3

Thu.3 2013

Mixed-integer linear and semidefinite programs

Organizer/Chair Marc Pfetsch, TU Darmstadt - Invited Session

Christian Puchert, RWTH Aachen University (with Marco Lübbecke)

Large neighborhood search and diving heuristics in column generation algorithms

In many MIP applications, a problem with a particular structure is to be solved. For those problems, the branch-and-price scheme using the column generation procedure has proven to be a successful approach, which relies on the Dantzig-Wolfe decomposition.

The performance of this scheme may be improved by supplying it with additional features such as primal heuristics. We present heuris-
tics that are specially tailored for Column Generation and exploit a given problem structure, but are still generic in that they are not restricted to any particular problem.

In particular, we lay focus on two special kinds of heuristics, namely large neighborhood search and diving heuristics. The former explore a MIP neighborhood of one or more given feasible (or at least LP feasible) solutions. The latter perform a depth-first search on the branch-and-bound tree, where they may branch either on the original variables or the master variables. We will investigate the impact of these heuristics and give a comparison to classical heuristic approaches.

Christian Puchert, RWTH Aachen University (with Marco Lübbecke)

Branch-and-price IV: Primal heuristics

Approaches to solve mixed integer semidefinite programs

The purpose with this job is to develop and implement an alternative

problem in combinatorial optimization. In contrast to many other prob-

lems, where there have been tremendous advances in practical prob-

lem solving, STTP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for com-

puting optimal solutions. In this talk we review some classical STTP

Thursday 3

Thu.3 2013

Mixed-integer linear and semidefinite programs

Organizer/Chair Marc Pfetsch, TU Darmstadt - Invited Session

Satya Mars, TU Darmstadt (with Jakob Schelbert, Lars Schewe)

Approaches to solve mixed integer semidefinite programs

We present a hybrid approach for solving mixed integer SDPs, which alternates between solving SDP- and LP-relaxations. Our framework can be used as a pure branch-and-cut-algorithm with solving SDP-relaxations. Furthermore it is possible to just use the linear approxima-
tions for solving. Our main focus lies on the comparison of the interac-
tion of the two relaxations. For this we present numerical results. Our studies are motivated by one main application. We consider problems from mechanical engineering in the context of truss topology design. The standard formulation of a truss problem is extended to discrete bar areas and actuators. These components are modeled via binary vari-

ables. Additionally we show results for other classes of MISDPs.

Nam Dung Hoang, Vietnam National University Hanoi (with Thoan Koch)

Steiner tree packing revisited

The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other prob-

lems, where there have been tremendous advances in practical prob-

lem solving, STTP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for com-

puting optimal solutions. In this talk we review some classical STTP

Thursday 3
instances which model the underlying real world application only in a reduced form. Through improved modelling, including some new cutting planes, and by employing recent advances in solver technology we are for the first time able to solve those instances in the original 3D grid graphs to optimality.

Matthias Miltenberger, Zuse Institute Berlin

Advances in linear programming

The efficient and reliable solution of today’s optimization problems remains an interesting and challenging task, especially when dealing with large-scale instances. A lot of these are formulated as mixed integer programs that rely on branch-and-cut to compute an optimal solution. In this process usually many linear relaxations (LPs) have to be solved and the simplex method has proven successful in this task. We shed light on the impact of LP solving within the MIP context and present recent progress in the area, in particular with respect to the academic solvers SCIP and SoPlex.

Thur.3 MA 274

Mathematical modeling of disease

Chair Rujira Ouncharoen, Chiang Mai University (with Thongchai Dumrongpokaphan, Siriwan Intawichai)
Ivan Savic, Faculty of Technology, University of Nis (with Ljubisa Nikolic, Vesna Nikolic, Ivana Savic, Mihailo Stankovic)

Mathematical modeling of amygdalin isolation from plum kernel using response surface methodology

Amygdalin belongs in the group of anticancer agents. It has a high application in treatment of cancer, because of its selective impact on the tumor cells. The aim of this study was to model and optimize a process of amygdalin isolation from plum kernel (Nucleus Prunus Domestica) using response surface methodology. The time of extraction, ethanol concentration, the ratio of plant material to solvent and temperature were used as independent variables, while the yield of amygdalin as dependent variable for central composite design. The second order polynomial model was successfully applied for mathematical modeling of this process. A correlation coefficient of 0.7784 indicates on a good fitting of observed with predicted data. By desirability function, the extraction process was optimized. The optimal amygdalin yield of 15.83 g/100 g d.e. was achieved after 120 min using 20% ethanol at the solvomodule of 1 : 25 (m/V) and temperature of 78°C.

Rujira Ouncharoen, Chiang Mai University (with Thongchai Dumrongpokaphan, Siriwan Intawichai)

Stability of HIV aphaeresis model

The new approach in treating the human immunodeficiency virus (HIV) infection is apheresis. It is a method of collecting larger quantities of the specific blood components that can safely be collected through a simple blood draw. In this paper, we investigate the effect of HIV apheresis in a model of HIV infection. Sufficient conditions are given to ensure the endemic equilibrium point is stable which mean the viral load is under control.
The new type of nonlinear scalarizing functions is introduced and their linear scalarization approach for their characterizations. A new general notion for properly nondominated elements and investigate non-optimization with variable ordering structures. Characterization of properly nondominated elements in vector optimization problems with variable ordering structures.

Renata Sotirov, Tilburg University

SDP relaxations for the graph partition problem

In [R. Sotirov. A powerful semidefinite programming relaxation for the graph partition problem. Manuscript 2011] we derived a semidefinite programming relaxation for the general graph partition problem (GPP) that is based on matrix lifting. This relaxation provides competitive bounds that can be computed with little computational effort for graphs with up to 100 vertices.

Here, we further investigate matrix and vector lifting SDP relaxations for the GPP on highly symmetric graphs, and improve the best known bounds for certain graphs with symmetry.

Raymond Hemmecke, TU Munich (with Shmuel Onn, Lyubov Romanchuk)

N-fold integer programming in cubic time

In this talk we present a cubic-time algorithm for solving N-fold integer programs together with some first computational experiments on its performance.

Gabriele Eichfelder, TU Ilmenau

Preference structures in multi-objective optimization

Preference structures in multi-objective optimization

Gabriele Eichfelder, TU Ilmenau

A procedure for solving vector optimization problems with a variable ordering structure

Vector optimization problems with a variable ordering structure have recently gained interest due to several applications for instance in image registration and portfolio optimization. Here, the elements in the image space are compared using a cone-valued map, called ordering map, which defines an ordering cone for each element of the image space individually. This leads to a binary relation, which is in general not transitive and also not compatible with the linear structure of the space. We present in this talk a numerical method for determining an approximation of the optimal solution set of such (nonlinear and smooth) vector optimization problems.

In a first step, using classical adaptive approximation methods, a superset of the set of optimal solutions is determined. In a second step, using new nonlinear scalarization results for variable ordering structures, the optimal elements are selected. First numerical results are presented.

Behnam Soleimani, Martin-Luther-Universität Halle-Wittenberg

Approximate solutions of vector optimization with variable order structure

We introduce concepts for approximate minimal and nondominated solutions of vector optimization problems with variable order structure. Furthermore, we introduce a scalarization method by means of nonlinear functionals and present a characterization of approximate minimal and nondominated solution by using this scalarization method.

Refaie Kasimbeyli, Asoolu University

Characterization of properly nondominated elements in vector optimization with variable ordering structures

This paper studies properly nondominated elements in vector optimization problems with variable ordering structures. We introduce several notions for properly nondominated elements and investigate nonlinear scalarization approach for their characterizations. A new concept presented in the paper are compared to existing in literature ones. The new type of nonlinear scalarizing functions is introduced and their properties are discussed. These functions are used to characterize the properly nondominated elements.

Jinyan Fan, Shanghai Jiao Tong University

Accelerating the modified Levenberg-Marquardt method

In this talk, we will present an accelerated version of the modified LM method for nonlinear optimization, which not only computes a LM step but also an approximate LM step with line search at every iteration. Under the local error bound condition which is weaker than nonsingularity, we show the convergence order of the accelerated modified LM method is a continuous function with respect to the LM parameter. We compare the new method with both the LM method and the modified LM method and observe significantly competitive performance.

Yanfei Wang, Institute of Geology and Geophysics, Chinese Academy of Sciences

Optimizing inversion methods for seismic imaging

In this talk we address several migration and optimizing inversion methods in seismic imaging. In particular, regularizing least squares migration and inversion imaging techniques are discussed. Preconditioning technique is also introduced. Numerical tests are made to show the performance of the methods. Since the interferometric migration and the least squares migration both aim to improve the resolution of seismic imaging, a numerical experiment is also made to discuss their ability in improving imaging resolution.

Torsten Bosse, Humboldt Universität zu Berlin (with Leviv Enyv, Andreas Griewank)

Limited memory updating and quadratic overestimation for NLOP

We propose the approach of solving non-linearly constraint problems using an active set strategy without the complete evaluation of Jacobians or Hessians. The linearized KKT systems are solved approximately on the basis of limited derivative information and compact storage schemes. The resulting step corresponds to a projected Hessian which's positive definitness is ensured with the help of quadratic overestimation. We will present theoretical arguments and numerical experiments.

Organizer/Chair Jon Lee, University of Michigan. Invited Session

Thu.3 MA 001

Mixed-integer nonlinear programming

Organizer/Chair Jun Lee, University of Michigan - Invited Session

Thu.3 MA 1029

Preference structures in multi-objective optimization

Organizer/Chair Gabriele Eichfelder, TU Ilmenau - Invited Session

Thu.3 MA 002

Multi-objective optimization

Organizer/Chair Jiawang Nie, University of California, San Diego - Invited Session

Thu.3 MA 1010

Polynomial optimization and semidefinite programming

Organizer/Chair Ya-xiang Yuan, Chinese Academy of Sciences - Invited Session

Thu.3 MA 1007

Algorithms and applications II

Organizer/Chair Ya-xiang Yuan, Chinese Academy of Sciences - Invited Session

Thu.3 MA 0110

Nonlinear programming

Organizer/Chair Ya-xiang Yuan, Chinese Academy of Sciences - Invited Session

Thu.3 MA 0107

Nonlinear programming
In this talk we go the other way around: We consider an SDP from the perspective of polynomial optimization and real algebraic geometry. We will see that, from this perspective, the standard duality of an SDP can be seen as a theorem on representation of positive polynomials. We will prove that natural variants of this theorem hold true, and these can be refined with some effort to yield what we call the sums of squares dual of a semidefinite program. This dual has polynomial size in the primal and, unlike the standard dual, ensures always strong duality. Based on completely different ideas, another dual with this property has already been given by Matt Raman in 1995. However, we think that our dual is interesting because it shows that ideas from real algebraic geometry might lead very naturally to seriously exploitable concepts in optimization.

Nonlinear multilevel and domain decomposition methods in optimization
Organizer/Chair Michal Kocvara, University of Birmingham · Invited Session

Zdenek Dolstal, VŠB-Technical University Ostrava (with Tomas Kozubek)
Optimal massively parallel algorithms for large SQP/OPQ problems arising in mechanics
We review our results in development of optimal algorithms for the minimization of a strictly convex quadratic function subject to separable convex constraints and/or equality constraints. A unique feature of our algorithms is the bound on the rate of convergence in terms of the bounds on the spectrum of the Hessian of the cost function, independent of dimension and number of constraints. When applied to the class of convex SQP or OPQ problems with the spectrum in a given positive interval and a sparse Hessian matrix, the algorithms enjoy optimal complexity. The efficiency of our algorithms is demonstrated on the solution of contact problems of elasticity with or without friction by our TFETI domain decomposition method. We prove numerical scalability of our algorithms, i.e., their capability to find an approximate solution in a number of matrix-vector multiplications that is independent of the discretization parameter. Both numerical and parallel scalability of the algorithms is documented by the results of numerical experiments with the solution of contact problems with millions unknowns and analysis of industrial problems.

James Turner, University of Birmingham (with Michal Kocvara, Daniel Loghin)
Applications of domain decomposition to topology optimization
When modeling structural optimization problems, there is a perpetual need for increasingly accurate conceptual designs, with the number of degrees of freedom used in obtaining solutions continually rising. This impacts heavily on the overall computational effort required by a computer and it is therefore natural to consider alternative possibilities. One approach is to consider parallel computing and in particular domain decomposition. The first part of this talk will discuss the application of domain decomposition to a typical topology optimization problem via an interior point approach. This method has the potential to be carried out in parallel and therefore can exploit recent developments in the area. The second part of the talk will focus on a nonlinear reaction diffusion system solved using Newton’s method. Current work considers applying domain decomposition to such a system using a Newton/Krylov Schur (NKS) type approach. However, strong local nonlinearities can have a drastic effect on the global rate of convergence. Our aim is to instead consider a three step procedure that applies Newton’s method locally on subdomains in order to address this issue.

Rolf Krause, University of Lugano
Inherently nonlinear decomposition and multilevel strategies for non-convex minimization
We present and discuss globally convergent domain decomposition and multilevel strategies for the solution of non-convex – and possible constrained – minimization problems. Our approach is inherently nonlinear in the sense that we decompose the original nonlinear problem into many small, but also nonlinear, problems. In this way, strongly local nonlinearities or even heterogeneous problems can be handled easily and consistently. Starting from ideas from Trust-Region methods, we show how global convergence can be obtained for the case of a nonlinear domain decomposition as well as for the case of a nonlinear multilevel method – or combinations thereof. These ideas also allow us for deriving a globally convergent variant of the ASPIN method (G-ASPIN). We will illustrate our findings along examples from computational mechanics in 3D.
These have analogies in perfectly competitive electricity markets when agents maximize profits in a deterministic setting. When the system involves hydro reservoirs with uncertain inflows, the social optimum is the solution to a multi-stage stochastic program. This corresponds to a competitive equilibrium when all agents are risk neutral and share the same view of the future. We explore what happens in this setting when risk-averse agents optimize using coherent risk measures.

Thu.3 MA 550
Gas transport in networks
Organizer/Chair Rüdiger Schultz, University of Duisburg-Essen - Invited Session

Martin Schmidt, Leibniz Universität Hannover (with Marc Steinbach)
An extended interior point method for nonsmooth nonlinear optimization in gas networks

Detailed physical and technical modeling of cost minimization in gas transport networks leads to nonsmooth nonlinear mixed-integer optimization models (NSMINLPs). After fixing prescribed discrete decisions given by an enclosing MIP framework we concentrate on the remaining nonsmooth nonlinear optimization problem [NSNLP]. These problems cannot be seriously tackled by standard interior point methods due to the violation of \mathbb{C}^2-assumptions.

We present a modified interior point method using a special kind of generalized gradients for the search direction computation and an extended step length computation ensuring that the line-search subprocedure is only applied to smooth regions of the nonsmooth problem functions. The applicability of the proposed method is demonstrated by numerical experiments on large-scale real world instances.

Imke Joormann, TU Darmstadt
Analyzing infeasibility in natural gas networks

Infeasibilities in the mathematical description of natural gas networks in real-world applications can arise for different reasons, including defective data, modeling issues and plain physical impracticability. In the considered case, we start with a mixed integer linear program (MILP) modeling the validation of nominations on the network, i.e., the task of deciding whether it is possible to transport a given flow amount with specific supply and demand nodes.

Our main purpose is to analyze this MILP and find physical reasons for the infeasibility of a given instance. To achieve this, we implemented and tested various approaches based on slack models. In addition, we investigated the explanatory power of irreducible infeasible subsystems, since it is possible to calculate them at least in a heuristic way, the remaining task is to transfer the gained information from the MILP back to the network. Complementing the modeling aspects we present computational results and derive cautious suggestions as to which model should be used, depending on the practical application.

Ralf Gollmer, University of Duisburg-Essen (with Rüdiger Schultz, Claudia Stangl)
Stationary gas transport - Structure of the problem and a solution approach

Detecting feasibility of transportation orders (nominations) in gas networks is a problem of growing practical interest due to the regulatory requirements in the course of unbundling gas trading and transport. In the stationary flow case, already, this nonlinear non-convex mixed-integer problem poses challenging mathematical questions. In particular, we discuss some structural properties of the problem in slightly simplified form. We sketch a heuristic solution approach choosing switching decisions (the integer variables) from the solution of an aggregated linear transshipment problem and restricting to the so-called loop formulation when solving the resulting NLP. This approach is successful when applied to real-world instances met in a meshed gas network of a German utility.

Thu.3 H 0111
PDE-constrained opt. & multi-level/multi-grid meth.

Adjoint-based methods and algorithmic differentiation in large scale optimization
Organizer/Chair Andreas Griewank, Humboldt University - Invited Session

Nikolai Strogies, Humboldt-Universität zu Berlin (with Andreas Griewank)
A time-labeling approach for open pit mine planning

For open pit mine planning, integer or mixed integer programming approaches are well understood and investigated. In this talk a function space formulation will be presented. So called time labeling functions (TLF) assign the time of excavation to each spatial coordinate. An additional pointwise constraint replaces the predecessor relationship and ensures the physical stability of the resulting sequence of profiles. The capacity of the mine is expressed via a density function and is allowed to vary over time. In all points this approach allows a significantly more detailed modeling of the mining operation than the usual block model. We formulate the dynamic open pit mine planning problem in a suitable function space and present a stationarity condition. Moreover we discuss properties of the TLF.

Emre Özkaya, RWTH Aachen (with Nicolas Gauger, Anil Nemili)
Automatic differentiation of an unsteady RANS solver for optimal active flow control

We present the development of a discrete adjoint solver for the optimal active flow control of viscous flows, governed by the unsteady incompressible Reynolds-averaged Navier Stokes (RANS) equations. The discrete adjoint solver is developed by applying automatic differentiation (AD) in reverse mode to the underlying primal flow solver. Employing AD for discrete adjoint code generation results in a robust adjoint solver, which gives accurate sensitivities for turbulent flows with separation. If AD is applied in a black-box fashion then the resulting adjoint code will have prohibitively expensive memory requirements. Further, a significant amount of CPU time is spent on storing and retrieving the data from the memory. In order to reduce the excessive storage and CPU costs, various techniques such as checkpointing and reverse accumulation are employed. Numerical results are presented for the test cases of optimal active flow control around a rotating cylinder and a NACA4412 airfoil.

Stephan Schmidt, Imperial College London
Large scale shape optimization

Shape optimization problems are a special sub-class of PDE constrained optimization problems. As such, they pose additional difficulties stemming from the need to compute derivatives with respect to geometric changes or variations of the domain itself. In addition to the traditional pointwise constraint replace the predecessor relationship and thereby circumventing the need to know sensitivities of the mesh description. These derivatives stemming from the need to compute derivatives with respect to the domain can be computed very efficiently. To this end, shape calculus is considered. The Hadamard theorem states that given a sufficiently regular function, the directional derivative of a shape optimization problem can be computed as a boundary scalar product with the normal component of the perturbation field and the shape gradient. Thus, knowledge of this shape gradient can be used to formulate an extremely fast optimization scheme, as tangential calculus can be used to derive gradient formulations that exist on the boundary of the domain only, thereby circumventing the need to know sensitivities of the mesh deformation inside the domain. Furthermore, approximate Newton methods can be employed in order to construct higher order optimization schemes. The Newton-type shape update can also be used to incorporate a desired boundary regularity.

Hong Jiang, Bell Labs, Alcatel-Lucent (with Wei Deng, Zuowei Shen)
Surveillance video processing using compressive sensing

A convex variational model for restoring blurred images with multiplicative noise

In this talk, we are concerned with a convex variational model for restoring blurred images with multiplicative noise. Based on the statistical property of the noise, a quadratic penalty technique is utilized in order to obtain a strictly convex model. For solving the optimization problem in the model, a primal-dual method is proposed. Numerical results show that this method can provide better performance of suppressing noise as well as preserving details in the image.

Tao Wu, Karl-Franzens-University of Graz (with Michael Hintermüller)
A nonconvex \(7TV^q\) model in image restoration

A nonconvex variational model is introduced which contains \(q > 1\). This new model is more effective than the \(TV\) model and the \(TV^q\) model in capturing edges and removing noise. The new model is solved by a semi-smooth Newton method. The algorithm efficiency is improved by a zero-order approximate of the Hessian. In the numerical experiments, the model performs well in image restoration.
norm, \(q \in (0, 1) \), of image gradient as regularization. Such a regularization is a nonconvex compromise between support minimization and convex total-variation model. In finite-dimensional setting, existence of minimizer is proven, a semismooth Newton solver is introduced, and its global and locally superlinear convergence is established. The potential indefiniteness of Hessian is handled by a trust-region based regularization scheme. Finally, the associated model in function space is discussed.

Regret with robustness: Models, algorithms and applications

We propose a probabilistic model for minimizing anticipated regret in combinatorial optimization problems with distributional uncertainty in the objective coefficients. The interval uncertainty representation of data is supplemented with information on the marginal distributions. As a decision criterion, we adopt a worst-case conditional value-at-risk of regret measure. The proposed model includes standard interval data minimax regret as a special case. For the class of combinatorial optimization problems with a compact convex hull representation, a polynomial sized mixed integer linear program (MILP) is formulated when (a) the range and mean are known, and (b) the range, mean and mean absolute deviation are known while a mixed integer second order cone program (MISOCP) is formulated when (c) the range, mean and standard deviation are known. For the subset selection problem, the probabilistic regret model is shown to be solvable in polynomial time for instances (a) and (b).

Robust portfolio selection with learning in the framework of relative regret

We formulate single and multi-period portfolio choice problems with parameter uncertainty in the framework of relative regret. We solve the relative regret problem by showing that it is equivalent to a certain Bayesian problem which we analyze using stochastic control methods. The Bayesian problem is unusual in that the prior distribution is endogenously chosen, and the objective function involves the family of benchmarks from the relative regret problem. The solution of the Bayesian problem (and hence the relative regret problem) involves a ‘tilted’ posterior, where the posterior comes from Bayesian updating of the endogenous prior, and tilting is defined in terms of a likelihood ratio that depends on the family of benchmarks.

Regret optimization for stochastic inventory models with spread information

We study a minimax regret approach to the newsvendor problem. Using a distribution statistic, called absolute mean spread (AMS), we introduce new interval demand distributions under the minimax regret framework. We propose order policies that only require a distribution’s mean and information on the AMS. Our policies have several attractive properties. First, they take the form of simple closed-form expressions. Second, we can quantify an upper bound on the resulting regret. Third, under an environment of high profit margins, they are provably near-optimal under mild technical assumptions on the failure rate of the demand distribution. And finally, the information that they require is easy to estimate with data. We show in extensive numerical simulations that when profit margins are high, even if the information in our policy is estimated from (sometimes few) samples, they often manage to capture at least 95% of the optimal expected profit.

Measures of uncertainty

We present a novel sparse signal reconstruction method based on iterative support detection (ISD, for short), aiming to achieve fast reconstruction and a reduced requirement on the number of measurements compared to the classical L_1 minimization approach. ISD addresses failed reconstructions of L_1 minimization due to insufficient measurements. It estimates a support set from a current reconstruction and obtains a new reconstruction by solving a revised L_1 minimization problem, and it iterates these two steps for a small number of times. While introducing the general idea of ISD, we will present some recent thoughts about it.

Stochastic optimization

We introduce a unified study on the convergence of a class of stationary iterative methods, which includes the ADM as a special case, for quadratic programming problems with linear equality constraints or inequality constraints. The alternating direction method (ADM) was originally proposed in the 1970s. In the literature, very restrictive conditions, such as convexity of the objective function over the entire domain and separability into exactly two blocks, have been imposed to guarantee convergence of the ADM. Moreover, the convergence rate of ADM remains unclear. In this paper, we carry out a unified study on the convergence of a class of stationary iterative methods, which includes the ADM as a special case, for quadratic programming problems with linear equality constraints or inequality constraints. We establish global and q-linear convergence results without assuming convexity of the objective function and in the absence of separability of variables. Some numerical results are presented to support our findings, and extension to nonlinear saddle point problems is also discussed.

The risk of empirical costs in randomized min-max stochastic optimization

We consider convex min-max stochastic optimization. We show that theorems proved for two stage case are valid also in the multi-stage case. We generalize theorems proved for two stage case to the multi-stage case. With respect to the former we introduce the Multistage Expected Value of the Reference Scenario, MEVRS, the Multistage Sum of Pairs Expected Values, MSPEV and the Multistage Expectation of Pairs Expected Values, MEPEV by means of the new concept of auxiliary scenario and redefinition of pairs subproblems probability. We show that theorems proved for two stage case are valid also in the multi-stage case. With respect to the latter, the rolling time horizon procedure allows to update the estimations of the solution at each stage. New measures of quality of the average solution are of practical relevance. Numerical results on a case study illustrate the relationships.

Robust portfolio selection with learning in the framework of relative regret

We consider convex min-max stochastic optimization. By sampling the uncertain parameter, the min-max solution that satisfies the sampling numerical algorithm based on the variable splitting method to solve the problem. Theoretically, the existence of minimizer to the energy functional and the convergence of the algorithm are guaranteed. In contrast to recently developed methods for deburring images, this algorithm not only gives the restored image, but also gives a decomposition of cartoon and texture parts. These two parts can be further used in segmentation and inpainting problems. Numerical comparisons show that the presented algorithm is competitive. Some of the state-of-the-art methods are also reported.

Convex min-max stochastic optimization

We consider convex min-max stochastic optimization. By sampling the uncertain parameter, the min-max solution that satisfies the sampling numerical algorithm based on the variable splitting method to solve the problem. Theoretically, the existence of minimizer to the energy functional and the convergence of the algorithm are guaranteed. In contrast to recently developed methods for deburring images, this algorithm not only gives the restored image, but also gives a decomposition of cartoon and texture parts. These two parts can be further used in segmentation and inpainting problems. Numerical comparisons show that the presented algorithm is competitive. Some of the state-of-the-art methods are also reported.

Sparsity signal reconstruction based on iterative support detection

We suggest a novel sparse signal reconstruction method based on iterative support detection (ISD, for short), aiming to achieve fast reconstruction and a reduced requirement on the number of measurements compared to the classical L_1 minimization approach. ISD addresses failed reconstructions of L_1 minimization due to insufficient measurements. It estimates a support set from a current reconstruction and obtains a new reconstruction by solving a revised L_1 minimization problem, and it iterates these two steps for a small number of times. While introducing the general idea of ISD, we will present some recent thoughts about it.

On variational image decomposition model for blurred images with missing pixel values

We study a minimax regret approach to the newsvendor problem. Using a distribution statistic, called absolute mean spread (AMS), we introduce new interval demand distributions under the minimax regret framework. We propose order policies that only require a distribution’s mean and information on the AMS. Our policies have several attractive properties. First, they take the form of simple closed-form expressions. Second, we can quantify an upper bound on the resulting regret. Third, under an environment of high profit margins, they are provably near-optimal under mild technical assumptions on the failure rate of the demand distribution. And finally, the information that they require is easy to estimate with data. We show in extensive numerical simulations that when profit margins are high, even if the information in our policy is estimated from (sometimes few) samples, they often manage to capture at least 95% of the optimal expected profit.
plied instances of uncertainty can be constructed at low computational effort. This min-max solution incurs various costs, called “empirical costs”, in correspondence of the sampled instances of the uncertain parameter. Our goal is to precisely characterize the risks associated to the empirical costs, namely to evaluate the probability that the various empirical costs are exceeded when a new uncertainty instance is seen. The main result is that the risks distribute as an ordered Dirichlet distribution, irrespective of the probability measure of the uncertain stochastic parameter. This provides a full-fledged characterization of the reliability of the min-max sample-based solution.

Alexei Gavurinovski, Norwegian University of Science and Technology (with Paola Piscitella)

Stochastic bilevel optimization problems with applications to telecom

We consider several stochastic bilevel optimization problems which have applications to supply chain management and information economics, where the system under consideration is composed from several independent actors. We consider solution methods that utilize analysis of analytical properties of the problem with stochastic optimization techniques.

Jianqiang Cheng, LRI, University of Paris-Sud (with Abdel Lisser)

Overall aircraft design based on chance-constrained programming

Preliminary Overall Aircraft Design (OAD) is classically carried out using a deterministic optimisation of a strategic criterion under operational constraints. The risk, which may appear all along the aircraft development, is mitigated by using a “margin philosophy” applied to some design parameters. A robustness study has highlighted the shortcomings of this way of doing, which does not offer the best protection possible against deviation to ensure requirement satisfaction. In the last decades, many researches have been done in the area of optimisation of complex processes under uncertainty. Attention has been put on methods reported in Stochastic Programming or Chance-Constrained Programming (CCP). The aim of the study is to propose a new methodology based on CCP to perform OAD. For this purpose, the main source of uncertainty affecting the system is identified and quantified. Then, a new formulation of the aircraft pre-design optimisation is stated according to the CCP framework. Particular attention is put on the choice of the objective function and the design parameters. This method is also used to assess the uncertainty involving an unconventional aircraft configuration.

Jessie Birman, AirBus Operation S.A.S.

Stochastic bilevel optimization problems with applications to telecom

We consider several stochastic bilevel optimization problems which have applications to supply chain management and information economics, where the system under consideration is composed from several independent actors. We consider solution methods that utilize analysis of analytical properties of the problem with stochastic optimization techniques.

Overall aircraft design based on chance-constrained programming

Preliminary Overall Aircraft Design (OAD) is classically carried out using a deterministic optimisation of a strategic criterion under operational constraints. The risk, which may appear all along the aircraft development, is mitigated by using a “margin philosophy” applied to some design parameters. A robustness study has highlighted the shortcomings of this way of doing, which does not offer the best protection possible against deviation to ensure requirement satisfaction. In the last decades, many researches have been done in the area of optimisation of complex processes under uncertainty. Attention has been put on methods reported in Stochastic Programming or Chance-Constrained Programming (CCP). The aim of the study is to propose a new methodology based on CCP to perform OAD. For this purpose, the main source of uncertainty affecting the system is identified and quantified. Then, a new formulation of the aircraft pre-design optimisation is stated according to the CCP framework. Particular attention is put on the choice of the objective function and the design parameters. This method is also used to assess the uncertainty involving an unconventional aircraft configuration.

Jessie Birman, AirBus Operation S.A.S.

Overall aircraft design based on chance-constrained programming

Preliminary Overall Aircraft Design (OAD) is classically carried out using a deterministic optimisation of a strategic criterion under operational constraints. The risk, which may appear all along the aircraft development, is mitigated by using a “margin philosophy” applied to some design parameters. A robustness study has highlighted the shortcomings of this way of doing, which does not offer the best protection possible against deviation to ensure requirement satisfaction. In the last decades, many researches have been done in the area of optimisation of complex processes under uncertainty. Attention has been put on methods reported in Stochastic Programming or Chance-Constrained Programming (CCP). The aim of the study is to propose a new methodology based on CCP to perform OAD. For this purpose, the main source of uncertainty affecting the system is identified and quantified. Then, a new formulation of the aircraft pre-design optimisation is stated according to the CCP framework. Particular attention is put on the choice of the objective function and the design parameters. This method is also used to assess the uncertainty involving an unconventional aircraft configuration.

Jessie Birman, AirBus Operation S.A.S.

Overall aircraft design based on chance-constrained programming

Preliminary Overall Aircraft Design (OAD) is classically carried out using a deterministic optimisation of a strategic criterion under operational constraints. The risk, which may appear all along the aircraft development, is mitigated by using a “margin philosophy” applied to some design parameters. A robustness study has highlighted the shortcomings of this way of doing, which does not offer the best protection possible against deviation to ensure requirement satisfaction. In the last decades, many researches have been done in the area of optimisation of complex processes under uncertainty. Attention has been put on methods reported in Stochastic Programming or Chance-Constrained Programming (CCP). The aim of the study is to propose a new methodology based on CCP to perform OAD. For this purpose, the main source of uncertainty affecting the system is identified and quantified. Then, a new formulation of the aircraft pre-design optimisation is stated according to the CCP framework. Particular attention is put on the choice of the objective function and the design parameters. This method is also used to assess the uncertainty involving an unconventional aircraft configuration.

Jessie Birman, AirBus Operation S.A.S.

Overall aircraft design based on chance-constrained programming

Preliminary Overall Aircraft Design (OAD) is classically carried out using a deterministic optimisation of a strategic criterion under operational constraints. The risk, which may appear all along the aircraft development, is mitigated by using a “margin philosophy” applied to some design parameters. A robustness study has highlighted the shortcomings of this way of doing, which does not offer the best protection possible against deviation to ensure requirement satisfaction. In the last decades, many researches have been done in the area of optimisation of complex processes under uncertainty. Attention has been put on methods reported in Stochastic Programming or Chance-Constrained Programming (CCP). The aim of the study is to propose a new methodology based on CCP to perform OAD. For this purpose, the main source of uncertainty affecting the system is identified and quantified. Then, a new formulation of the aircraft pre-design optimisation is stated according to the CCP framework. Particular attention is put on the choice of the objective function and the design parameters. This method is also used to assess the uncertainty involving an unconventional aircraft configuration.
Finally, we present computational results comparing the branch-and-price formulation and the default ILP.

Peter Hoffmann, TU Chemnitz (with Christoph Helmberg)

Robust and chance constraint models of failure scenarios in the design of telecommunication networks

Given a backbone network for telecommunication with possibly uncertain demand between each pair of nodes, the task is to find capacities for the edges in the network so that all demand can be routed through the network. We consider here failure scenarios where nodes or edges may fail. In the single failure scenario a standard approach is to require the presence of a node disjoint cycle for each pair of nodes, so that in case of failure there still is a path between each two intact nodes. In this study we want to exploit the differing probabilities of the failure of network items (nodes or edges), so that even in the case of two or more failures the probability that more than a prespecified value of demand is unrouteable is kept below a given level. If the failure probabilities follow a normal distribution this leads to a model with a chance constraint, that couples the node and edge failures and the resulting loss in routable demand. An implementable variant is based on a semidefinite relaxation of bilinear terms and a second order cone constraint replacing the chance constraint.

Daniel Karch, TU Berlin (with Andreas Bley, Fabio D’Andragogna)

Fiber replacement scheduling

During the operation of large telecommunication networks, it is sometimes necessary to replace components in a big part of a network. Since a network resource, such as a router or an optical fiber cable, is usually in shared use by several connections, all of these connections will have to be shut down while the component is being replaced. Since the number of workers that perform the upgrade is limited, not all of the affected connections can be upgraded at the same time, and disruptions of services cannot be avoided. Our goal is to schedule the replacement of the fibers in such a way, that the number of workers necessary in each period of the discretized planning horizon does not exceed the given budget, and the sum of all connections’ disruption times is minimized. We will present exact mathematical formulations for the problem, discuss corresponding linearization techniques for the resulting problem, and give first results on the hardness of approximation.

Cristina Schrage, University of Halle, Wittenberg (with Giovanni Crespi, Andreas Hamel)

Dini derivatives for vector- and set-valued functions

We will introduce set-valued derivatives of Dini type for vector- and set-valued functions and provide basic calculus rules for these derivatives. Using a solution concept for multicriteria optimality problems introduced by Heyde and Löhne in 2005, we will provide a variational version of the Fenchel-Moreau conjugation which is a particular case of Moreau’s conjugation. We obtain nice properties as conjugate duality is the classical topological dual space. Finally we present some examples for illustrating the difference between the Fenchel-Moreau conjugation and our modification.

Fernanda Raupp, PUC-Rio (with John Cotrina, Wilfredo Sosa)

A duality scheme for semi-continuous programming

We introduce a duality scheme for the class of mathematical programming problems called Semi-Continuous Programming (SCP), which contains constrained minimization problems with lower semi-continuous objective functions. We study some solution existence conditions for SCP based on asymptotic techniques. Then, we devise the duality scheme for the SCP problem through the construction of an auxiliary function and the application of a modification of the Fenchel-Moreau conjugation. We show that the dual problem associated to the SCP problem is convex and, particularly, we devise a dual problem for the minimization of any quadratic function constrained to a polyhedral set.

Wilfredo Sosa, Catholic University of Brasilia

Separation theorems for closed sets

In this paper we introduce some separation theorems for disjoint closed nonempty sets. The proposed theoretical results differ from the ones in the literature, in particular from Urisohn’s and Michael’s results, mainly by making use of special continuous functions. In fact, this class of special continuous functions is a dense subspace of the continuous functions space with the domain being a Hilbert space and real values instead of considering just the space of all these continuous functions. As an application we reconstruct the conjugation for lower semi-continuous functions.
levels. In this paper, a mixed integer programming model to minimize makespan of drift workload subject to the coordination between production and reduction levels is formulated. The problem NP-hardness in strict sense is proved, the value of 2 as upper bound for polynomial algorithm in the off and on-line case is given, and 1.25-approximation algorithm for its resolution is proposed. Next, a set of decision rules obtained from the above algorithm is integrated into a simple-to-execute decision making process for LHD operators. Currently, a numerical analysis based on Chilean underground copper mine El Teniente data is being realized to explore the practical potential of the DMP proposed. The preliminary results show an average value 1.08.

Igancio Vargas, Diego Portales University (with Juan Segovoda, Oscar Vasquez)

An efficient decision making process for vehicle operations in underground mining based on a mixed-integer programming model Mining operations can be seen as a vertically positioned threefold process: production, reduction and transportation. The workload of levels are pushed top-down by a plan-driven strategy, that contains the number of ore bucketfuls to be extracted at the production level. Unfortunately, the goal of minimizing makespan in the production level would be not always optimal when taking into consideration the coordination levels. In this paper, a mixed integer programming model to minimize makespan of drift workload subject to the coordination between production and reduction levels is formulated. The problem NP-hardness in strict sense is proved, the value of 2 as upper bound for polynomial algorithm in the off and on-line case is given, and 1.25-approximation algorithm for its resolution is proposed. Next, a set of decision rules obtained from the above algorithm is integrated into a simple-to-execute decision making process for LHD operators. Currently, a numerical analysis based on Chilean underground copper mine El Teniente data is being realized to explore the practical potential of the DMP proposed. The preliminary results show an average value 1.08.

Yong Chen, University of Idaho (with Klaus Jansen, Wenchang Lin, Guochuan Zhang)

Approximation algorithms for scheduling parallel machines with capacity constraints In this paper, we consider the classical scheduling problem on parallel machines with capacity constraints. We are given m identical machines, in which each machine can process up to c_i jobs. The goal is to assign the $n \leq \sum_{i=1}^{m} c_i$ independent jobs on the machines subject to the capacity constraints such that the makespan is minimized. This problem is a generalization of c-partition, which is strongly NP-hard for $c \geq 3$ and the best known approximation algorithm of which has a performance ratio of $4/3$ due to Babel et al.

We deal with the general problem and improve the previous results by establishing an efficient polynomial time approximation scheme (EPTAS) whose running time is at most $2^{O(1/\varepsilon^2 \log(1/\varepsilon))} + poly(1/\varepsilon, \log n) + O(n \log n)$: We develop a best-fit schedule for small jobs, and then handle the assignment of big jobs through a mixed integer programming algorithm (MILP). Such an MILP consists of a huge number of integer variables which is not even constant, however, we would provide a greedy rounding technique to modify it iteratively so that the number of its integer and fractional variables is sharply reduced.

Guangting Chen, Hangzhou Dianzi University (with Yong Chen, An Zhang)

Approximation algorithms for parallel open shop scheduling This paper investigates a new scheduling problem, namely the parallel open shop scheduling. In this problem, each job consists of two operations, which must be non-preemptively processed by one of the m two-stage parallel open shops. The objective is to minimize the makespan. As the problem is NP-hard, we provide the first approximation algorithm with a worst case ratio of 2 for m machines, and for $m = 2$, an improved algorithm with worst case ratio 3/2 is further proposed. Both algorithms run in $O(n \log n)$ time.

Xudong Hu, Academy of Math and Systems Science, Chinese Academy of Sciences (with E. Alvarez-Miranda, Xujin Chen, Jie Hu, B.Li)

New models for network connection problems with interval data In this talk, we will present a new approach for dealing with network connection problems with uncertain parameters, where, it is assumed, cost on a link/node in a given network fall into an interval. We introduced two risk models for these problems, proposed polynomial-time algorithms for solving the problems and conducted computational experiments on algorithms proposed. Our theoretical and computational results show the flexibility of this new approach for decision makers at different levels of aversion to risk, as well as satisfactory performance of standard CPLEX solver on our model.

Nicholas Vagnani, Diego Portales University (with Juan Segovoda, Oscar Vasquez)

Combinatorial optimization in logistics

Organizer/Chair: Erwin Pesch, University of Siegen - Invited Session

Jens Schulz, TU Berlin (with Stefan Heirigs)

Explanation algorithms in cumulative scheduling

In cumulative scheduling, conflict analysis is one of the key ingredients to solve these problems efficiently. Thereby, the computational complexity of explanation algorithms that explain infeasibilities or bound changes plays an important role. Their role is even more substantial when we are faced with a backtracking system where explanations need to be constructed on the fly. In this talk we present complexity results for computing minimum-size explanations for the propagation algorithms time-tabling, edge-finding, and energetic reasoning. We show that it is possible to compute in polynomial time minimum-size explanations for bound changes which result from energetic reasoning and edge-finding. In case of time-tabling, we prove that an important special case is already weakly NP-hard. In the context of bound-widening, the problems all become NP-hard. To this end, we establish a relation to unsplittable flow problems on the path. We evaluate different heuristic approaches and exact approaches to explain bound changes derived by these algorithms. Using these minimum-size explanations pays off in total compared to using faster but weaker explanation algorithms.

Jenny Nossack, University of Siegen (with Erwin Pesch)

Benders decomposition for a 1-full-truckload pickup-and-delivery vehicle routing problem

We address a pickup and delivery vehicle routing problem with multiple depots, where routes have to be constructed to satisfy customer requests, which either involve the pickup or delivery of a single commodity. A fleet of homogeneous vehicles is available to fulfill the demand and supply of the customers under the objective to minimize the total distance traveled. Each vehicle has unit capacity and the commodities which are collected from the pickup customers can be used to accommodate the delivery of the delivery customers. We model this problem as an integrated integer nonlinear programming problem that simultaneously solves an assignment and a routing problem, linked via coupling constraints. Exact solution approaches based on the classical and the generalized Benders decomposition are presented to optimally solve the problem.

Erwin Pesch, University of Siegen (with Jenny Nossack)

A branch-and-bound algorithm for the acyclic partitioning problem

We focus on the problem of partitioning the vertex set of a directed, arc- and vertex-weighted graph into clusters, i.e. disjoint sets. Clusters are to be determined such that the sum of the vertex weights within the clusters satisfies an upper bound and the sum of the arc weights within the clusters is maximized. Additionally, the graph is enforced to partition into a directed, acyclic graph where the clusters define the vertices. This problem is known as the acyclic partitioning problem and has been proven to be NP-hard. Real-life applications arise at rail-rail transshipment yards. We propose new integer programming formulations for the acyclic partitioning problem and suggest an exact solution approach based on an integration constraint propagation into a branch-and-bound framework. Computational results are reported to confirm the strength of our approach.

Matthias Mnich, MMCI / Max-Planck-Institute for Computer Science (with Danny Hermelin, Erik Jan van Leeuwen, Gerhard Woeginger)

Domination when the stars are out - Efficient decomposition of claw-free graphs

We algorithmize the recent structural characterization for claw-free graphs by Chudnovsky and Seymour. Building on this result, we show that several domination problems are fixed-parameter tractable, and even possess polynomial-sized kernels, on claw-free graphs. To complement these results, we establish these problems are not fixed-parameter tractable on the slightly larger class of graphs that exclude $K_{1,4}$ as an induced subgraph. Our results provide a dichotomy for $K_{1,2}$-
free graphs and characterize when the problems are fixed-parameter tractable.

Yuri Faenza, Università di Padova (with Gianpaolo Oriolo, Gaudio Stauﬀer)

Separating stable sets in claw-free graphs through extended formulations

The stable set polytope in claw-free graphs is a well-known generalization of the matching polytope. A linear description of the latter only requires rank inequalities (i.e., with 0/1 coeﬃcients), while the associated separation problem can be solved via a purely combinatorial routine. For ssp-cf the situation is quite different: no complete description is known, and there exist examples of facets with arbitrarily high coeﬃcients. Moreover, the only known separation routine relies on the ellipsoid method.

In this talk, we provide linear programming extended formulations for ssp-cf, together with polynomial time separation routines for those formulations (they are not compact). Those formulations rely on combinatorial optimization, polyhedral combinatorics, and structural graph theory results. We then exploit one of those extended formulations to propose a new polytime algorithm for solving the separation problem for ssp-cf. This routine combines the separation algorithm for the matching polytope and the solution of (moderate size) compact linear programs, hence it does not require the application of the ellipsoid method.

Paolo Nobili, Universidad del Salento (with Antonio Sassano)

A decomposition algorithm for the weighted stable-set problem in claw-free graphs

In this paper we describe a new characterization of a line-graph \(G(V, E) \) in terms of forbidden substructures. Unlike the classical characterization due to Bermond and Meyer based on forbidden induced subgraphs, we rely upon the properties of a suitable maximal stable set \(S \subseteq G \). Following Lozin, we say that two nodes \(u \) and \(v \) in \(V \) are similar if \(N(u) \cap S = N(v) \cap S \). Moreover, extending a deﬁnition due to Schrijver, we say that a node \(s \in S \) is clique-splittable in \(G \) with respect to \(S \) if the nodes in \(N(s) \) can be partitioned into two cliques \((X_k, Y_k) \) with the property that each diﬀuse pair of nodes \(x, y \) in \(N(s) \) is adjacent if and only if both belong to \(X_k \) or \(Y_k \). Our main result is that a claw-free graph \(G \) is a line graph if and only if each node \(s \in S \) is clique-splittable and \(S \) does not deﬁne two special structures in \(G \), namely a pair of cross-linked nodes or a free-stripe.

Paola Seraﬁni, University of Udine – Italy (with Giuseppe Lancia)

Compact formulations for large-scale LP problems

There are many combinatorial problems which can be eﬀectively dealt with via Integer Linear Programming by using column-generation or constraint-generation techniques. When the pricing for column generation can be solved by Linear Programming, it is possible to embed the positive reduced cost condition into the dual of the relaxed integer primal. Similarly, for constraint generation, if the separation problem is a Linear Program, it can be embedded into the integer primal. The new model has polynomial size and has the same lower bounds as the original exponential size model. We call “compact” this reformulation. The compact reformulation may provide new insights into the problem structure and sometimes exhibits a computational better performance than the original formulation. It is possible to develop compact models for the following problems: Bin Packing, Max cut, Stable set, TSP, Minimum routing cost tree, Steiner tree, Cycle packing, Alternate cycle decomposition, Job Shop, Protein fold comparison and various variant of TSP, like Prize collecting TSP and Time window TSP.

Achim Hildenbrandt, University Heidelberg (with Olga Heismann, Gerhard Reinelt)

An extended formulation for the target visitation problem

The target visitation problem (TVP) is concerned with ﬁnding a route to visit a set of targets starting from and returning to some base. In addition to the distance traveled, a tour is evaluated also by taking preferences into account addressing the sequence in which the targets are visited. The problem thus is a combination of two well-known combinatorial optimization problems: the traveling salesman and the linear programming. The TVP was introduced to serve the planning of routes for unmanned aerial vehicles (UAVs) and it can be employed to model several kinds of routing problems with additional restrictions. In this talk we want to point out some properties of the polyhedral structure of an associated polytope and also present an extended formulation. We will use this formulation to develop a branch-and-price algorithm. Computational results will be discussed.

Ralf Borndörfer, Zuse Institute Berlin (with Olga Heismann, Manika Karbstein, Markus Reuther, Thomas Schlechte, Steffen Weider)

Configuration models for solving integrated combinatorial optimization problems

In the talk proposes conﬁguration models as an effective approach to combinatorial optimization problems that integrate several types of constraints. Conﬁgurations are local building blocks of primal solutions. They can be used to express complex requirements, that would be diﬃcult to formulate in terms of constraints, using an exhaustive, but local, approach that is hence manageable, enumeration of variables. This often gives rise to large, but combinatorially clean packing and covering type models, and it often produces strong LP bounds. Conﬁguration models can be seen as an approach to construct extended formulations; these, in turn, lend themselves to column generation methods. Examples of successful applications of this technique include vehicle allocation (the conﬁgurations are occupations of track segments over time), vehicle rotation planning (the conﬁgurations correspond to train compositions), and line planning (conﬁgurations correspond to line bundles on an infrastructure segment).
Deciding polyhedrality of spectrahedra

Spectrahedra, the feasible regions of semidefinite programs, form a rich class of convex bodies that properly contain that of polyhedra. It is a theoretical interesting and practically relevant question to decide whether a given convex set is a spectrahedron. If this decision problem is infeasible, the algorithm terminates with a certificate. If it is feasible, the algorithm provides a representation of the set in terms of linear matrix inequalities.

Many derivative-free methods for constrained problems are not efficient on thin domains, and there is a need for new methods specifically designed for such problems. We present a novel approach based on the analysis of the behavior of the distance between a point and the feasible set, which leads to a nonmonotone globalization strategy and a trust-region method that can solve some instances of DNR problems quickly and accurately.
efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties in improving feasibility. An algorithm that handles this case efficiently is proposed in this paper. The main iteration is split into two steps: restoration and minimization. In the restoration step, the aim is to decrease infeasibility without evaluating the objective function. In the minimization step, the objective function is minimized on a relaxed feasible set. A global control result with linear control and computational experiments showing the advantages of this approach will be presented.

Juliane Müller, Tampere University of Technology (with Robert Pické, Christine Shoemaker)
A surrogate model algorithm for computationally expensive mixed-integer black-box global optimization problems

We present a surrogate model algorithm for computationally expensive mixed-integer black-box global optimization problems that may have computationally expensive constraints. The goal is to find accurate solutions with relatively few function evaluations. A radial basis function surrogate model is used to select candidates for integer and continuous decision variables at which the computationally expensive objective and constraint functions are to be evaluated. In every iteration, multiple new points are selected based on different methods, and the objective and constraint functions are evaluated in parallel. The algorithm converges to the global optimum almost surely. The performance of this new algorithm (SO-MI) is compared to a branch and bound algorithm for nonlinear problems, a genetic algorithm, and the NOMAD (Non-smooth Optimization by Mesh Adaptive Direct Search) algorithm for mixed-integer problems on test problems from the literature, and application problems arising from structural optimization. The numerical results show that SO-MI reaches significantly better results than the other algorithms.

Joshua Griffis, SAS (with Steven Gardner)
A parallel hybrid derivative-free SAS procedure for MINLP

We present a new parallel derivative-free SAS procedure for mixed-integer nonlinear black-box optimization. The solver is motivated by recent work on the EAGLS (Evolutionary Algorithms Guiding Local Search) algorithm developed for simulation-based groundwater optimization problems. The SAS procedure makes minimal assumptions on the structure of the nonlinear objective/constraint functions; thus it is discontinuous, noisy, and expensive to evaluate. Integer variables are handled by running multiple genetic algorithms concurrently. In addition to crossover and mutation, a “growth step” permits selected members of the population (based on fitness and diversity) to benefit from local optimization over the real variables. For local search algorithms normally limited to real variables, this provides a simple framework for supporting integer variables that fits naturally in a parallel context. Load imbalance is exploited by both global and local algorithms sharing evaluation threads running across multiple processors. Unique evaluations of the same function are cached. Linear constraints are handled explicitly using tangent search directions and the SAS/OR OPTLP procedure.

Yuichi Takano, Tokyo Institute of Technology (with Jun-Ya Gotoh)
Control policy optimization for dynamic asset allocation by using kernel principal component analysis

An optimal control problem in estimation of parameters for economic models

Each mathematical model of economic contains a lot of unspecified parameters which are not defined directly by the data of economic statistics. We determine the unknown parameters of an economic model by comparing time series for macro indexes calculated by model with statistical time series for the indexes. The time series are considered similar if they are close as functions of time. The closeness of calculated and statistical data for each macro index is measured by Theil index of inequality. The problem is formulated as an optimal control problem with constraints of general form. A convolution of Theil indexes is maximized. The equations of the model give constraints of the optimal control problem. The unknown parameters of the model are piecewise constant controls of the optimal control problem. The optimal control problem is solved numerically using parallel calculations. Identified model of a Russian economy with structural changes in production function is used for estimation of the Government economic policy.
We construct a mechanism for distributing advertisement space to two competing players. The mechanism is not specific to any particular model for influence spread; it applies to most previously-studied models. Our mechanism yields a constant factor approximation to the optimal total product influence, and is strategyproof in the sense that advertisers maximize their expected total product diffusion by reporting their advertising demands truthfully. We also discuss extensions of our mechanism to three or more players under additional restrictions that are satisfied by many models studied in the literature.

Nicolò Immonen, Northwestern University (with Christina Brandt, Gautam Kamath, Robert Kleinberg)

Social networks and segregation

Social networks form the basic medium of social interaction. The structure of these networks significantly impacts and co-evolves with the behavioral patterns of society. Important societal outcomes – the global reach of an epidemic, the degree of cooperation in an online network, the adoption of new technologies – are dictated by social networks.

In this talk, we explore the impact of networks on segregation. In 1969, economist Thomas Schelling introduced a landmark model of racial segregation in which individuals move out of neighborhoods where their ethnicity constitutes a minority. Simple simulations of Schelling’s model suggest that this local behavior can cause global segregation effects. In this talk, we provide a rigorous analysis of Schelling’s model on ring networks. Our results show that, with certain interpretations, the outcome is nearly integrated: the average size of an ethnically-homogenous region is independent of the size of the society and only polynomial in the size of a neighborhood.

Markus Mobius, Microsoft Research New England (with Adam Szeidl, Phan Tuan)

Treasure hunt

We seed a large real-world social network with binary information about the subject’s social learning. A unique feature of our field experiment is that we measure both the pre-existing social networks and the actual conversation network. Our experiment allows us to test how rational agents behave when processing information that originates within their social network. We find that information decays quickly with social distance and that agents mainly incorporate information within social distance 2. Conversations through common friends do not increase the weight that a subject places on signals from direct friends but linearly increases the weight on signals from indirect friends. This suggests that agents are able to avoid double-counting information from indirect friends. We propose a simple “streams model” of social learning that is consistent with the evidence from our experiment.

Markus Mobius, Microsoft Research New England (with Adam Szeidl, Phan Tuan)

Treasure hunt

We seed a large real-world social network with binary information about the subject’s social learning. A unique feature of our field experiment is that we measure both the pre-existing social networks and the actual conversation network. Our experiment allows us to test how rational agents behave when processing information that originates within their social network. We find that information decays quickly with social distance and that agents mainly incorporate information within social distance 2. Conversations through common friends do not increase the weight that a subject places on signals from direct friends but linearly increases the weight on signals from indirect friends. This suggests that agents are able to avoid double-counting information from indirect friends. We propose a simple “streams model” of social learning that is consistent with the evidence from our experiment.

Treasure hunt

We seed a large real-world social network with binary information about the subject’s social learning. A unique feature of our field experiment is that we measure both the pre-existing social networks and the actual conversation network. Our experiment allows us to test how rational agents behave when processing information that originates within their social network. We find that information decays quickly with social distance and that agents mainly incorporate information within social distance 2. Conversations through common friends do not increase the weight that a subject places on signals from direct friends but linearly increases the weight on signals from indirect friends. This suggests that agents are able to avoid double-counting information from indirect friends. We propose a simple “streams model” of social learning that is consistent with the evidence from our experiment.

We seed a large real-world social network with binary information about the subject’s social learning. A unique feature of our field experiment is that we measure both the pre-existing social networks and the actual conversation network. Our experiment allows us to test how rational agents behave when processing information that originates within their social network. We find that information decays quickly with social distance and that agents mainly incorporate information within social distance 2. Conversations through common friends do not increase the weight that a subject places on signals from direct friends but linearly increases the weight on signals from indirect friends. This suggests that agents are able to avoid double-counting information from indirect friends. We propose a simple “streams model” of social learning that is consistent with the evidence from our experiment.
which generalize the well-known problems on bipartite graph matchings, such as the Linear and Quadratic Assignment Problems, and are also known as multidimensional assignment problems (MAPs). Properties of large-scale randomized instances of MAPs are studied under assumption that their assignment costs are iid random variables. In particular, we consider linear and quadratic problems with sum and bottleneck objectives. For a broad class of instances, probability distribution functions demonstrate strong convergence properties of optimal values of random MAPs as problem size increases. The analysis allows for identifying a subset of the feasible region containing high-quality solutions. We also investigate the average-case behavior of Linear Sum MAP in the case when the assumption regarding independence of the assignment costs is relaxed, and a correlation structure is present in the array of assignment costs. In particular, we consider the case of LSMAP with decomposable assignment costs.

Advances in global optimization IV
Syuji Yamada, Niigata University (with Tomasi Tanaka, Tetsuo Tanino)
Global optimization methods utilizing partial separating hyperplanes for a canonical dc programming problem
In this talk, we consider a canonical dc programming problem (CDC) to minimize a linear function over the difference between a compact convex set and an open bounded convex set. It is known that many global optimization problems can be transformed into CDCs. Hence, for CDCs, many approximation algorithms based on outer approximation methods and branch-and-bound procedures have been proposed. However, since the volume of data necessary for executing such algorithms increases in proportion to the number of iterations, such algorithms are not effective for large scale problems. Hence, to calculate an approximate solution of a large scale CDC, we propose new iterative solution methods. To avoid the growth of data storage, the proposed methods find an approximate solution of (CDC) by rotating a partial separating hyperplane around a convex set defining the feasible set at each iteration. Moreover, in order to improve the computational efficiency of the proposed methods, we utilize the polar coordinate system.

Open source software for modeling and optimization
Gus Gassmann, Dalhousie University (with Jun Ma, Kipp Martin)
Optimization services: Connecting algebraic modelling languages to several solvers using a web-aware framework
A common paradigm in mathematical optimization uses a modular approach consisting of an instance generator, e.g., an algebraic modeling language (AML), and a solver. Loosely coupled systems allow the substitution of one solver or AML for another. This is especially attractive when one considers open-source software, such as the suite of solvers that make up the COIN-OR project. However, the communication of solver options is often overlooked detail. Solver developers often use options specific to their own solvers, and even where two solvers use the same option, syntax and interpretation may differ. This can be cumbersome, especially if the AML and solver reside on different computers. In addition, open-source solvers are often layered on top of other solvers, which adds to the complexity, since solver options may have to be directed at different levels in the solver hierarchy.
Optimization Services is a web-aware framework that provides a common interface between AMLs and a variety of open-source and commercial solvers. This talk explores some of the difficulties encountered in connecting the COIN-OR solver suite to a common AML, and the methods we used to overcome them.

SearchCol algorithms for the level bin packing problem
José Valério do Carvalho, Universidade do Minho (with Filipê Aveloa, Elisa Silva)
SearchCol, short for "metaheuristic search by column generation", is an algorithmic framework for approximately solving integer programming/combinatorial optimization problems with a decomposable structure. Each iteration of a SearchCol algorithm is made of three phases: (i) column generation is used to generate solutions to subproblems, (ii) a metaheuristic is used to search the (integer) solution space, and (iii) additional constraints, forcing or forbidding attributes of the incumbent solution, are included in the restricted master problem of column generation. Two subproblems are solved in the following iteration. In this talk, we apply SearchCol algorithms to a bin packing problem where it is intended to minimize the number of used rectangular bins to pack a given set of rectangular items. Additionally, the items must be packed in levels. We present computational results comparing our approach to one of the best-known greedy algorithms.
results for different variants of the SearchCol algorithms and compare them with other solution approaches.

Patrick Schlieke, SINEF ICT (with Tomas Nordlander)

A heuristic for competence building with the use of nurse re-rostering

The global nursing shortage makes efficient use of these resources vital. Good nurse rosters assist but are often static and span over a long period while the daily personnel situation is more dynamic: nurses get sick, take short notice days off, etc. Commonly, these absences are handled by hiring extra nurses when needed. However, earlier analy-sis has shown that nurse rotation in combination with hiring is a much more efficient solution. Moreover, re-rostering gets easier if the hos-pital possesses the best mix of experience level and special skills. In other words, a more suitable competence profile makes re-rostering more beneficial. Nurse rotation (work regularly in another department) builds up competence, which allows for a more robust competence pro-file – departments become better suited to handle future personnel ab-sences. We present a heuristic that optimizes the competence pro-file under the assumption that nurse rotation is allowed and/or the hos-pital can buy in competence. Our preliminary experiments on small in-stances show how a more robust competence profile is much more ef-ficient up to 40%.

Marco Boschetti, University of Bologna (with Turrichia Elisa, Gofarel Matteo, Rizi Stefano, Maniezzo Vittorio)

A Lagrangian heuristic for the sprint planning in agile methods

Agile methods have been adopted by an increasing number of com-panies to make software development faster and nimble. Most meth-ods divide a project into sprints (iterations), and include a sprint plan ning phase that is critical to ensure the project success. Several factors impact on the optimality of a sprint plan, e.g., the estimated complexity, business value, and affinity of the user stories (functionalities) included in each sprint, which makes the planning problem difficult.

We present an approach for the sprint planning in agile methods based on a MIP model. Given the estimates made by the project team and a set of development constraints, the optimal solution is a sprint plan that maximizes the business value perceived by users.

Solving to optimality the model by a MIP solver (e.g., IBM Ilog Cplex) takes time and for some instances even to find a feasible solution re-quires too large computing times for an operational use. For this reason we use a heuristic based on relaxation of the proposed model and some greedy algorithms. Computational results on both real and synthetic projects show the effectiveness of the proposed approach.

Tanja Binder, Philipps-Universität Marburg (with Ekaterina Kostina)

Optimum experimental design

Dealing with the task of identifying unknown quantities from a set of erroneous data, the performance of a sensitivity analysis is inevitable. Without the determination of the statistical accuracy, we are not able to make any quality statements about the estimate. Consequently the re-sult is almost meaningless. Commonly one applies linearization tech-niques to determine the statistical accuracy of the solution. But par-ticularly in highly nonlinear cases this may cause problems and linear confidence regions may not be adequate. In this talk, we are going to present and analyze a confidence region based on a quadratic approxima-tion. Furthermore, we demonstrate our results using applications from biology. Furthermore, we discuss the impact of the new results to optimum experimental design.
protein localisation of the supposed predominant proteins MglA and MglB. Qualitative reconstruction of the observed characteristic dynamics and transport times for available proteins is used as discrimination criteria. The extremely sparse experimental data sets mark a special challenge of this application. Current results and limitations of this approach are discussed.

Collision avoidance via distributed feedback design

We consider a distributed non cooperative control setting in which systems are interconnected via state constraints. Each of these systems is governed by an agent which is responsible for exchanging information with its neighbours and computing a feedback law using a nonlinear model predictive controller to avoid collisions. For this setting we present an algorithm which generates a parallelizable hierarchy among the systems. Moreover, we show both feasibility and stability of the closed loop using only abstract properties of this algorithm. To this end, we utilize a trajectory based stability result which we extend to the distributed setting.

Cornelius Schwarz, University of Bayreuth (with Joachim Schauer)
The laser sharing problem with fixed tours

In the Laser Sharing Problem [LSP] a set of industrial arc welding robots has to perform a series of welding seams. For this task they need to be connected to a laser source supplying them with the necessary energy. In principle, a laser source can serve up to six robots but only one at a time. The task of the LSP is to find an assignment of a given set of laser sources to robots and collision-free robot tours so that welding seams performed using the same laser source do not overlap in time and the overall makespan is minimal.

Prescribing the robot tours we obtain a pure scheduling problem referred to as LSP-T. We will show that LSP-T can be seen as an extension of the famous job-shop problem. Then we extend the geometric approach of Akers for the two job-shop problem to LSP-T leading to a polynomial algorithm for the two robot case.

Since the job-shop problem is a special case of LSP-T the three robot case is already NP-hard. We will propose a pseudo-polynomial algorithm for it based on transversal graphs and show how to derive a FPTAS. By this we fully settle the complexity of LSP-T with a constant number of robots.

Wolfgang Welt, TU Berlin
Conflict-free job assignment and tour planning of welding robots

In welding cells a certain number of robots performs spot welding tasks on a workpiece. The tours of the welding robots are planned in such a way that all weld points on the component are visited and processed within the cycle time of the production line. During this operation, the robot arms must not collide with each other and safety clearances have to be kept. On the basis of these specifications, we show an approach how methods of discrete optimization can be used in combination with nonlinear optimization to find solutions for the stated problem. Intermediate results from the combinatorial collision-aware dispatching problem can be used to identify promising tours. Calculating the exact trajectories for those tours only keeps the computational expensive calculations to a minimum. The discrete part leads to a Vehicle Routing based problem with additional scheduling and timing aspects induced by the necessary collision avoidance. This problem can be solved as an integer nonlinear program by column generation techniques. In this context, we adapt a version of the shortest path problem with time windows so that it can be used to solve the pricing problem with collision avoidance.

Wolfgang Welt, TU Berlin
Mixed-integer nonlinear programming

Applications of MINLP I

Claudia Stangl, University of Duisburg-Essen (with Ralf Gollmer, Rüdiger Schultz)
Feasibility testing for transportation orders in real-life gas networks

Checking the feasibility of transportation requests belongs to the key tasks in gas pipeline operation. In its most basic form, the problem is to decide whether a certain quantity of gas can be sent through the network from prescribed entries to prescribed exits points. In the stationary case, the physics of gas flow together with technological and commercial side conditions lead to a pretty big (nonlinear, mixed-integer, finite dimensional) inequality system. We present elimination and approximation techniques so that the remaining system gets within the reach of standard NLP-solvers.

Claudia Stangl, University of Duisburg-Essen (with Ralf Gollmer, Rüdiger Schultz)
The traveling salesman problem with neighborhoods: MINLP solution

The traveling salesman problem with neighborhoods extends the traveling salesman problem to the case where each vertex of the tour is allowed to move in a given region. This NP-hard optimization problem has recently received increasing attention in several technical fields such as robotics, unmanned aerial vehicles, or utility management. We formulate the problem as a nonconvex Mixed-Integer Nonlinear Program (MINLP) having the property that fixing all the integer variables to any integer values yields a convex nonlinear program. This property is used to modify the global MINLP optimizer Couenne, improving by orders of magnitude its performance and allowing the exact solution of instances large enough to be useful in applications. Computational results are presented where neighborhoods are either polyhedras or ellipsoids in \(\mathbb{R}^2 \) and with the Euclidean norm as distance metric.

Jakob Schelbert, RAI Erlangen-Nürnberg, Discrete Optimization (with Sonja Mars, Lars Schewe)
How to route a pipe – Discrete approaches for physically correct routing

We consider a real-world problem of routing a pipe through a power plant. This is done with a MISOPC model which is solved to global optimality. The problem combines discrete aspects and non-linear constraints that model the physics of the pipe. Conventional truss topology

Alternative objective functions in ship scheduling for managing supply chain disruption risk

To gain cost advantages, many shipping companies generate ship schedules which minimizes transportation cost. There are effective in a stable environment. However, there are vulnerable to supply chain disruptions caused by uncertain economic crisis, natural and man-made disasters. Effectively responding to such disruption risk is of crucial importance for continuing business activities. For this purpose, it is necessary to generate ship schedules which result in quick and sufficient distribution of supplies, with a focus on equitable service to all locations concerning the disruptions. However, quantifying such goals can be challenging. In this work, we introduce alternate objectives in ship scheduling problem which are different from the one minimizing transportation costs. Moreover, we show how these objective functions affect the ship schedules.

Lucian Ilencsu, Department Information Systems (with Natalia Kliewer)
Stochastic optimization models for airline resource schedules under disruptions

In this talk we compare two stochastic models considering the robustness and cost-efficiency of airline resource schedules. The first model deals with the delay absorbing capacity of schedules, the second with the recoverability during operations. These two aspects can be called stability and flexibility. Both models are solved by a branch-and-price&cut-algorithm. The resulting schedules are evaluated by an event-based simulation including a delay propagation model and a rule-based recovery approach. This enables us to identify possible mutual impacts, e.g., if stable schedules still offer the same degree of swap opportunities for operational recovery and vice versa. The presented analysis is a pre-step to an integrated stochastic approach for considering both stability and flexibility aspects at the same time during scheduling.

Kazuhiro Kobayashi, National Maritime Research Institute, Tokyo
Alternative objective functions in ship scheduling for managing supply chain disruption risk

To gain cost advantages, many shipping companies generate ship schedules which minimizes transportation cost. There are effective in a stable environment. However, there are vulnerable to supply chain disruptions caused by uncertain economic crisis, natural and man-made disasters. Effectively responding to such disruption risk is of crucial importance for continuing business activities. For this purpose, it is necessary to generate ship schedules which result in quick and sufficient distribution of supplies, with a focus on equitable service to all locations concerning the disruptions. However, quantifying such goals can be challenging. In this work, we introduce alternate objectives in ship scheduling problem which are different from the one minimizing transportation costs. Moreover, we show how these objective functions affect the ship schedules.

Lucian Ilencsu, Department Information Systems (with Natalia Kliewer)
Stochastic optimization models for airline resource schedules under disruptions

In this talk we compare two stochastic models considering the robustness and cost-efficiency of airline resource schedules. The first model deals with the delay absorbing capacity of schedules, the second with the recoverability during operations. These two aspects can be called stability and flexibility. Both models are solved by a branch-and-price&cut-algorithm. The resulting schedules are evaluated by an event-based simulation including a delay propagation model and a rule-based recovery approach. This enables us to identify possible mutual impacts, e.g., if stable schedules still offer the same degree of swap opportunities for operational recovery and vice versa. The presented analysis is a pre-step to an integrated stochastic approach for considering both stability and flexibility aspects at the same time during scheduling.
optimization methods are not directly applicable. This follows from the discrete constraints that force the pipe to form a path or even a Steiner tree. The underlying physics of the pipe can be expressed via a SOCP formulation. Additional combinatorial constraints, that are used to force the pipe to a certain design, call for the use of binary variables which renders the problem a MISOCP. In our real-world application a rough outline of the admissible region, a start and end point are given. In addition to the self-weight of the pipe we are also asked to place hang- ers that provide support for the pipe. Furthermore we use Timoshenko beams for our pipe to consider a more accurate physical model. We give some numerical results and show how to speed up the solving process by discrete optimization techniques to obtain global optimality.

Johannes Jahn, University of Erlangen-Nuremberg (with Dietmar Fey, Steffen Limmer)

GPU implementation of a multiobjective search algorithm

In this talk we discuss the use of graphics processing units (GPU) in multiobjective optimization. For a known multiobjective search algorithm with subdivision technique we describe a possible implementation and we present numerical results for test problems together with the achieved speed ups.

Joerg Fliege, University of Southampton (with Konstantinos Kapsarlis, Hafu Xu)

Reformulations of multiobjective bilevel problems

We present new approaches for multiobjective bilevel optimization, derived from an optimality condition for the lower level problem that leads naturally to a nonsmooth equality constraint. The nonsmoothness of the new constraint stems from its derivation as an optimal value function of a particular direction search problem. Preliminary numerical results on bilevel problems occurring in electricity markets show the efficacy of the approach. Further, we consider possible extensions to the multilevel case.

Frank Heyde, University of Graz (with Andreas Hamel, Birgit Rudloff, Benjamin Weißing)

Set-valued average value at risk

Since the seminal paper of Artzner, Delbaen, Eber and Heath (1999), coherent measures of risk are considered to be an important tool for risk management. The most prominent example of a coherent risk measure is "Average (Conditional) Value at Risk (AVaR)". In the presence of transaction costs it turned out that set-valued risk measures are in general better suited to cope with multiple markets than real-valued fuctions. A general theory of set valued convex risk measures was developed by Hamel, Heyde (2010) and (Zamel, Heyde, Rudloff (2011)). Within this framework we will present a set-valued version of the AVaR. A primal and dual description will be given which extend the real-valued case to the set-valued framework. The equivalence of the two descriptions is shown using a set-valued Fenchel-Rockafellar duality theorem developed by Hamel (2011).

Maria Maciel, Universidad Nacional del Sur (with Gabriel Carrizo, Pablo Lotito)

A trust region algorithm for the nonconvex unconstrained vector optimization problem

A trust-region-based algorithm for the non convex unconstrained vector optimization problem is considered. It is a generalization of the algorithms proposed by Fliege, Graña Drumond and Svaiter (2009) for the convex problem. Similarly to the scalar case, at each iteration, a trust region subproblem is solved and the step is evaluated. The notions of decrease conditions and reduced predicted reduction are adapted to the vector case. A rule to update the trust region radius is introduced. Under differentiability assumptions, the algorithm converges to a Pareto point satisfying a necessary condition and in the convex case to a Pareto point satisfying necessary and sufficient conditions like the procedure proposed by the cited authors.

Paulo Silva, University of S\~{a}o Paulo (with Roberto Andreani, Gabriel Haeser, Maria Scheverdt)

Constant positive generators: A new weak constraint qualification with algorithmic applications

This talk introduces a generalization of the constant rank of the subspace component constraint qualification called the constant positive generator condition (CPG). This new constraint qualification is much weaker: For example, it can hold even in the absence of an error bound for the constraints and it can hold at a feasible point x while failing arbitrarly close to x.

In spite of its generality, it is possible to show that CPG is enough to ensure that almost-KKT points are actually KKT. Hence, this new condition can be used as mild enough assumption to assert the convergence of many algorithms to first order stationary points. As examples, we present extensions of convergence results for algorithms belonging to different classes of nonlinear optimization methods: augmented Lagrangians, inexact restoration, SQP, and interior point methods.

Santhosh Sivanandam, Jaypee University of Engineering and Technology

Fritz John duality in the presence of equality and inequality constraints

A dual for a nonlinear programming problem in the presence of equality and inequality constraints is formulated which uses Fritz John optimality conditions instead of the Karush–Kuhn–Tucker optimality conditions and thus does not require a constraint qualifications. Various duality results, namely, weak, strong, strict converse and converse duality theorems are established under suitable generalized convexity assumptions.

Frank Heyde, University of Graz (with Andreas Hamel, Birgit Rudloff, Benjamin Weißing)

A trust region algorithm for the nonconvex unconstrained vector optimization problem

A trust-region-based algorithm for the non convex unconstrained vector optimization problem is considered. It is a generalization of the algorithms proposed by Fliege, Graña Drumond and Svaiter (2009) for the convex problem. Similarly to the scalar case, at each iteration, a trust region subproblem is solved and the step is evaluated. The notions of decrease conditions and reduced predicted reduction are adapted to the vector case. A rule to update the trust region radius is introduced. Under differentiability assumptions, the algorithm converges to a Pareto point satisfying a necessary condition and in the convex case to a Pareto point satisfying necessary and sufficient conditions like the procedure proposed by the cited authors.

Paulo Silva, University of S\~{a}o Paulo (with Roberto Andreani, Gabriel Haeser, Maria Scheverdt)

Constant positive generators: A new weak constraint qualification with algorithmic applications

This talk introduces a generalization of the constant rank of the subspace component constraint qualification called the constant positive generator condition (CPG). This new constraint qualification is much weaker: For example, it can hold even in the absence of an error bound for the constraints and it can hold at a feasible point x while failing arbitrarly close to x.

In spite of its generality, it is possible to show that CPG is enough to ensure that almost-KKT points are actually KKT. Hence, this new condition can be used as mild enough assumption to assert the convergence of many algorithms to first order stationary points. As examples, we present extensions of convergence results for algorithms belonging to different classes of nonlinear optimization methods: augmented Lagrangians, inexact restoration, SQP, and interior point methods.

Santhosh Sivanandam, Jaypee University of Engineering and Technology

Fritz John duality in the presence of equality and inequality constraints

A dual for a nonlinear programming problem in the presence of equality and inequality constraints is formulated which uses Fritz John optimality conditions instead of the Karush–Kuhn–Tucker optimality conditions and thus does not require a constraint qualifications. Various duality results, namely, weak, strong, strict converse and converse duality theorems are established under suitable generalized convexity assumptions.

Frank Heyde, University of Graz (with Andreas Hamel, Birgit Rudloff, Benjamin Weißing)

A trust region algorithm for the nonconvex unconstrained vector optimization problem

A trust-region-based algorithm for the non convex unconstrained vector optimization problem is considered. It is a generalization of the algorithms proposed by Fliege, Graña Drumond and Svaiter (2009) for the convex problem. Similarly to the scalar case, at each iteration, a trust region subproblem is solved and the step is evaluated. The notions of decrease conditions and reduced predicted reduction are adapted to the vector case. A rule to update the trust region radius is introduced. Under differentiability assumptions, the algorithm converges to a Pareto point satisfying a necessary condition and in the convex case to a Pareto point satisfying necessary and sufficient conditions like the procedure proposed by the cited authors.

Paulo Silva, University of S\~{a}o Paulo (with Roberto Andreani, Gabriel Haeser, Maria Scheverdt)

Constant positive generators: A new weak constraint qualification with algorithmic applications

This talk introduces a generalization of the constant rank of the subspace component constraint qualification called the constant positive generator condition (CPG). This new constraint qualification is much weaker: For example, it can hold even in the absence of an error bound for the constraints and it can hold at a feasible point x while failing arbitrarly close to x.

In spite of its generality, it is possible to show that CPG is enough to ensure that almost-KKT points are actually KKT. Hence, this new condition can be used as mild enough assumption to assert the convergence of many algorithms to first order stationary points. As examples, we present extensions of convergence results for algorithms belonging to different classes of nonlinear optimization methods: augmented Lagrangians, inexact restoration, SQP, and interior point methods.

Santhosh Sivanandam, Jaypee University of Engineering and Technology

Fritz John duality in the presence of equality and inequality constraints

A dual for a nonlinear programming problem in the presence of equality and inequality constraints is formulated which uses Fritz John optimality conditions instead of the Karush–Kuhn–Tucker optimality conditions and thus does not require a constraint qualifications. Various duality results, namely, weak, strong, strict converse and converse duality theorems are established under suitable generalized convexity assumptions.
Optimal solutions have been a question of interest for decades. Often it is a tool for planning, real time operations and market auctions in the electricity industry. Over the last two decades it has become a standard in the electricity industry. Over the last two decades it has become a standard in the electricity industry.

Waqquas Bukhsh, University of Edinburgh (with Andreas Grothey, Ken McKinnon, Paul Trodden).

Structural properties of power grid design

The problem of designing a cost minimal power grid is often formulated as a mixed integer linear program using the well known DC power flow linearization. We consider its projection on the integral space, as every feasible integral point can be considered as a possible power grid design. We define the DC power grid design polytope as the convex hull of these integral points. At first, we will consider the case in which the global minimizers of these convex functions converge to a local minimizer of the original nonconvex objective function. These convex functions are minimized by using ACCPM-prox, a code developed by J. P. Vial. We use the set problem CUTER and tested two version of our algorithm, ACCPM_AdapToI and ACCPM_FixToI on 158 problems of this set. The number of variables on these 158 problems varies from 2 to 20,000. This software presents ACCPM_AdapToI as the best solver on more than 22% of the problems and it can solve approximately 85% of the problems.

Jean-Louis Goffin, McGill University (with Abad Delghani, Dominique Urban).

Solving unconstrained nonconvex programs with ACCPM

We suggest the use of ACCPM and proximal ACCPM, well known techniques for convex programming problems, in a sequential convex programming method based on ACCPM and convexification techniques to tackle unconstrained problems with a non-convex objective function, by adding a proximal term to the objective. We also report a comparison of our method with some existing algorithms: the steepest descent method and nonlinear conjugate gradient algorithms.

We use a sequence of convex functions and show that the global minimizers of these convex functions converge to a local minimizer of the original nonconvex objective function. These convex functions are minimized by using ACCPM-prox, a code developed by J. P. Vial.

Jean-Louis Goffin, McGill University (with Abd Abad Delghani, Dominique Urban).

Power flow modelling and mechanism design

Chair Deepak Bagchi, Infosys Ltd.

Stephan Lenkens, RWTH Aachen University (with Ari Koster)

Structural properties of power grid design

The problem of designing a cost minimal power grid is often formulated as a mixed integer linear program using the well known DC power flow linearization. We consider its projection on the integral space, as every feasible integral point can be considered as a possible power grid design. We define the DC power grid design polytope as the convex hull of these integral points. At first, we will consider the case in which the global minimizers of these convex functions converge to a local minimizer of the original nonconvex objective function. These convex functions are minimized by using ACCPM-prox, a code developed by J. P. Vial.

We use the set problem CUTER and tested two version of our algorithm, ACCPM_AdapToI and ACCPM_FixToI on 158 problems of this set. The number of variables on these 158 problems varies from 2 to 20,000. This software presents ACCPM_AdapToI as the best solver on more than 22% of the problems and it can solve approximately 85% of the problems.

Deepak Bagchi, Infosys Ltd. (with Shanantau Blows).

Optimal combinatorial auction for smart grids with renewable energy resources

We present an optimal combinatorial auction mechanism for the virtual power plant (VPP) formation problem in a smart grid with renewable energy sources. The VPP planner can source electricity from various suppliers generating electricity from renewable energy sources. The planner has to solve the VPP formation problem to determine which VPP to form at any given point of time. We take into consideration the uncertainty in availability of renewable energy sources due to changing weather patterns.

To the best of our knowledge this is the first attempt at developing an optimal mechanism for the VPP formation problem. We have incorporated the uncertainty in availability of energy from renewable resources in the auction formulation to minimize the associated risks. We have stated and proved the necessary and sufficient conditions for Myerson optimal auction for VPP formation problem in the presence of single minded suppliers.

Jetshow Younes, Research Unit: Optimization, Modeling and Decision Support (with Mohamed Bouchiba, Abdelnacer Jarray).

The Navier-Stokes problem in velocity-pressure formulation: Convergence and optimal control

We study the nonlinear Navier-Stokes problem in velocity-pressure formulation. We construct a sequence of Newton-linearized problems and we show that the sequence of weak solutions converges towards the solution of the nonlinear one in a quadratic way. A control problem on the homogeneous problem is considered. In another way, a viability approach to the problem may be to do our best to respect the storage level s during the tourist season while guaranteeing ourselves a reached gain g. Thus, we symmetrize the stakes by maximizing \(F(gain \geq g \text{ and } storage \geq s) \). We design and then solve the problem, which is the occasion to study the maximization of a multiplicative gain by dynamic programming.

Sebastian Pfaff, Technische Universität Darmstadt (with Stefan Ulbrich).

Optimal boundary control for nonlinear hyperbolic conservation laws with source terms

Hyperbolic conservation laws arise in many different applications such as traffic modelling or fluid mechanics. The difficulty in the optimal control of hyperbolic conservation laws stems from the occurrence of moving discontinuities (shocks) in the entropy solution. This leads to the fact that the control-to-state mapping is not differentiable in the usual sense.

In this talk we consider the optimal control of a scalar balance law on a bounded spatial domain with controls in source term, initial data and the boundary condition. We show that the state depends shift-differentiably on the control by extending previous results for the control of examples of local solutions of OPF on a range of power systems networks. We also show that a recent reformulation of OPF as SDP problem sometimes fails to recover feasible solutions of OPF.
of Cauchy problems. Furthermore we present an adjoint-based gradient representation for cost functionals. The adjoint equation is a linear transport equation with discontinuous coefficients on a bounded domain which requires a proper extension of the notion of a reversible solution. The presented results form the basis for the consideration of optimal control problems for switched networks of nonlinear conservation laws.

Mohamed Al-Lawafia, Sultan Qaboos University

A rational characteristic method for advection diffusion equations

We present a characteristic method for the solution of the two-dimensional advection diffusion equation which uses Wachspress-type rational basis functions over polygonal discretizations of the spatial domain within the framework of the Eulerian-Lagrangian localized adjoint methods (ELLAM). The derived scheme maintains the advantages of previous ELLAM schemes and generates accurate numerical solutions even when large time steps are used in the simulation. Numerical experiments are presented to illustrate the performance of the method and to investigate its convergence numerically.

Fri.1.MA 415
Reduced order model based optimization
Chair: Jane Ghiglieri, Technische Universität Darmstadt

Andreas Schmidt, MWR, Universität Heidelberg (with Hans-Georg Bock, Stefan Körkel)

POD reduced-order modeling in the context of direct-approach optimization

To solve optimization problems that involve PDE constraints in general two approaches are distinguished, namely the direct and the indirect approach where we either 'first discretize – then optimize' or 'first optimize – then discretize'. If Proper Orthogonal Decomposition (POD) is used to reduce the size of the optimization problem in most of the applications this takes place in the indirect setting.

We will consider the use of POD in a direct approach setting together with time-dependent PDEs. We can see that a naive application of POD will result in a reduced-order model that lacks the essential property to reflect derivative information of the original high-fidelity model. A remedy to overcome this is the inclusion of necessary derivative information obtained from the high-fidelity model. We will see that the resulting 'enriched' reduced-order model has very beneficial properties. More specifically we obtain accurate approximations to the original problem of either forward derivatives or adjoint derivatives. Furthermore the derivatives will always be consistent even for changing parameter configurations.

Jane Ghiglieri, Technische Universität Darmstadt (with Stefan Ulbrich)

Optimal flow control based on POD and MPC for the cancellation of Tollmien-Schlichting waves by plasma actuators

The occurrence of a transition in a flat plate boundary layer is characterized by the formation of growing disturbances inside the boundary layer, the Tollmien-Schlichting waves. Successful damping of these waves can delay transition for a significant distance downstream, lowering the skin friction drag of the body.

We consider plasma actuators which induce a body force for active flow control. By optimal control of the plasma actuator parameters it is possible to reduce or even cancel the Tollmien-Schlichting waves and delay the turbulence transition. We present a Model predictive control (MPC) approach for the cancellation of Tollmien-Schlichting waves in the boundary layer of a flat plate. We use proper orthogonal decomposition (POD) for the low-order description of the flow model and the optimization of the control parameters is performed within the reduced system. Furthermore, we will show methods for improving the reduced model whose quality is verified in comparison to the results of a finite element based simulation for the considered problem. Finally, we present our cancellation results with this MPC approach in a numerical simulation.

Daniela Kolle, Technische Universität Darmstadt (with Stefan Ulbrich)

Optimal control of hydroforming processes based on POD

The sheet metal hydroforming process is a complex forming process, which involves contact, friction and plasticity to manufacture curved sheet metals with bifurcated cross section. These sheet metal products are examined within the Collaborative Research Centre (CRC) 666. Mathematically, the sheet metal hydroforming process leads to an evolution quasi-variational inequality. We seek for optimal controls of the process relevant control variables, e.g., the time dependent blank holder force. Since the resulting optimization problem is very complex and computationally intensive, we apply model reduction techniques. We use Proper Orthogonal Decomposition (POD) to obtain a low-order model of the hydroforming process. Based on a Galerkin approximation and a semismooth reformulation we will discuss the derivation of a reduced model for the evolution variational inequality.

Numerical results of a simplified engineering application for the optimal control of hydroforming processes will be presented.

Chair: Jane Ghiglieri, Technische Universität Darmstadt

Reduced order model based optimization

Chaitanya Bandi, Operations Research Center, MIT

Optimal design for multi-item auctions: A robust optimization approach

We revisit the auction design problem for multi-item auctions with budget constrained buyers by introducing a robust optimization approach to model (a) concepts such as incentive compatibility and individual rationality that are naturally expressed in the language of robust optimization and (b) the auctioner’s beliefs on the buyers’ valuations of the items. Rather than using probability distributions (the classical probabilistic approach) or an adversarial model to model valuations, we introduce an uncertainty set based model for these valuations. We construct this uncertainty set to incorporate historical information available to the auctioneer in a way that is consistent with limit theorems of probability theory or knowledge of the probability distribution. In this setting, we formulate the auction design problem as a robust optimization problem and provide a characterization of the optimal solution as an auction with reservation prices, thus extending the work of Myerson (1981) from single item without budget constraints, to multiple items with budgets, potentially correlated valuations and uncertain budgets.

Natalya Youssef, MIT (with Chaitanya Bandi, Dimitris Bertsimas)

Robust queueing theory

We propose an approach for studying queueing systems by employing robust optimization as opposed to stochastic analysis. While traditional queueing theory relies on Kolmogorov’s axioms and models arrivals and services as renewal processes, we use the limiting laws of probability as the axioms of our methodology and model the queueing primitives by uncertainty sets. We begin by analyzing the performance of single-class multi-server queues and obtain closed form expressions for the waiting times with heavy-tailed arrival and service processes; expressions that are not available under traditional queueing theory. We develop an exact calculus for analyzing a network of queues based on the following key principle: (a) the departure, (b) the superposition, and (c) the thinning of arrival processes have the same uncertainty set representation as the original arrival processes. We also derive closed form expressions for the transient behavior of single class queues and feedback networks. We show that our approach (a) yields accurate results in comparison to simulations for large scale queueing networks, and (b) is to a large extent insensitive to network size and traffic intensity.

Dimitris Bertsimas, MIT (with Chaitanya Bandi)

Network information theory via robust optimization

We present a robust optimization framework to solve the central problem of network information theory of characterizing the capacity region and constructing matching optimal codes for multi-user channels with interference. We first formulate the single user Gaussian channel as a semidefinite optimization problem with rank one constraints and recover the known capacity region [Shannon-1948] and construct a matching optimal code. We then characterize the capacity regions of the multi-user Gaussian interference channel, the multiaccess Gaussian channels and construct matching optimal codes by solving semidefinite optimization problems with rank one constraints. We present numerical results that show that our proposed approach is numerically tractable for code-book sizes of up to 100,000 codewords. We further examine how the probability description of noise affects the nature of the corresponding optimization problem and show that for the case of exponential channels the optimization problem becomes a binary, mixed linear optimization problem that can be solved by commercial solvers.

Dimitris Bertsimas, MIT (with Chaitanya Bandi)

Robust queuing theory

We propose an approach for studying queueing systems by employing robust optimization as opposed to stochastic analysis. While traditional queueing theory relies on Kolmogorov’s axioms and models arrivals and services as renewal processes, we use the limiting laws of probability as the axioms of our methodology and model the queueing primitives by uncertainty sets. We begin by analyzing the performance of single-class multi-server queues and obtain closed form expressions for the waiting times with heavy-tailed arrival and service processes; expressions that are not available under traditional queueing theory. We develop an exact calculus for analyzing a network of queues based on the following key principle: (a) the departure, (b) the superposition, and (c) the thinning of arrival processes have the same uncertainty set representation as the original arrival processes. We also derive closed form expressions for the transient behavior of single class queues and feedback networks. We show that our approach (a) yields accurate results in comparison to simulations for large scale queueing networks, and (b) is to a large extent insensitive to network size and traffic intensity.

Dimitris Bertsimas, MIT (with Chaitanya Bandi)

Network information theory via robust optimization

We present a robust optimization framework to solve the central problem of network information theory of characterizing the capacity region and constructing matching optimal codes for multi-user channels with interference. We first formulate the single user Gaussian channel as a semidefinite optimization problem with rank one constraints and recover the known capacity region [Shannon-1948] and construct a matching optimal code. We then characterize the capacity regions of the multi-user Gaussian interference channel, the multiaccess Gaussian channels and construct matching optimal codes by solving semidefinite optimization problems with rank one constraints. We present numerical results that show that our proposed approach is numerically tractable for code-book sizes of up to 100,000 codewords. We further examine how the probability description of noise affects the nature of the corresponding optimization problem and show that for the case of exponential channels the optimization problem becomes a binary, mixed linear optimization problem that can be solved by commercial solvers.
number of variables. Modern statistical estimators developed over the past decade have statistical or sample complexity that depends only weakly on the number of parameters when there is some structure to the problem, such as sparsity. A central question is whether similar advances can be made when there is no other structure to the problem. In this talk, we propose strategies that indicate that such advances can indeed be made. We will investigate greedy coordinate descent algorithms, and note that performing the greedy step efficiently weakens the dependence on the number of parameters.

In the context of optimization, the greedy step efficiently weakens the dependence on the number of parameters provided the solution is sparse. We then propose a suite of methods that perform these greedy steps efficiently by a reduction to nearest neighbor search. We also develop a practical implementation of our algorithm that combines greedy coordinate descent with locality sensitive hashing, using which we are not only able to significantly speed up the vanilla greedy method, but also outperform cyclic descent when the problem size becomes large.

Prateek Jain, Microsoft Research Lab [with Indrjit Dhillon, Ambuj Tewari]

Orthogonal matching pursuit with replacement

In this paper, we consider the problem of compressed sensing where the goal is to recover almost all the sparse vectors using a small number of fixed linear measurements. For this problem, we propose a novel partial hard-thresholding operator that leads to a general family of iterative algorithms. While one extreme of the family yields well known hard thresholding algorithms like IHT (Iterative Hard thresholding with Inexact Projections) and HTP (Hard Thresholding Pursuit), the other end of the spectrum leads to a novel algorithm that we call Orthogonal Matching Pursuit with Replacement (OMPR). OMPR, like the classic greedy algorithm OMP, adds exactly one coordinate to the support at each iteration. We provide brief introduction to the orthogonalization scheme and the current residual. However, unlike OMP, OMPR also removes one coordinate from the support. Simple change allows us to prove that OMPR has the best known guarantees for sparse recovery in terms of the Restricted Isometry Property (a condition on the measurement matrix).

Our proofs techniques are novel and flexible enough to also permit the tightest known analysis of popular iterative algorithms such as CoSaMP and Subspace Pursuit.

David Woodruff, UC Davis [with Jean-Paul Watson, Roger Wets]

Bundling scenarios in progressive hedging

In this paper, we provide a theoretical background and describe computational experience with schemes for bundling scenarios to improve convergence of the algorithmic computational effort for Progressive Hedging (PH). Although the idea was floated (Wets 89, Wets 91) at about the same time PH was first described, it has received very little attention. As we will show, bundling can be a important component in PH. We provide brief introduction to the basic parallel programs. The PH algorithm as stated parallelizes synchronously, in that all scenario sub-problems are solved before averages and sub-problems are communicated. Barrier synchronization leads to poor parallel efficiency, especially as updates are done without waiting for all scenario sub-problem solutions to complete. PH is critical on parallel computing architectures that are inherently heterogeneous and unreliable, or when so many compute nodes are employed that at least one of them is likely to fail during execution. We show that key convergence properties of PH hold in APH, and report computational experiences on mixed-integer linear and non-linear stochastic programs.
On survivable network design problem with one or two failing links and elementary path-flows

A well known problem in survivable network design consists in minimizing the cost of links under a single link failure scenario (any link can fail but only one at a time) assuming flow restoration. The problem, denoted by FR, assumes bifurcated primary and restoration flows, and stub release (the capacity of links released by failing flows is used for restoration). FR can be expressed as a linear program but only in a non-compact formulation with NP-hard separation. Because of that, FR is regarded as NP-hard itself although this has not been proved. The paper considers a version of FR when only one predefined link or only two predefined links can fail. We assume that the primary paths cannot contain loops – an assumption commonly neglected. We show that the case with one failing link is polynomial while the case with two failing links is NP-hard. This is a new result that sheds light on FR also for the single link failure scenario. As a byproduct of the one-failing link case, we obtain an example of a non-compact LP formulation with NP-hard separation which actually describes a polynomial problem. Such an example has not been commonly known to the network design community before.

Giuliana Carillo, Politecnico di Milano (with Bernadetta Addis, Federico Malucelli)
A network loading problem with shared protection and SRG: Formulations and ILP based hybrid heuristics

Failure resiliency is an important issue in telecommunication networks. In real networks different links may share physical structures and therefore may be affected by the same physical fault. This complexity is captured by Shared Risk Groups (SRGs), which represent sets of links affected by the same fault. We focus on a shared protection scheme, according to which the backup capacity can be shared among different demands, provided that they are not affected by the same faults. We address a network loading problem where SRG and shared protection are considered. We propose a couple of mathematical models. As the problem seems extremely challenging from the computational point of view, we explore the possibility of adding some valid inequalities that have been successful in standard network design problem. Besides, we present some ILP based hybrid heuristic approaches. One approach considers the dynamic addition of constraints, while the other approach is based on a combination of greedy and local search. We report an extensive experimental comparison of all the proposed approaches.

Uwe Steglich, Chemnitz University of Technology (with Thomas Bauschert)
Robust multi-layer network design under traffic demand uncertainty

We present an mixed-integer linear programming approach for a multi-layer network design problem under traffic demand uncertainty. This problem arises in the planning of IP (Internet Protocol) based networks, where the IP routers are interconnected by logical links that are paths in an underlying transport network. The transport network in turn might consist of different layers and technologies, e.g., an OTN layer (with electrical switching capability on ODU granularity) and a DWDM layer (with pure optical switching capability on wavelength granularity) which allows for optimum grooming and layer bypassing. Demand uncertainty results from daytime usage fluctuations, user behavior and external effects like BGP route flapping or server load balancing mechanisms, and is regarded as big challenge for network operators. Our work is based on modifications of the Γ -robust design approach and the “Path over Path” concept for multi-layer planning. Contrary to existing approaches our model considers multi-path routing, traffic grooming and layer skipping in parallel. We report computational results and limitations for realistic network scenarios and different transport network realizations.

Christian Raack, Zuse Institute Berlin
Cutset inequalities for robust network design

In order to create and operate resource- and cost-efficient networks the uncertainty of traffic demand (data, passengers) has to be taken into account already in the strategic capacity design process. A promising approach is robust optimization (RO).

Network design problems in telecommunications or public transport are often solved using Mixed Integer Programming (MIP) models based on multi-commodity-flow formulations. It is known that the solution process can be sped up if strong valid inequalities based on network cuts, so-called cutset inequalities, are used as cutting planes.

In this work, combining methods from RO and MIP, we study the impact of cutset inequalities in solving robust network design problems. We assume that traffic demands are given as a polyhedral set and present facet proofs for different variants of these inequalities in different variable spaces thereby generalizing the deterministic single scenario case. We show that robust cutset inequalities are independent of the chosen recourse scheme (static or dynamic routing). We also report on computational tests showing a significant speed-up for standard solvers such as CPLEX.

Agustín Peconart, Universidad de Buenos Aires (with Irene Lutzaur)
Models for p-cycle network design without cycle enumeration

A major issue for telecommunication networks is to be cost efficient with a high level of quality of service. A network is said survivable if it is operational even if certain component fails, that is, if it is still able to provide communication between sites it connects. Mesh restoration schemes were widely used in the 1970s and early 1980s. Ring-based topologies were introduced in the late 80s based on self-healing rings (SHR) networks technology. Around ten years later appeared the p-cycle networking concept. A single unit capacity p-cycle is a cycle composed of one spare channel on each span it crosses. So a p-cycle provides one protection path for a failed span and it also protects spans that have both end nodes on the cycle but are not themselves on the cycle. The problem we deal with may be seen as the problem of covering with p-cycles all the demands on a 2-connected graph minimizing the total cost. We propose four new compact ILP and MIP models for this problem. They were tested in standard benchmark cases and on a set of networks representing real USA telecommunications networks. Results were competitive with those of previous work and in several cases improved them.

Di Yuan, Linköping University (with Iana Simona)
Cell load coupling in planning and optimization of LTE networks

This presentation considers a system model that characterizes the coupling relation among cell load levels in Orthogonal frequency division multiple access (OFDMA) based mobile networks. The model takes into account non-uniform traffic demand and the load-dependent interference. Solving the system model enables a network-wide performance evaluation in terms of resource efficiency. We provide a summary of the key mathematically properties of the model. The properties allow for designing powerful means for performance assessment in network planning and optimization. The theoretical insights are accompanied by an illustration of applying the model in load balancing of heterogeneous LTE networks via range optimization of pico-cells.

Iqbal Husain, Jaypee University of Engineering and Technology, Guna, M.P, India (with Santosh Sinha)
On second-order Fritz John type duality for variational problems

A second-order dual is introduced. This dual uses the Fritz John type necessary optimality conditions instead of the Karush-Kuhn-Tucker type necessary optimality conditions and thus, does not require a constraint qualification. Weak, strong, Mangasarian type strict-converse, and Huard type converse duality theorems between primal and dual problems are established. A pair of second-order dual variational problems with natural boundary conditions is constructed, and it is briefly indicated that the duality results for this pair can be validated analogously to those for the earlier models dealt with in this research. Finally, it is pointed out that our results can be viewed as...
the dynamic generalizations of those for nonlinear programming problems, already treated in the literature.

Dmitry Drusvyatskiy, Cornell University (with Adrian Lewis)

Identifiability and the foundations of sensitivity analysis

Given a solution to some optimization problem, an identifiable subset of the feasible region is one that captures all of the problem’s behavior under small perturbations. Seeking only the most essential ingredients of sensitivity analysis leads to identifiable sets that are in a sense minimal. In particular, critical cones – objects of classical importance – have an intuitive interpretation as tangential approximations to such sets. We will discuss how this new notion leads to a broad (and intuitive) variational-analytic foundation underlying active sets and their role in sensitivity analysis.

Vladimir Goncharov, Universidade de Evora (with Giovanni Colombo, Boris Mordukhovich)

Well-posedness of minimal time problem with constant convex gradients

We consider a general minimal time problem for the fish industry. As fish arrive on the packing line their weight and quality are registered, thus giving a lookahead on the items to be packed by robots into identical crates with a required minimum total weight. This problem can be modeled as an online bin covering problem with lookahead and bounded space. The focus of this study was to examine the effect of the lookahead on the quality of the packing. That is, if we know the weight of the N next items, how does the solution quality vary with N as we go from an online problem towards the offline problem. We examined the question by implementing a few simple algorithms and testing them on data based on the real world planning problem.

Chris Potts, University of Southampton (with Nicholas Hall, Marc Poenaru)

On-line production planning to maximize on-time orders

We consider a production planning environment with two planning periods. Detailed planning occurs in the first period, where complete information is known about a set of orders that are available at the start of the period. An additional set of orders becomes available at the start of the second planning period. The objective is to maximize the value associated with the proportion of orders that complete processing by their due dates. We derive an upper bound on the competitive ratio of any algorithm, relative to the performance of an algorithm with perfect information about the second set of orders. This bound depends on the relative lengths of the two planning periods. We describe a simple, efficient algorithm that delivers a solution which asymptotically achieves this upper bound ratio as the number of jobs becomes large.

Adil Bagirov, University of Ballarat (with Alia Al Nuaimat, Napsu Karmitsa, Nargiz Sultanova)

Subgradient methods in nonconvex nonsmooth optimization

The subgradient method is known to be the simplest method in non-smooth optimization. This method requires only one subgradient and function evaluation at each iteration and it does not use a line search procedure. The simplicity of the subgradient method makes it very attractive. This method was studied for only convex problems. In this talk we will present new versions of the subgradient method for solving non-smooth nonconvex optimization problems. These methods are easy to implement. The efficiency of the proposed algorithms will be demonstrated by applying them to the well known nonsmooth optimization test problems.

Vladimir Goncharov, Universidad de Evora (with Giovanni Colombo, Boris Mordukhovich)

Well-posedness of minimal time problem with constant convex dynamics via differential properties of the value function

We consider a general minimal time problem with a constant convex dynamics in a reflexive Banach space, which can be seen as a generalized subgradient calculus for sets of subdifferentials it turns out that, after a more detailed analysis, the quasidifferential calculus is a kind of Fréchet-differentiations whose gradients are elements of a suitable Minkowski–Rådström–Hörmander space. Since the elements of the Minkowski–Rådström–Hörmander space are not uniquely determined, we mainly focused our attention to smallest possible representations of quasidifferentials, i.e. to minimal representations.

Online bin covering with lookahead and bounded space

When scheduling on parallel machines, these may exhibit periods of unavailability, with the aim of preemtively scheduling a given set of independent tasks on uniform processors with predefined periods of unavailability, with the aim of minimizing the maximum completion time. This problem is strongly NP-hard. For the case when there is at most one downtime on each machine, we give a simple polynomial Multitask-based approximation algorithm, the schedules of which finish within 1.5 the maximum between the end of the optimal schedule and the latest end of a downtime. Even for same-speed processors, no polynomial algorithm can insure a better worst-case bound unless \(P = NP \). The time complexity of the algorithm is \(O(n log n + (m log m + n) log \{ \sum_{T \neq T} F(X) + y_{max} \}) \), where \(n \) is the number of tasks, \(m \) is the number of processors, \(T \) is the set of tasks, \(F(X) \) is the time needed to process task \(X \) on the slowest processor, and \(y_{max} \) is the earliest end of a downtime.

Truls Flatberg, SIMEF Technology and Society

On-line bin covering with lookahead and bounded space

We consider a problem motivated from a practical packing problem in the fish industry. As fish arrive on the packing line their weight and quality are registered, thus giving a look-ahead on the items to be packed to robots into identical crates with a required minimum total weight. This problem can be modeled as an online bin covering problem with lookahead and bounded space. The focus of this study was to examine the effect of the lookahead on the quality of the packing. That is, if we know the weight of the \(N \) next items, how does the solution quality vary with \(N \) as we go from an online problem towards the offline problem. We examined the question by implementing a few simple algorithms and testing them on data based on the real world planning problem.
Finally, we study the identifying code polyhedron of cycles. In particular we identify their $\{0,1,2\}$ facet defining inequalities.

Petrus Valicov, LaBRI, University of Bordeaux (with Florent Foucaud, Sylvain Gravel, René Nasrasser, Aline Parreau)

Complexity of identifying codes in some subclasses of perfect graphs

An identifying code C of a graph $G=(V,E)$ is a subset of vertices of G such that it is a dominating set and every vertex of G is identified within C. Formally speaking, let $N[v]$ be the closed neighbourhood of a vertex v then $\forall u \in V, N[u] \cap C \neq \emptyset$ and $\forall u, v \in E, N[u] \cap C \neq N[v] \cap C$. The concept of identifying codes was introduced by Karpovskiy et al. in 1998 and since then became a well-studied one.

Determining the size of a minimum identifying code of a graph G (denoted $\gamma(I)$) was previously proved to be NP-complete even for restricted classes of graphs. We prove that the edge-identifying code problem i.e. identifying code problem in line graphs) is NP-complete even for the class of planar bipartite graphs of maximum degree 3 and arbitrarily large girth while the problem can be solved in linear time for graphs of bounded tree-width. As a corollary of this result we derive that the identifying code problem is NP-complete in a restricted subclass of perfect planar graphs. Moreover, for another family of perfect graphs - split graphs, the problem of computing the size of a minimum identifying code remains NP-complete.

Enrico Bartolini, University of Bologna (with Roberto Baldacci, Aristide Mingozzi)

The single-vehicle dial-a-ride problem

The single-vehicle dial-a-ride problem (SV-DARP) is a generalization of the traveling salesman problem with pickup and delivery (TSPPD) where the travel time between the visit of each pickup and the corresponding delivery cannot exceed a maximum ride time. The SV-DARP has several applications, e.g., in door-to-door transportation services for elderly or disabled people. We propose an exact algorithm that is based on a new mathematical formulation of the SV-DARP involving an exponential number of variables that correspond to the possible paths for each pickup-delivery pair. A valid lower bound is computed by a cut-and-column generation procedure that solves the LP relaxation of the mathematical formulation strengthened by valid inequalities. The resulting lower bound and the corresponding dual solution are used to generate all paths having reduced cost not greater than the gap between the lower bound computed and a known upper bound. The resulting integer problem is solved by means of an integer programming solver. We report on preliminary computational experiments over a large set of SV-DARP instances derived from the main TSPPD benchmark sets.

Frank Baumann, TU Dortmund (with Sebastian Berckey, Christoph Buchheim)

Exact algorithms for combinatorial optimization problems with submodular objective functions

Many combinatorial optimization problems have natural formulations as submodular minimization problems over well-studied combinatorial structures. A standard approach to these problems is to linearize the objective function by introducing new variables and constraints, yielding an extended formulation. We propose two new approaches for constrained submodular minimization problems. The first is a linearization approach that requires only a small number of additional variables. We exploit a tight polyhedral description of this new model and an efficient separation algorithm. The second approach uses Lagrangean decomposition to create two subproblems which are solved with polynomial combinatorial algorithms; the first subproblem corresponds to the objective function while the second consists of the constraints. The bounds obtained from both approaches are then used in a branch-and-bound algorithm. We apply our general results to problems from wireless network design and mean-risk optimization. Our experimental results show that both approaches compare favorably to the standard techniques.

Enrico Bartolini, University of Bologna (with Roberto Baldacci, Aristide Mingozzi)

Improved LP-rounding approximation algorithm for k-level uncapacitated facility location

We study the k-level uncapacitated facility location problem, where clients need to be connected with paths crossing open facilities of k types (levels). In this paper we give an approximation algorithm that for any constant k, in polynomial time, delivers solutions of cost at most q_k times OPT, where q_k is an increasing function of k, with $\lim_{k \to \infty} q_k = 3$. We improve the approximation ratio for k-UFL for all $k \geq 3$, in particular we obtain the ratio equal $2.02, 2.14,$ and 2.24 for $k = 3, 4,$ and 5.
Complementarity & variational inequalities

Variational Inequality problems: Analysis and computation

On the analysis and solution of stochastic variational inequalities

We consider the stochastic variational inequality problem in which the mappings contain expectations over a possibly general measure space and associated sets may be unbounded. In this talk, we consider two stage linear complementarity problems. First, we provide tractable verifiable conditions for showing existence that do not necessitate integration. Important such conditions are provided for quasi-variational inequalities and complementarity problems and can further accommodate multi-valued maps and nonconvex sets. Second, we discuss some stochastic approximation schemes for monotone stochastic variational inequalities that incorporate regularization and allow for adaptive modifications of steplengths.

Che-Lin Su, University of Chicago Booth School of Business (with Yu-Ching Lee, Jong-Shi Pang)

Estimation of pure characteristics demand models with pricing

A pure characteristics model is a class of discrete-choice random-coefficients demand models in which there is no idiosyncratic logit error term (e.g., consumer utility). The absence of the logit error term leads to a nonsmooth formulation of the predicted market share equations. As a result, inverting the market share equations for the unobserved product characteristics and estimating the model by using the nested fixed-point approach as proposed in the existing econometrics literature becomes computationally intractable. We introduce lotteries for consumers’ purchase decisions, which are then characterized by a system of complementarity constraints. This reformulation leads to smooth market share equations. Based on this reformulation, we then cast the generalized method of moments (GMM) estimation of a pure characteristics model as a quadratic program with nonlinear complementarity constraints. We present numerical results to demonstrate the effectiveness of our approach.

Huifu Xu, University of Southampton (with Yongchao Liu, Werner Römisch)

Quantitative stability analysis of stochastic generalized equations and applications

We consider a stochastic generalized equation (SGE) where the underlying function is the expected value of a random set-valued mapping. SGE has many applications such as characterizing optimality conditions of a nonsmooth stochastic optimization program and a stochastic equilibrium problem. We derive quantitative continuity of expected value of the set-valued mapping with respect to the variation of the underlying probability measure in a metric space. This leads to the subsequent qualitative and quantitative stability analysis of solution set mappings of the SGE. Under some metric regularity conditions, we derive Aubin’s property of the solution set mapping with respect to a change of probability measure. The technique is applied to study stability of analysis of stationary points of classical one stage and two stage stochastic minimization problems, two stage stochastic mathematical programs with equilibrium constraints and stochastic programs with second order dominance constraints.

Fri 2, MA 313

Conic programming

Warmstarting interior point methods

Organizers/Chair: Jacek Gondzio, University of Edinburgh - Invited Session

Ander Skajaa, Technical University of Denmark (with Erling Andersen, Ting-Yu Ye)

Warmstarting the homogenized self-dual interior point method for linear and conic quadratic problems

We present two strategies for warmstarting primal-dual interior point methods for the homogenized self-dual model when applied to mixed linear and quadratic conic optimization problems. Common to both strategies is their use of only the final (optimal) iterate of the initial problem and their negligible computational cost. This is a major advantage when comparing to previously suggested strategies that require a pool of iterates from the solution process of the initial problem. Consequently our strategies are better suited for users who use optimization algorithms as black-box routines which usually only output the final solution. Our two strategies differ in that one assumes knowledge only of the final primal solution while the other assumes the availability of both primal and dual solutions. We present extensive computational results showing work reductions when warmstarting compared to cold-starting in the range 30 to 75 percent depending on the problem class and magnitude of the problem perturbation. The computational experiments thus substantiate that the warmstarting strategies are useful in practice.

E. Alper Yildirim, Koc University

Warm-start strategies: What matters more?

The problem of solving a sequence of closely related optimization problems arises frequently in sequential optimization algorithms and branch-and-bound-like schemes. The information gained during the solution of an optimization problem can in principle be used to solve a closely related optimization problem with less computational effort. The proper use of this information constitutes warm-start techniques.

Fri.2 253
A new warm-starting strategy for the primal-dual generation method

In this presentation a new warm-starting technique in the context of a primal-dual generation method applied to solve a particular class of combinatorial optimization problems will be addressed. The technique relies on calculating an initial point and on solving auxiliary linear optimization problems to determine the step direction needed to fully restore primal and dual feasibilities after new columns arrive. Conditions on the maximum size of the cuts from the dual perspective and on a suitable initial point will be discussed. This strategy ensures that the duality gap of the warm-start is bounded by the old duality gap and a constant, which depends on the relation between the old and modified problems. Additionally, computational experience using this strategy will be reported.

Efficient cardinality/mean-variance portfolios

We propose a novel approach to handle cardinality in portfolio selection by means of a biobjective cardinality/mean-variance problem, allowing the investor to analyze the efficient tradeoff between return-risk and number of active positions. Recent progress in multiobjective optimization without derivatives allows us to robustly compute (in sample) the whole cardinality/mean-variance efficient frontier, for a variety of data and mean-variance models. Our results show that a significant number of efficient cardinality/mean-variance portfolios can overcome [out-of-sample] the naive strategy, while keeping transaction costs relatively low.

Direct MultiSearch: A robust and efficient approach to multiobjective derivative-free optimization

In practical applications it is common to have several conflicting objective functions to optimize. Frequently, these functions exhibit non-differentiability, are subject to numerical noise or are of black-box type, requiring the use of derivative-free optimization techniques. In 2011 we proposed a multiobjective derivative-free methodology, called Direct MultiSearch (DMS), suited for this type of applications, which generalizes to multiobjective optimization all direct-search methods of directional type. DMS is based on the search/poll framework, but uses the concept of Pareto dominance to maintain a list of non-dominated points and to define a successful iteration. Under the common assumptions used in direct-search for single objective optimization, and without considering any aggregation function for the several objectives involved in the problem definition, we proved that at least one limit point of the sequence of iterates generated by DMS lies in the convex hull of the Pareto front. Extensive computational experience has shown, however, that DMS has an impressive capability of generating the whole Pareto front.

A new warm-starting strategy for the primal-dual generation method

In this presentation a new warm-starting technique in the context of a primal-dual generation method applied to solve a particular class of combinatorial optimization problems will be addressed. The technique relies on calculating an initial point and on solving auxiliary linear optimization problems to determine the step direction needed to fully restore primal and dual feasibilities after new columns arrive. Conditions on the maximum size of the cuts from the dual perspective and on a suitable initial point will be discussed. This strategy ensures that the duality gap of the warm-start is bounded by the old duality gap and a constant, which depends on the relation between the old and modified problems. Additionally, computational experience using this strategy will be reported.

Efficient cardinality/mean-variance portfolios

We propose a novel approach to handle cardinality in portfolio selection by means of a biobjective cardinality/mean-variance problem, allowing the investor to analyze the efficient tradeoff between return-risk and number of active positions. Recent progress in multiobjective optimization without derivatives allows us to robustly compute (in sample) the whole cardinality/mean-variance efficient frontier, for a variety of data and mean-variance models. Our results show that a significant number of efficient cardinality/mean-variance portfolios can overcome [out-of-sample] the naive strategy, while keeping transaction costs relatively low.

Direct MultiSearch: A robust and efficient approach to multiobjective derivative-free optimization

In practical applications it is common to have several conflicting objective functions to optimize. Frequently, these functions exhibit non-differentiability, are subject to numerical noise or are of black-box type, requiring the use of derivative-free optimization techniques. In 2011 we proposed a multiobjective derivative-free methodology, called Direct MultiSearch (DMS), suited for this type of applications, which generalizes to multiobjective optimization all direct-search methods of directional type. DMS is based on the search/poll framework, but uses the concept of Pareto dominance to maintain a list of non-dominated points and to define a successful iteration. Under the common assumptions used in direct-search for single objective optimization, and without considering any aggregation function for the several objectives involved in the problem definition, we proved that at least one limit point of the sequence of iterates generated by DMS lies in the convex hull of the Pareto front. Extensive computational experience has shown, however, that DMS has an impressive capability of generating the whole Pareto front.
Finally, we give an exact polynomial time algorithm for finding the Afair index.

Eleftherios Kazazoudis, Universität Zürich

Finding all generalized Nash equilibria

Often a generalized Nash equilibrium problem has infinitely many solutions and commonly the solution set isn’t connected. The current method is then to only compute the normalized equilibrium in which the Lagrange multipliers are equal. This is only one solution out of a family of Nash equilibria which is a subset of the solution set. For problems with linear constraints an approach is shown where all solutions are given as a union of sets. For this a modified simplex algorithm is used to yield a vertex representation of the equilibrium subsets. The implementation is then used to compute some popular examples.

Nicolas Stier-Moses, Columbia University; Jose Correa, Universidad de Chile. Invited

Competition on networks

This standard decomposition method can get stuck on a sub-optimal solution. This provides a complete and efficient characterization of equilibria for trees and cyclesto get sufficient conditions for equilibrium existence. We show that succinct representations of equilibria and optimal solutions are given as a union of sets. For this an algorithm similar to the algorithm for matroid congestion games is used. For problems with linear constraints an approach is shown where all solutions are given as a union of sets. For this a modified simplex algorithm is used to yield a vertex representation of the equilibrium subsets. The implementation is then used to compute some popular examples.

Evdotia Nikolova, Texas A&M University (with Nicolas Stier-Moses)

A mean-risk model for the stochastic traffic assignment problem

We embark on an agenda to investigate how stochastic travel times and risk aversion transform the traditional traffic assignment problem and its corresponding equilibrium concepts. Moving from deterministic to stochastic travel times with risk-averse users introduces non-convexities that make the problem more difficult to analyze. For example, even computing a best response of a user to the environment is still of unknown complexity. This paper focuses on equilibrium existence and characterization in the different settings of infinitesimal (non-atomic) vs. atomic users and fixed (exogenous) vs. congestion-dependent (endogenous) variability of travel times. Because cost functions are non-additive, solutions need to be represented as path flows. Nevertheless, we show that succinct representations of equilibria and optimal solutions always exist. We also obtain that under exogenous variability of travel times, the worst-case inefficiency of equilibria (the price of anarchy) is exactly the same as when travel time functions are deterministic, meaning that in this case risk-aversion under stochastic travel times does not further degrade a system in the worst-case.

Nicolas Stier-Moses, Columbia University (with Yoni Gur)

The competitive facility location problem in a duopoly: Advances beyond trees

We consider a competitive facility location game on a network where consumers located on vertices wish to connect to the nearest facility. Knowing this, competitors place facilities on vertices to maximize market share. Focusing in the two-player case, we study conditions that guarantee the existence of pure-strategy Nash equilibria for progressively more complicated networks. The case of trees, which extends the classic Hotelling model, is well-studied: equilibria are characterized by centroids of the tree. We find that cycles admit equilibria when there are vertices with sufficiently big demands. For a general graph, we construct a tree of maximal bi-connected components and apply the results for trees and cycles to get sufficient conditions for equilibrium existence. This provides a complete and efficient characterization of equilibria for networks where the central bi-connected component is a vertex or a cycle. We quantify the maximum inefficiency of equilibria with bounds that depend on topological parameters of the network. These bounds rely on trees, which are worst instances because for these games removing an edge from a graph always increases consumer cost.

Fernando Ordonez, Universidad de Chile (with Tomas Spencer)

Stackelberg security games on networks

Stackelberg games have recently been used in security applications to decide optimal patrolling strategies in the presence of strategic adversaries that can monitor the security actions prior to deciding on how and where to attack. By using column generation and other decomposition methods we have been able to solve large enough problems to consider interesting real world situations.

These methods, however, break down as the number of adversarial actions grows. In this work we consider the problem of patrolling a network where we decide the optimal location of fixed guards and the adversaries select a feasible path to attack. We develop decomposition algorithms to solve this problem and study the conditions for this algorithm to be optimal. In particular we show that in the non zero sum case this standard decomposition method can get stuck on a sub-optimal solution.

Evdokia Nikolova, Texas A&M University (with Nicolas Stier-Moses)

Mean-risk model for the stochastic traffic assignment problem

We embark on an agenda to investigate how stochastic travel times and risk aversion transform the traditional traffic assignment problem and its corresponding equilibrium concepts. Moving from deterministic to stochastic travel times with risk-averse users introduces non-convexities that make the problem more difficult to analyze. For example, even computing a best response of a user to the environment is still of unknown complexity. This paper focuses on equilibrium existence and characterization in the different settings of infinitesimal (non-atomic) vs. atomic users and fixed (exogenous) vs. congestion-dependent (endogenous) variability of travel times. Because cost functions are non-additive, solutions need to be represented as path flows. Nevertheless, we show that succinct representations of equilibria and optimal solutions always exist. We also obtain that under exogenous variability of travel times, the worst-case inefficiency of equilibria (the price of anarchy) is exactly the same as when travel time functions are deterministic, meaning that in this case risk-aversion under stochastic travel times does not further degrade a system in the worst-case.

Nicolas Stier-Moses, Columbia University (with Yoni Gur)

The competitive facility location problem in a duopoly: Advances beyond trees

We consider a competitive facility location game on a network where consumers located on vertices wish to connect to the nearest facility. Knowing this, competitors place facilities on vertices to maximize market share. Focusing in the two-player case, we study conditions that guarantee the existence of pure-strategy Nash equilibria for progressively more complicated networks. The case of trees, which extends the classic Hotelling model, is well-studied: equilibria are characterized by centroids of the tree. We find that cycles admit equilibria when there are vertices with sufficiently big demands. For a general graph, we construct a tree of maximal bi-connected components and apply the results for trees and cycles to get sufficient conditions for equilibrium existence. This provides a complete and efficient characterization of equilibria for networks where the central bi-connected component is a vertex or a cycle. We quantify the maximum inefficiency of equilibria with bounds that depend on topological parameters of the network. These bounds rely on trees, which are worst instances because for these games removing an edge from a graph always increases consumer cost.

Fernando Ordonez, Universidad de Chile (with Tomas Spencer)

Stackelberg security games on networks

Stackelberg games have recently been used in security applications to decide optimal patrolling strategies in the presence of strategic adversaries that can monitor the security actions prior to deciding on how and where to attack. By using column generation and other decomposition methods we have been able to solve large enough problems to consider interesting real world situations.

These methods, however, break down as the number of adversarial actions grows. In this work we consider the problem of patrolling a network where we decide the optimal location of fixed guards and the adversaries select a feasible path to attack. We develop decomposition algorithms to solve this problem and study the conditions for this algorithm to be optimal. In particular we show that in the non zero sum case this standard decomposition method can get stuck on a sub-optimal solution.
detection of infeasibility, without solving expensive subproblems with unreliable precision.

Luís Felipe Beneu, University of São Paulo (with Ernesto Birgin, Natânia Krejcí, José María Martínez)

Low order-value approach for solving VaR-constrained optimization problems

In low order-value optimization (LOVO) problems the sum of the smallest values of a finite sequence of q functions is involved as the objective to be minimized or as a constraint. The latter case is considered in the present paper. Portfolio optimization problems with a constraint on the admissible value-at-risk (VaR) can be modeled in terms of LOVO-constrained minimization. Different algorithms for practical solution of this problem will be presented. Global optimization properties of both the problem and the presented algorithms will be discussed. Using these techniques, portfolio optimization problems with transaction costs will be solved.

Marina Andretta, University of São Paulo (with Ernesto Birgin)

Deterministic and stochastic global optimization techniques for planar covering with ellipses problems

We are interested in the problem of planar covering of points with ellipses: we have a set of n demand points in the plane (with weights associated to them), a set of m ellipses (with costs associated to their allocation) and we want to allocate k of these ellipses and cover some demand points to get the maximum profit. The profit is measured by summing the weight of the covered demand points and subtracting the costs of the allocated ellipses. Ellipses can have a fixed angle or each of them can be freely rotated. We present deterministic global optimization methods for both cases, while a stochastic version of the method will also be presented for large instances of the latter case. Numerical results show the effectiveness and efficiency of the proposed methods are presented.

Advances in global optimization V

Chair Zulfiya Gablyullina, Kazan (Volga Region) Federal University

Giancarlo Bigi, Università di Pisa (with Antonio Frangioni, Qinghua Zhang)

Beyond canonical DC programs: The single reverse polar problem

We introduce the single reverse polar problem as a novel generalization of the canonical DC problem (CDC), and we extend to the former the outer approximation algorithms based on an approximated oracle, which have been previously proposed for the latter. In particular, we focus on the polyhedral case (PSRP), in which the problem amounts to a linear program with a single bilinear constraint which renders it nonconvex. Several important classes of nonconvex optimization problems (e.g., bilevel linear, integer and linear complementarity problems) can be easily formulated as a PSRP. In principle, this is true also for CDC, as most nonconvex programs have a DC representation, but the formulation as a DC program is substantially more difficult to derive. Furthermore, the outer approximation algorithms for PSRP do away with some of the core assumptions required by the algorithms for the CDC case: These assumptions are not trivial to satisfy in practice and indeed cannot hold for some important classes of problems.

Simon Korte, Universit"at Wien (with Arnold Neumaier)

Numerical enclosures of solution manifolds at near singular points

This work considers nonlinear real parameter-dependent equations for global optimization. By using interval analysis rigorous enclosures of solution paths dependent on a parameter are determined. Especially the method provides enclosures of (near) singular points of the solution manifold. The method uses an augmentation of the original problem to correct the singularities. Then a low-dimensional variational problem is deduced from the augmented problem which reflects locally the behaviour of the original problem. In particular the singular behaviour is reflected. The application of the method is illustrated with some numerical results to show the efficiency and robustness of the method.

Zulfiya Gablyullina, Kazan (Volga Region) Federal University

Universal measure of the thickness of separator or pseudo-separator for sets of Euclidean space

At present, different approaches to linear separation of the sets in a finite-dimensional Euclidean space are effectively used in medical diagnostics, discriminant analysis, pattern recognition etc. These approaches represent a particular interest from both theoretical and practical point of view.

In this contributed talk we define a separator and pseudo-separator (the margin of unseparated points of sets) for the sets of Euclidean space by help of generalized supporting hyperplanes. We introduce new universal measure for estimation of the thickness of separator (when the sets are disjoint) as well as of pseudo-separator (when the sets are inseparable). The optimization problem maximizing the thickness of the separator and minimizing the thickness of the pseudo-separator is considered.
treme. This generalizes a theorem of Gomory and Johnson for \(k = 1 \), and Cornujoieis and Molinaro for \(k = 2 \).

Siyuan Shen, University of Michigan

Bilevel integer programming and risk-and-return tradeoffs in probabilistic programs with single or multiple chance constraints

Chance-constrained programs (CCP) measure value-at-risk of uncertain events, and impose a pre-given tolerance as an upper bound for such a risk. This paper focuses on problems with discretely distributed right-hand-sides in the chance constraints, and trades off risk and cost by also treating risk tolerances as decision variables. We first consider a problem with a single chance constraint in a bilevel integer setting, in which a leader decides a risk tolerance, to maximize a follower’s objective of a minimization CCP. We show that only a finite number of possible convex relaxations holds matter to the follower’s CCP, and interpret the risk tolerance variable as SOS1 binary variables. The bilevel program is then transformed into a deterministic IP. Similar results are used for solving a minimization problem with multiple chance constraints, where each has a risk tolerance variable and the summation of all tolerances is no more than a fixed budget. We develop an IP reformulation with multiple SOS1 binary variables, and solve it via decomposition and modified Benders cuts.

Christopher Ryan, University of Chicago (with Albert Xin Jiang, Kevin Leyton-Brown)

Computing pure Nash equilibria in symmetric games

We analyze the complexity of computing pure strategy Nash equilibria (PSNE) in symmetric games with a fixed number of actions. We restrict ourselves to “compact” representations, meaning that the number of players can be exponential in the representation size. We give polynomial-time algorithms for finding a sample PSNE and counting the number of PSNEs.

Jesus De Loera, University of California, Davis (with V. Baldoni, N. Berline, M. Koeppe, and M. Vergne)

Top Ehrhart coefficients of knapsack problems

For a given sequence \(a = (a_1, a_2, \ldots, a_N) \) of \(N+1 \) positive integers, we consider the parametric knapsack problem \(a_1 x_1 + a_2 x_2 + \cdots + a_N x_N + \alpha x_{N+1} = t \), where right-hand side \(t \) is a varying non-negative integer. It is well-known that the number \(E_a(t) \) of solutions in non-negative integers \(x_i \) is given by a quasi-polynomial function of \(t \) of degree \(N \). For a fixed number \(k \), we give a new polynomial time algorithm to compute the highest \(k+1 \) coefficients of the quasi-polynomial \(E_a(t) \) represented as step polynomials of \(t \).

Joseph Gubeladze, San Francisco State University

Continuous evolution of lattice polytopes

The sets of lattice points in \(\mathbb{N}^n \), a.k.a. the homogeneous Hilbert bases, model (continuous) convex polytopes. The concept of a normal polytope does not reduce to simpler properties – known attempts include unimodular triangulation and integral Carathéodory properties. To put it in other words, normal polytopes are the monads of quantization of convex shapes. Much work went into understanding special classes of normal polytopes, associated from combinatorial commutative algebra, toric algebraic geometry, integer programming. In this talk we define a space of all normal polytopes. It is generated by certain dynamics, supported by these polytopes. The corresponding evolutionary theory, supported by these polytopes.

Gernot R. Aumann, University of Magdeburg (with Christian Wagner, Robert Weismantel)

Lattice-free integer polyhedra and their application in cutting-plane theory

In this talk I will discuss the class of inclusion-maxial lattice-free integer polyhedra. The class is finite in any dimension (modulo transformations that preserve the integer lattice). This finiteness result was proved in a joint work with Christian Wagner and Robert Weismantel and also, independently, by Benjamin Nill and Günter M. Ziegler. I will also discuss consequences of the result for the cutting-plane theory of mixed-integer linear programs.

Sanghoon Byun, ETH Zürich

On the rank of disjunctive cuts

Let \(L \) be a family of lattice-free polyhedra containing the splits. Given a polyhedron \(P \), we characterize when a valid inequality for the integer hull of \(P \) can be obtained with a finite number of disjunctive cuts corresponding to the polyhedra in \(L \). We also characterize the lattice-free polyhedra \(M \) such that all the disjunctive cuts corresponding to \(M \) can be obtained with a finite number of disjunctive cuts corresponding to the polyhedra in \(L \), for every polyhedron \(P \). Our results imply interesting consequences, related to split rank and to integral lattice-free polyhedra, that extend recent research findings.
A water distribution network is a system containing engineered hydraulic components to provide water supply to consumers. The main task in operating a water distribution network is to choose between different hydraulic components to provide water supply to consumers. A mixed integer program for a variant of the truck and trailer routing problem with time windows

The formal problem we consider comes from a logistic yard background. Containers are located in a yard and have to be moved at certain times, e.g., from a storage area to a production line and then later back to a pick-up area or to an external site. For these operations a pool of truck units and special trailers is available. The tasks should be fulfilled within certain time windows at the least possible cost.

Our approach is to define this problem as a mixed integer program and solve it with the MILP-solver SCIP. We define two networks—one for truck flows and one for trailer flows. We couple the shared decisions so that the optimization model persists of one problem.

Arnaud den Boer, Centrum Wiskunde & Informatica [with Bert Zwart]
Simultaneously learning and optimizing in dynamic pricing and revenue management

Dynamic pricing refers to practices where the selling price of a product is not a fixed quantity, but can easily be adjusted over time and adapted to changing circumstances. In an online sales channel, the availability of digital sales data enables firms to continuously learn about consumer behavior, and optimize pricing decisions accordingly. As a result, estimation and optimization can be considered simultaneously; the problem then is not only to optimize profit, but also to optimize the ‘learning process’. A key question in these problems is whether a learning-by-doing approach – always choosing the optimal price w.r.t. current estimates – has a good performance, or whether the decision maker should actively experiment in order to improve his/her knowledge on consumer behavior.

We show that when finite inventory is sold during finite selling seasons, learning-by-doing performs well, and give a bound on the regret (which quantifies the cost for learning). In contrast, in a setting with no inventory restrictions, active experimentation is necessary for optimal learning. We offer an explanation why in these two models, the cost-for-learning behaves differently.

James Davis, Cornell ORIE [with Guillermo Gallego, Huseyin Topaloglu]
Assortment optimization under variants of the nested logit model

We study a class of assortment optimization problems where customers choose among the offered products according to the nested logit model. There is a fixed revenue associated with each product. The objective is to find an assortment of products to offer that maximizes the expected revenue per customer. There are several variants of the nested logit model and the tractability of the optimization problem depends on which variant is used. The problem is solvable when the range of the nest dissimilarity parameters are between zero and one, and nests do not contain a no purchase option. By removing either of these restrictions the problem becomes NP-hard. However, in these other variants we are able to develop algorithms with desirable worst-case performance guarantees. Of particular note is a data independent approximation algorithm when the nest dissimilarity parameters are restricted to be between zero and one. The algorithms we propose across all variants perform well in computational experiments, generating solutions within a fraction of a percent of optimal.
Due to the difficulty of solving these problems directly, most approaches in the literature focus on approximations or relaxations. In our research we aim at solving them to global optimality. The solver used in the computational test implements a spatial branch and bound algorithm to find global optimality for factorable MINLPs.

Concerning nonconvexities and integrals as well as the size of networks and time horizon, the general-purpose solver cannot find a primal solution within 24 hours. In this talk, we present several primal heuristics creating fully feasible solutions.

Harald Held, Siemens AG

Challenges and requirements for MINLPs in industrial applications

Practitioners often face the question how to operate, e.g., a plant, a network, or a manufacturing process. In many cases, modeling this as a mathematical optimization problem supports the operator to find a good, ideally best, operating decision. Since there are many well-developed mixed-integer linear programming (MILP) solvers, this is what has so far typically been used to provide an operator with good decisions in reasonable time.

However, in many industrial applications, describing a system’s physical behavior involves non-linear functions. In these cases, simplification to an MILP could mean a significant loss of accuracy, and a mixed-integer non-linear programming (MINLP) model would be more appropriate. Thanks to recent algorithmic advances and software implementations, the integration of MINLP models into industrial applications has become more viable, yet some challenges remain.

In this talk, we give a few examples of industrial applications where MINLPs can be employed, and demonstrate some challenges and requirements to gain an operator’s acceptance.

Carlos Abad, Columbia University (with Garud Iyengar)

Portfolio selection

We report numerical results that show that our portfolio selection algorithm is very efficient, and is at least two orders of magnitude faster than the state of the art general purpose solver for all practical algorithms.

In recent works of the authors a nonsmooth Newton was developed in an abstract framework and applied to certain finite dimensional optimization problems with $C^{1,1}$ data. The $C^{1,1}$ structure stems from the presence of an optimal value function of a lower level problem in the objective or the constraints. Such problems arise, for example, in semi-infinite programs under a reduction approach with strict complementarity and in generalized Nash equilibrium models. Using results from parametric optimization and variational analysis, the authors worked out in detail the concrete Newton schemes for these applications and discussed wide numerical results for [generalized] semi-infinite problems. This Newton scheme requests the exact computation of stationary points of a lower level problem, which is problematic from a numerical point of view. In this talk we discuss the influence of inexact stationary points on the feasibility and the convergence properties of the Newton scheme. We will make use of a perturbed Newton scheme and give concrete estimates of the convergence radius resp. rate for the perturbed scheme.

Bernd Kummer, TU Berlin

Portfolio selection problems with multiple CVaR constraints

In this talk, we give a few examples of industrial applications where MINLPs can be employed, and demonstrate some challenges and requirements to gain an operator’s acceptance.

Carlos Abad, Columbia University (with Garud Iyengar)

Portfolio selection with multiple spectral risk constraints

We propose an iterative algorithm to efficiently solve the portfolio selection with multiple spectral risk constraints. Since the conditional value at risk (CVaR) is a special case of the spectral risk function, our algorithm solves portfolio selection problems with multiple CVaR constraints. In each step, the algorithm solves a very simple separable convex quadratic program. The algorithm extends to the case where the objective is a utility function with mean return and a weighted combination of a set of spectral risk constraints, or maximum of a set of spectral risk functions. We report numerical results that show that our proposed algorithm is very efficient, and is at least two orders of magnitude faster than the state of the art general purpose solver for all practical instances.

Diehard Klatte, University of Zurich (with Bernd Kummer)

Metric regularity versus strong regularity for critical points of nonlinear programs

In this talk, we study perturbed nonlinear optimization problems in a setting which includes standard nonlinear programs as well as cone constrained programs. We discuss conditions for metric regularity of the critical point system, or, equivalently, for the Aubin property of the critical point map. Our focus is on conditions under which the critical point map has the Aubin property if and only if it is locally single-valued and Lipschitz, or, equivalently, metric regularity and strong regularity coincide. In particular, we show that constraint nondegeneracy and hence uniqueness of the multiplier is necessary for the Aubin property of the critical point map.

Stephan Böhlke, Institute of Data Analysis and Process Design, Zurich University of Applied Sciences (with Diehard Klatte)

Influence of inexact solutions in a lower level problem on the convergence behavior of a nonsmooth Newton method

In recent works of the authors a nonsmooth Newton was developed in an abstract framework and applied to certain finite dimensional optimization problems with $C^{1,1}$ data. The $C^{1,1}$ structure stems from the presence of an optimal value function of a lower level problem in the objective or the constraints. Such problems arise, for example, in
We show that even in that situation one can still assure (under practical hypotheses) that every accumulation point x^* of the sequence x of serious iterates is approximate critical in the sense that

$$
\theta \in \partial f(x^*) + \partial \delta(B),
$$

where B is the unit ball, and where the final precision $\delta(e)$ depends on the error precision e of function and subgradient values. In the realm of convex bundling results of this flavor have been pioneered by Hintermüller and Kiwiel. The principal new difficulty in non-convex bundling is to provide a substrate for the convex cutting plane mechanism, and this problem was solved by the author for a large class of problems including all instances of practical interest. Here we discuss the more specific case of downshifted tangents, an oracle which we used successfully in a variety of applications in automatic control.

Frank Fischer, Chemnitz University of Technology (with Christoph Helmberg)

An asynchronous parallel bundle method for Lagrangian relaxation

Lagrangian relaxation is frequently used for decomposing discrete optimization problems and the standard parallel approach would solve these problems in parallel. Here, we propose a different approach that optimizes, asynchronously in parallel, subspaces of multipliers that are selected dynamically. The algorithm starts several parallel processes and in a kind of parallel coordinated descent each process selects a subspace with large predicted decrease. Then each process optimizes the associated multipliers independently until a certain improvement level has been achieved and writes its solution back to the global data. Because this improvement may lead to increased violation of other constraints, the algorithm automatically detects and tracks these dependencies and respects them in future subspaces selections ensuring global convergence. Preliminary computational results show that the presented approach may be turned into a viable alternative for applications of practical relevance.

Fri. 2.MA 004

Nonlinear programming

Fast gradient methods for nonlinear optimization and applications

Organizer/Chair William Hager, University of Florida - Invited Session

Zhang Hongchao, Louisiana State University (with William Hager)

An adaptive preconditioned nonlinear conjugate gradient method with limited memory

An adaptive preconditioner is developed for the conjugate gradient method based on a limited memory BFGS matrix. The preconditioner is only used when the iterates lie in an ill-conditioned subspace, otherwise, the usual conjugate gradient algorithm is applied. The resulting algorithm uses less memory and has lower computational complexity than the standard L-BFGS algorithm, but performs significantly better than either the conjugate gradient method or the L-BFGS quasi-Newton method for the CUTEr test problems.

A sequential quadratic programming method without a penalty function or a filter for general nonlinear constrained optimization

We present a primal-dual interior-point method without using a penalty function or a filter for solving the constrained optimization with general equality and inequality constraints. The method combines the interior-point approach with a sequential quadratic programming without using a penalty function or a filter. The algorithm is terminated with an approximate KKT point or is stopped with a singular stationary point or an infeasible stationary point. We adopt several numerical techniques for solving subproblems and updating strategy to ensure our algorithm suitable for large scale problems. The numerical experiments with CUTEr collection show that the algorithm is efficient.

Gerardo Tarudò, University of Naples Federico II (with Roberta de Asmundis, Daniela di Serafino)

On the use of spectral properties of the steepest descent method

In the last two decades the innovative approach of Barzilai and Borwein (BB) has stimulated the design of faster gradient methods for function minimization, which have shown to be effective in applications such as image restoration. The surprising behaviour of these methods has been only partially justified, mostly in terms of the spectrum of the Hessian matrix. On the other hand the well known ability of the Cauchy Steepest Descent (SD) to reveal second order information about the problem has been little exploited to modify the method in order to design more effective gradient methods. In this work we show that, for convex quadratic problems, second order information provided by SD can be exploited to improve the usually poor practical behaviour of this method, achieving computational results comparable with those of BB, with the further advantage of monotonic behaviour. Our analysis also provides insight into the relaxed gradient method by Raydan and Svaiter.

Fri. 2.H 1012

Nonconvex optimization and applications

Organizer/Chair Dominikus Noll, Université de Toulouse - Invited Session

Dominikus Noll, Université de Toulouse

Non-convex bundle algorithm with inexact sub-gradient and function values

We discuss a non-convex bundle method where function values and subgradients are available only up to an error ϵ, which remains unknown to the user. We show that even in that situation one can still assure (under practical hypotheses) that every accumulation point x^* of the sequence x of serious iterates is approximate critical in the sense that

$\theta \in \partial f(x^*) + \partial \delta(B)$,
Optimization in energy systems

Frt. 2 MA 550

Generation and expansion problems
Chair: Roman Cada, University of West Bohemia

Michael Lindahl, Technical University of Denmark (with Niels-Christian Fink Bagger)

Discrete optimization support system for the collection grid in large offshore wind parks

Offshore wind parks have in the recent years started to grow significantly in size making the task of deciding on how to build the cable collection grid a lot more complex. The goal is to connect all turbines down to a substation by using different types of cables. The objective is then to minimize the cost by minimizing the amount of cables, connection points, and loss of power. The project is made in collaboration with DONO Energy, which is market leader in building offshore wind parks. A mathematical representation of the problem is given which is turned into a MIP model by linear approximations of the quadratic power losses. It is shown how the problem is simplified by removing uninteresting connections. In order to solve the problem within a reasonable time the local branching framework is used. The considered test case is the Anholt Project which is a large offshore wind park including 111 wind turbines and 1 substation. It is shown how this can be used, not only to reduce cost, but also to easily explore different scenarios and see how the solution is affected if different constraints are added or other properties are changed.

Stefano Oginio, University of Bergamo (with Marida Bertocchi, Lauraena Escudero, Maria Teresa Vespuci)

A multistage stochastic model for the electric power generation capacity expansion problem of a price-taker power producer in a multi-year horizon

We consider the optimal electric power generation capacity expansion problem over a multi-year time horizon of a price-taker power producer, who has to choose among different production technologies, while taking into account regulatory constraints on CO2 emissions, incentives to generation from renewable energy sources and risk due to uncertainties of prices and of market share. A multi-stage stochastic MILP model is developed for determining the evolution of the generation system along the time horizon, with the aim of maximizing the expected total profit, subject to a set of constraints to be satisfied for each scenario. Additionally, the maximization of the expected profit is subject, alternatively, to first-order stochastic dominance constraints (sdc), for a set of profiles given by pairs of threshold profit values and probability of not reaching them, and to second-order sdc, whose set of profiles is given by pairs of threshold profit values and bounds on the expected shortfalls on reaching the thresholds. Provisional results are reported of a computational comparison between the following strategies: parameters’ expected value, risk neutral and first- and second-order sdc.

Roman Cada, University of West Bohemia

Optimizing nuclear fuel reload patterns

A nuclear reactor operates in cycles. At the end of every cycle a fraction of spent fuel assemblies is to be replaced by fresh ones. A new collection of fuel assemblies is to be distributed in the reactor core. It is necessary to meet all safety criteria and also minimize costs and maximize production of electrical energy.

We present several possible mathematical models which are suitable for attacking the problem. In general it is a multicriteria nonlinear combinatorial optimization problem. We will also discuss a problem of multicycle optimization in which several consecutive fuel cycles are to be optimized. Finally we present results obtained by the Athena code for attacking the problem. In general it is a multicriteria nonlinear optimization problem with pointwise mixed control-state constraints.

Elliptic optimal control problems with pointwise mixed control-state constraints are considered. To solve the problem numerically, multigrid techniques are implemented. The numerical performance and efficiency of the multigrid strategies are discussed and interpreted in comparison with other existing numerical methods.

Caroline Lübhard, Humboldt-Universität zu Berlin (with Michael Hintermüller, Ronald Hoppe)

Optimal control of elliptic variational inequalities: A mesh-adaptive finite element solver

A wide range of optimization problems arise originally in a non-discrete function space setting which has to be discretized in order to find an approximate solution. It is the idea behind mesh-adaption techniques, to find a discrete space that fits best to the unknown continuous solution. While adaptive methods are well-established in solvers for partial differential equations, only a few work has been done for optimal control problems.

We consider the optimal control of an elliptic variational inequality, a problem class with a challenging analytic and algorithmic background on the one hand, and a wide range of applications on the other hand. Moving on the border line between numerical analysis and computational optimization, we show the principle of goal oriented error estimation and the application of the goal oriented strategy to elliptic control problems, as well as the discrete setting, present a numerical solver for the mathematical problem with equilibrium constraints (MPEC) and analyze the benefit of our adaptive solver compared to a method working on a uniformly refined mesh.

Duy Luong, Imperial College London (with Panos Parpas, Daniel Rueckert, Berc Rustem)

Optimization algorithms for hierarchical problems, with application to nanomaterials

Optimization algorithms typically require gradients of the objective and constraints; however, computing accurate gradients can be computationally expensive. We discuss the implications of using inaccurate gradients in the context of the multilevel optimization algorithm MG/Opt. MG/Opt recursively uses a hierarchy of models, of less fidelity but also less cost, to obtain search directions for inner-level models. However, MG/Opt requires the gradient on the fine level in order to define the recursion. We discuss the impact of gradient errors on the multilevel recursion in MG/Opt under various assumptions about the source of the error in the gradients. We illustrate these impacts both analytically and numerically for a number of model problems.

Robert Lewis, College of William and Mary (with Stephen Nash)

Using inexact gradients in a multilevel optimization algorithm

Optimization algorithms typically require gradients of the objective and constraints; however, computing accurate gradients can be computationally expensive. We discuss the implications of using inaccurate gradients in the context of the multilevel optimization algorithm MG/Opt. MG/Opt recursively uses a hierarchy of models, of less fidelity but also less cost, to obtain search directions for inner-level models. However, MG/Opt requires the gradient on the fine level in order to define the recursion. We discuss the impact of gradient errors on the multilevel recursion in MG/Opt under various assumptions about the source of the error in the gradients. We illustrate these impacts both analytically and numerically for a number of model problems.

Robert Lewis, College of William and Mary (with Stephen Nash)
Structured matrix optimization

Ewout van den Berg, Stanford University (with Emmanuel Candès)

Phase-retrieval using explicit low-rank matrix factorization

Recently, Candès et al. proposed a novel methodology for phase retrieval from magnitude information by formulating it as a matrix completion problem. In this work we develop an algorithm aimed at solving large-scale instances of this problem. We take advantage of the fact that the desired solution is of rank one and use low-rank matrix factorization techniques to attain considerable speed-up over existing approaches. We consider phase recovery in both the noisy and noiseless setting and study how various design choices affect the performance and reliability of the algorithm.

Ziad Harchaoui, INRIA (with Minslao Dukkipati, Jérôme Malick)

Lifted coordinate descent for learning with Gaussian regularization

We study learning problems with general sparsity-inducing matrix regularization penalties. We formulate the matrix regularizers as Gaussian functions, and, using their structure, we lift the optimization problem in a higher space where we propose to apply a coordinate descent algorithm. Our framework allows to efficiently tackle difficult matrix-regularized objectives, e.g., with a trace-norm, or a group trace-norm, regularization penalty. We present experimental results on synthetic datasets and on real-world large-scale computer vision datasets. Our algorithm is competitive and often outperforms existing approaches on large-scale problems.

Indrjit Dhillon, UT Austin (with Cho-Jui Hsieh, Pradeep Ravikumar, Matyas Sustik)

Sparse inverse covariance matrix estimation using quadratic approximation

The L1-regularized Gaussian maximum likelihood estimator has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix, or alternatively the underlying graph structure of a Gaussian Markov Random Field, from very limited samples. We propose a new algorithm for solving the resulting optimization problem which is a regularized log-determinant program. In contrast to other state-of-the-art methods that largely use first order gradient information, our algorithm is based on Newton’s method and employs a quadratic approximation, but with some modifications that leverage the structure of the sparse Gaussian MLE problem. We present experimental results using synthetic and real application data that demonstrate the considerable improvements in performance of our method when compared to other state-of-the-art methods.

Target oriented optimization under uncertainty

Jin Qi, National University of Singapore (with Patrick Jaillet, Melvyn Sim)

Routing optimization with deadlines under uncertainty

We study a routing problem with deadlines imposed at a given subset of nodes, and uncertain arc travel times characterized by distributional information set. Our model is static in the sense that the routing decision is made prior to the realization of uncertain travel times. To find an optimal routing policy such that arrival times at the nodes “effectively” respect deadlines, we first introduce a new measure named Lateness Index to evaluate the performance of meeting deadlines. It is defined as the minimum risk tolerance parameter such that its worst-case certainty equivalent arrival time is no larger than the deadline prescribed at the corresponding node. Instead of specifying the exact probability distribution of the uncertain arc travel time, we assume its true distribution lies in a family of distributions, which is characterized by some descriptive statistics. We show that some special cases of our problem, such as when only one node has a deadline requirement, are polynomially solvable. And for the general case, we can develop computationally more “efficient” algorithms to find exact optimal routing policy by only solving a series of deterministic routing problems.

Sparse optimization & compressed sensing

Wenliang He, National University of Singapore (with Patrick Jaillet, Melvyn Sim)

Multiple objective satisfying under uncertainty

We propose a class of functions, called multiple objective satisfying (MOS) criteria, for evaluating the level of compliance of a set of objectives in meeting their targets collectively under uncertainty. The MOS criteria include the targets’ achievement probability (success probability criterion) as a special case and also extend to situations when the probability distribution is not fully characterized. We focus on a class of MOS criteria that favors diversification, which has the potential to mitigate severe shortfalls in scenarios when an objective fails to achieve its target.

Stochastic optimization

Hans Hansen, INRIA, Research Centre Saclay, University Paris-Sud

Information-geometric optimization

The ascent is based on a time-dependent transformation of the original distribution and a parametrized family of probability distributions on this search space, we derive in a generic way a stochastic search method. The derivation is based on invariance principles, keeping the number of arbitrary decisions to a minimum. If the parametrization of the probability distribution is a smooth manifold, we derive a canonical ODE and the related IGO flow that conducts a natural gradient ascent on the manifold. The ascent is based on a time-dependent transformation of the original objective function. Via discretization, a corresponding search algorithm can be derived. Depending on the given family of probability distributions, several well-known algorithms are recovered.

Information-geometric optimization

Nikolaus Hansen, INRIA, Research Centre Saclay, University Paris-Sud (with Anne Auger, Tann Ollivier)

How crossover helps in pseudo-boolean optimization

Understanding the impact of crossover on performance is a major problem in the theory of genetic algorithms (GAs). In this talk I present new insights on working principles of crossover by analyzing the performance of crossover-based GAs on the simple functions OneMax and Jump. First, the potential speedup by crossover is assessed when combined with a fitness-invariant bit shuffling operator that simulates a linkage of independent evolution on a function of unitation. Theoretical and empirical results show drastic speedups for both functions. Second, a simple GA without shuffling is considered and the interplay of mutation and crossover on Jump is investigated. If the crossover probability is small, subsequent mutations create sufficient diversity, even for very small populations. Contrarily, with high crossover probabilities crossover tends to lose diversity more quickly than mutation can create it. This has a drastic impact on the performance on Jump. The theoretical findings are complemented by Monte Carlo simulations on the population diversity.

Stochastic algorithms

Sung Luo, University of Tsukuba (with Makio Shigeno, Mingchao Zhang)

A nonadaptive probabilistic group testing algorithm for detecting consecutive positives of linear DNA library

Identifying and isolating clones containing a particular segment of a specific DNA sequence of interest play important roles in molecular biology. Group testing is one of useful techniques to reduce the number of nonadaptive tests and screening necessary for determining which clones contain the segment. A testing algorithm is proposed for a case where clones are placed in a linear order corresponding to their appearance in the linear DNA and where the DNA library is constructed by consecutive clones. The proposed algorithm, which is based on a computationally feasible stochastic model of consecutive positive clones, efficiently identifies the consecutive positives of a linear DNA library.

Cluster-based search with an arbitrary objective function and a parametrized family of probability distributions on this search space, we derive in a generic way a stochastic search method. The derivation is based on invariance principles, keeping the number of arbitrary decisions to a minimum. If the parametrization of the probability distribution is a smooth manifold, we derive a canonical ODE and the related IGO flow that conducts a natural gradient ascent on the manifold. The ascent is based on a time-dependent transformation of the original objective function. Via discretization, a corresponding search algorithm can be derived. Depending on the given family of probability distributions, several well-known algorithms are recovered.

Nikolaus Hansen, INRIA, Research Centre Saclay, University Paris-Sud (with Anne Auger, Tann Ollivier)

Information-geometric optimization

Given an arbitrary search space with an arbitrary objective function and a parametrized family of probability distributions on this search space, we derive in a generic way a stochastic search method. The derivation is based on invariance principles, keeping the number of arbitrary decisions to a minimum. If the parametrization of the probability distribution is a smooth manifold, we derive a canonical ODE and the related IGO flow that conducts a natural gradient ascent on the manifold. The ascent is based on a time-dependent transformation of the original objective function. Via discretization, a corresponding search algorithm can be derived. Depending on the given family of probability distributions, several well-known algorithms are recovered.

Madeleine Theile, TU Berlin (with Timo Kötzing, Dirk Sudholt)

How crossover helps in pseudo-boolean optimization

Understanding the impact of crossover on performance is a major problem in the theory of genetic algorithms (GAs). In this talk I present new insights on working principles of crossover by analyzing the performance of crossover-based GAs on the simple functions OneMax and Jump. First, the potential speedup by crossover is assessed when combined with a fitness-invariant bit shuffling operator that simulates a linkage of independent evolution on a function of unitation. Theoretical and empirical results show drastic speedups for both functions. Second, a simple GA without shuffling is considered and the interplay of mutation and crossover on Jump is investigated. If the crossover probability is small, subsequent mutations create sufficient diversity, even for very small populations. Contrarily, with high crossover probabilities crossover tends to lose diversity more quickly than mutation can create it. This has a drastic impact on the performance on Jump. The theoretical findings are complemented by Monte Carlo simulations on the population diversity.
Game theoretic concepts in telecommunications

Chair Fabian Medel, Universidad de Chile

Fabian Medel, Universidad de Chile (with Alejandro Jofre)

Optimal regulation with non discriminating prices in mobile two way access, with call externalities and heterogeneous cost functions

The existence of collusion and exclusion in mobile markets, coupled with increased supply in the range of services to the costumers, has led regulators to confront a difficult problem in the search for tools to promote competition in this market. In this sense, there was an oligopolistic market model with multiple wireless services, different types of users and the presence of a market regulator. The models used is non-linear and market equilibrium in the subgame perfect equilibria among firms (MPEC). Strategic behavior of firms contemplates Nash equilibrium and predatory interactions, encompassing most models existing in the literature. The result was a detailed analysis of regulatory actions of the non-discriminatory call prices of the firms and the impact on social welfare. Obtaining the optimal strategy by the regulator would be through a substantial reduction of access charges, even below the marginal cost of service, facilitating the entry of new competitors by a fair use of the infrastructure of third parties.

Jonathan Krollkowsky, Zuse Institute Berlin (ZIB) (with Anastasios Giovannidis, Tobias Ranks)

Game theoretic model for the downlink in cellular mobile networks: Nash equilibria and algorithmic complexity

In the downlink of multicell wireless networks, a number of mobile stations (MSs) should be assigned to a set of spatially distinct base stations (BSs). Two questions are addressed in our work: Which MS is served by which BS, and how much power it consumes. The aim is to provide sufficient Signal-to-Interference-Noise-Ratios (SINR) with constraints on the power emissions per BS.

A central optimization of these parameters is costly. To this aim we propose a decentralized algorithm based on game theory, whose outcome is a pure-strategy Nash equilibrium (PNE).

The MSs aim at non-cooperatively optimizing their payoff functions. All information necessary to each MS is its channel quality from all BSs and the current strategy choices of the other MSs.

This problem is more involved than already investigated models of uplink communication scenarios. We show that a PNE cannot be ensured even in small cases, when considering interference between all pairs of BSs and MSs. Simplification leads to versions of the problem as congestion games with player specific payoff functions, thereby showing the existence of PNEs.

Optimization in infinite dimensional spaces

Organizer/Chair Alexander Zaslavski, The Technion - Israel Institute of Technology - Invited Session

Joel Blot, Université Paris 1 Panthéon-Sorbonne

Discrete-time Pontryagin principles and ordered Banach spaces

We provide new Pontryagin principles in infinite horizon and discrete time for systems governed by a difference inequality, $x_{n+1} \leq f(x_n, u_n)$, where the order is defined by a cone in an infinite-dimensional Banach space. To obtain our results, we use a method of reduction to finite horizon, and special properties of ordered Banach spaces.

Tomoko Dohi, University of Architecture and Civil Engineering (with Robert Bao, Duman Qin)

Runge-Kutta methods for differential equations with variable time of impulses

In the paper Runge-Kutta methods of order p are used to approximate the solutions of differential equations with variable times of impulses in general form. We prove that under natural assumption these methods have order of approximation $O(p^3)$. Illustrative examples are provided. Several strategies to find the jump point of the approximate solution for order two and four Runge-Kutta methods are tested. The models studied can be applied in some control problems of population dynamics and mathematical economics.

Elena Resmerita, Alpen-Adria University (with Klaus Frick, Dirk Lorenz)

A discrepancy principle for the augmented Lagrangian method

The augmented Lagrangian method received much attention recently (also under the name Bregman iteration), as an approach for regularizing inverse problems. This work shows convergence and convergence rates for this method when a special a posteriori rule, namely Morozov’s discrepancy principle, is chosen as a stopping criterion. As potential fields of application we study implications of these results for particular examples in imaging, that is total variation regularization as well as L^q penalties with $q \in [1, 2]$.

Network congestion control with Markovian multipath routing

This paper consider an integrated model for TCP/IP protocols with multipath routing. The model combines a network utility maximization for rate control based on end-to-end queuing delays, with a Markovian traffic equilibrium for routing based on total expected delays. We prove the existence of a unique equilibrium state which is characterized as the solution of an unconstrained strictly convex program. A distributed algorithm for solving this optimization problem is proposed, with a brief discussion of how it can be implemented by adapting the current Internet protocols.

Ernő Csetnek, Chemnitz University of Technology (with Radu I. Bot, Gert Wanka)

Duality in convex optimization

Organizer/Chair Rados Iosif Bat, Chemnitz University of Technology - Invited Session

Ernst Creltes, Chemnitz University of Technology (with Rado Bat)

Conjugate duality and the control of linear discrete systems

We consider a constrained minimization problem, the function to be minimized being a convex one with values in the extended real line, and the set of constraints is governed by a set valued operator with convex graph. We attach a dual problem to it and we deliver regularity conditions guaranteeing the equality of the optimal objective values of the two problems and we discuss also the existence of optimal solutions. The results are applied to the control of linear discrete systems.

André Heinrich, Chemnitz University of Technology (with Rado I. Bat, Ger Wanka)

The support vector machines approach via Fenchel-type duality

Supervised learning methods are powerful techniques to learn a
function from a given set of labeled data, the so-called training data. In this talk the support vector machines approach for classification and regression is investigated under a theoretical point of view that makes use of convex analysis and Fenchel duality. Starting with the corresponding Tikhonov regularization problem, reformulated as a convex optimization problem, we introduce a conjugate dual problem to it and prove that, whenever strong duality holds, the function to be learned can be expressed via the optimal solutions of the dual problem. Corresponding dual problems are then derived for different loss functions for the classification task as well as for the regression task. The theoretical results are applied by numerically solving an image classification task originating from a quality control problem a supplier of the automotive industry was faced with. The accuracy of the resulting classifiers demonstrate the excellent performance of support vector classification based on this high dimensional real-world data.

Vincenzo Bonifaci, IASI-CNR, Italy (with Varma Girish, Kurt Mehlhorn)
Organizer/Chair Nicole Megow, Technische Universität Berlin. Invited Session
Routing and shortest paths

Sorin-Mihai Grad, Chemnitz University of Technology (with Radu Ioan Bit, Gert Wanka)

Classical linear vector optimization duality revisited
We introduce a vector dual problem that successfully cures the trouble encountered by some classical vector duals to the classical linear vector optimization problem in finite-dimensional spaces. This new-old vector dual is based on a vector dual introduced by Boţ and Wanka for the case when the image space of the objective function of the primal problem is partially ordered by the corresponding nonnegative orthant, extending it for the framework where an arbitrary nontrivial pointed convex cone partially orders the mentioned space. The vector dual problem we propose has, different to other recent contributions to the field which are of set-valued nature, a vector objective function. Weak, strong and complete duality for this vector dual problem are delivered and it is compared with other vector duals considered in the same framework in the literature. We also extend a well-known classical result by showing that the efficient solutions of the classical linear vector optimization problem coincide with its properly efficient solutions (in any sense) when the image space is partially ordered by a nontrivial pointed closed convex cone.

Jannik Matuschke, TU Berlin (with Tobias Harks, Felix König)

Routing and shortest paths

There are some very intriguing open problems in online optimization. Examples are the k-server conjecture (deterministic and randomized) and the dynamic search tree conjecture (dynamic optimality conjecture). Both problems are in the class of metrical service systems (online shortest path problems). It is widely believed that dynamic search trees are constant competitive. We show some strong techniques for proving constant competitiveness of metrical service systems and develop a universal theory of competitive analysis of metrical service systems. In particular, we apply this to the generalized 2-server problem and show that the generalized work function algorithm is constant competitive in any metric space, as was conjectured by Koutsoupias and Taylor (2004).

Nicole Megow, Technische Universität Berlin. Invited Session
Routing and shortest paths

On the theta number of powers of cycle graphs
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981).

We give a closed formula for Lovász’s theta number of the powers of cycle graphs C_{2r}^d of and of their complements, the circular complete graphs K_{2r}/d. As a consequence, we establish that the circular-chromatic number of a circular-perfect graph is computable in polynomial time, which extends the above result from the chromatic number to the circular-chromatic number, and from perfect graphs to the superclass of circular-perfect graphs.

Silvia Bianchi, Universidad Nacional de Rosario (with Mariana Escalante, Maria Montelar)
The disjunctive rank of the stable set polytope of web graphs
We consider the behavior of the disjunctive operator defined by Balas, Ceria and Cornuéjols, over the clique relaxation of the stable set problem on webs. The disjunctive rank of a graph is the minimum number of steps of this procedure needed to obtain the convex hull of integer solutions in it. In this work we obtain the disjunctive rank of all webs, when starting from the clique relaxation. We find that almost every web W^r_r attain the upper bound of its disjunctive rank, i.e. k, except for those of the form W^r_{k+r}, with $r = 0$ or $r = 1$, that requires $k − 2$ or $k − 1$ steps, respectively. Our results allow us to obtain bounds for the disjunctive rank of a larger class of graphs such as quasi-line graphs and their complements, the near-bipartite graphs.

Luis Torres, Escuela Politécnica Nacional (with Paola Teimol)
On the Chvátal-closure of the fractional set covering polyhedron of circular matrices
The set covering polyhedron $Q^*(C)$ related to circulant 0,1-matrices has been the object of several recent studies. It has been conjectured that the Chvátal-rank of its fractional relaxation $Q(C)$ is equal to 1. In 2009, Argiroffo and Bianchi characterized all vertices of $Q(C)$. In this talk we present the results obtained so far for some classes of vertices. In particular, our construction yields a counterexample to a conjecture that all facets of $Q^*(C)$ are given by boolean, nonnegative, and so-called minor inequalities having only coefficients in $\{1, 2\}$. At the same time, we motivate why a weaker version of this conjecture might still hold.

Franklin Djeumou Fomeni, Lancaster University (with Adam Letchford)
Nonlinear combinatorial optimization problems II
On the theta number of powers of cycle graphs
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981).

We give a closed formula for Lovász’s theta number of the powers of cycle graphs C_{2r}^d of and of their complements, the circular complete graphs K_{2r}/d. As a consequence, we establish that the circular-chromatic number of a circular-perfect graph is computable in polynomial time, which extends the above result from the chromatic number to the circular-chromatic number, and from perfect graphs to the superclass of circular-perfect graphs.

Silvia Bianchi, Universidad Nacional de Rosario (with Mariana Escalante, Maria Montelar)
The disjunctive rank of the stable set polytope of web graphs
We consider the behavior of the disjunctive operator defined by Balas, Ceria and Cornuéjols, over the clique relaxation of the stable set problem on webs. The disjunctive rank of a graph is the minimum number of steps of this procedure needed to obtain the convex hull of integer solutions in it. In this work we obtain the disjunctive rank of all webs, when starting from the clique relaxation. We find that almost every web W^r_r attain the upper bound of its disjunctive rank, i.e. k, except for those of the form W^r_{k+r}, with $r = 0$ or $r = 1$, that requires $k − 2$ or $k − 1$ steps, respectively. Our results allow us to obtain bounds for the disjunctive rank of a larger class of graphs such as quasi-line graphs and their complements, the near-bipartite graphs.

Luis Torres, Escuela Politécnica Nacional (with Paola Teimol)
On the Chvátal-closure of the fractional set covering polyhedron of circular matrices
The set covering polyhedron $Q^*(C)$ related to circulant 0,1-matrices has been the object of several recent studies. It has been conjectured that the Chvátal-rank of its fractional relaxation $Q(C)$ is equal to 1. In 2009, Argiroffo and Bianchi characterized all vertices of $Q(C)$. In this talk we present the results obtained so far for some classes of vertices. In particular, our construction yields a counterexample to a conjecture that all facets of $Q^*(C)$ are given by boolean, nonnegative, and so-called minor inequalities having only coefficients in $\{1, 2\}$. At the same time, we motivate why a weaker version of this conjecture might still hold.

Franklin Djeumou Fomeni, Lancaster University (with Adam Letchford)
Nonlinear combinatorial optimization problems II
On the theta number of powers of cycle graphs
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981).

We give a closed formula for Lovász’s theta number of the powers of cycle graphs C_{2r}^d of and of their complements, the circular complete graphs K_{2r}/d. As a consequence, we establish that the circular-chromatic number of a circular-perfect graph is computable in polynomial time, which extends the above result from the chromatic number to the circular-chromatic number, and from perfect graphs to the superclass of circular-perfect graphs.

Silvia Bianchi, Universidad Nacional de Rosario (with Mariana Escalante, Maria Montelar)
The disjunctive rank of the stable set polytope of web graphs
We consider the behavior of the disjunctive operator defined by Balas, Ceria and Cornuéjols, over the clique relaxation of the stable set problem on webs. The disjunctive rank of a graph is the minimum number of steps of this procedure needed to obtain the convex hull of integer solutions in it. In this work we obtain the disjunctive rank of all webs, when starting from the clique relaxation. We find that almost every web W^r_r attain the upper bound of its disjunctive rank, i.e. k, except for those of the form W^r_{k+r}, with $r = 0$ or $r = 1$, that requires $k − 2$ or $k − 1$ steps, respectively. Our results allow us to obtain bounds for the disjunctive rank of a larger class of graphs such as quasi-line graphs and their complements, the near-bipartite graphs.

Luis Torres, Escuela Politécnica Nacional (with Paola Teimol)
On the Chvátal-closure of the fractional set covering polyhedron of circular matrices
The set covering polyhedron $Q^*(C)$ related to circulant 0,1-matrices has been the object of several recent studies. It has been conjectured that the Chvátal-rank of its fractional relaxation $Q(C)$ is equal to 1. In 2009, Argiroffo and Bianchi characterized all vertices of $Q(C)$. In this talk we present the results obtained so far for some classes of vertices. In particular, our construction yields a counterexample to a conjecture that all facets of $Q^*(C)$ are given by boolean, nonnegative, and so-called minor inequalities having only coefficients in $\{1, 2\}$. At the same time, we motivate why a weaker version of this conjecture might still hold.
the quadratic version. We explain how this can be done, and present
some extremely promising computational results.

Ruth Höhner, Georg-August-Universität Göttingen (with Christoph Buchheim, Anika Schiebel)
Ellipsoid bounds for convex quadratic integer programming
Solving unrestricted convex quadratic integer programs by a branch-and-bound approach requires lower bounds on the objective value. We are going to follow the approach by Buchheim, Caprara and Lodi [2011] and approximate the quadratic function by an “easier” quadratic function which underestimates the original one. Geometrically, we approximated the level set of the objective by an auxiliary ellipsoid for which we require that the corresponding quadratic integer problem can be solved by rounding its continuous optimal solution. In a first approach we are going to restrict the choice of the auxiliary ellipsoid to axis-parallel ellipsoids corresponding to the level sets of separable convex quadratic functions. Which one is the “best” auxiliary axis-parallel ellipsoid depends not only on the given objective function but also on the respective continuous optimal solution which changes in every node of the branching tree. As it is expensive to find a good auxiliary ellipsoid we want to decide on a single ellipsoid and use it for the whole algorithm. This raises the question on how to compare different ellipsoids. To this end, worst-case and average-case arguments are discussed.

Sou rer ELLoumi, ENSIE
A unified view of linear and quadratic convex reformulation for binary quadratic programming
We consider binary quadratic programs (QP) having a quadratic objective function, linear constraints, and binary variables. Many classical solution methods of these problems are based on exact reformulation of QP into an equivalent mixed integer linear program. Several linearization methods were studied in the literature. More recent solution methods also build an exact reformulation but into a problem which objective function is quadratic and convex. A common point of the two approaches is that the continuous relaxation of the reformulated problem is a convex optimization problem that can be solved in polynomial time. This makes it possible to use a general branch-and-bound framework to solve the reformulated problem and even to rely on the strongness of standard solvers. In this paper, we show that several quadratic convex reformulation methods, as well as classical linearization, can be viewed within a unified framework. This shows the non-surprising result that linearization is a particular quadratic convex reformulation on the one hand. On the other hand, it allows to compare these methods from a theoretical point of view.

James Drlin, MIT
Max flows in O(mn) time and sometimes less
We present improved polynomial time algorithms for the maximum flow problem defined on a network with n nodes and m arcs. King, Rao, and Tarjan [1992] solved the max flow problem in O(nm + nlogn log log n) time. They subsequently improved the running time to O(nm log n/(log log n)²). We establish that the max flow problem is solvable in O(nm) time for all n and m. Moreover, in the case that m = O(n), we improve the running time to O(n²/log n). Further improvements are possible if the number of arcs with finite capacity is O(n) or if log U < n²/n-
Yahan Nussbaun, Tel Aviv University (with Glencora Borradaile, Philip Klein, Shay Mozes, Christian Wulff-Nilsen)
Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time
We consider the problem of finding a maximum flow from a set of source nodes to a set of sink nodes in a n-node directed planar graph with arc capacities. The multiple-source multiple-sink maximum flow problem can be solved using a standard single-source single-sink maximum flow algorithm, as there is a simple reduction which connects a single super-source to the set of sources and the set of sinks to a single super-sink. However, this reduction does not preserve the planarity of the graph, and we have to use a maximum flow algorithm for general (non-planar) graphs in conjunction with the reduction, which requires O(n²/log n) time. We present an O(n(log² n) algorithm for the problem. This is the first algorithm for the problem that exploits the planarity of the graph to get a faster time bound. Our algorithm combines wide range of techniques, including pseudoflows, flow partitioning scheme, the duality between flow circulation and shortest paths in planar graphs, succinct representation of a flow in a planar graph, and other planarity-exploiting algorithms. This work was presented at FOCS 2011.

László Végh, London School of Economics
Concave generalized flows with applications to market equilibria
We consider a nonlinear extension of the generalized network flow model, with the flow leaving an arc being an increasing concave function of the flow entering it, as proposed by Truemper and Shigeno. We give a polynomial time combinatorial algorithm for solving corresponding flow maximization problems, finding an ε-approximate solution in O(m(n + m·log n) log(MU/nε)) arithmetic operations and value oracle queries, where M and U are upper bounds on simple parameters. This also gives a new algorithm for linear generalized flows, an efficient, purely scaling variant of the Fat-Path algorithm by Goldberg, Plotkin and Tardos, not using the amortization of cancellations.

We show that this general convex programming model serves as a common framework for several market equilibrium problems, including the linear Fisher market model and its various extensions. Our result immediately extends these market models to more general settings. We also obtain a combinatorial algorithm for non-symmetric Arrow-Debreu Nash bargaining, setting an open question by Vazirani.
Flows, cuts, and sparsifiers

Nicholas Harvey, University of British Columbia

Graph sparsifiers

A sparsifier of a graph is a sparse, weighted subgraph for which every cut has approximately the same value as the original graph, up to a factor of \(1 \pm \varepsilon\). Sparsifiers were first studied by Benczur and Karger (1996). They have wide-ranging applications, including fast network flow algorithms, fast linear system solvers, etc.

We describe a new approach to constructing sparsifiers: by sampling each edge \(uv\) with probability inversely proportional to the edge-connectivity between \(u\) and \(v\). This results in a sparsifier with \(O(n \log^2(n)/\varepsilon^2)\) edges, answering a question of Benczur and Karger. A variant of this argument shows that one can obtain sparsifiers by sampling uniformly random spanning trees. Our proofs are based on extensions of Karger's contraction algorithm which allow it to compute minimum "Steiner" cuts.

Jonathan Kelner, MIT (with Paul Christiano, Aleksandar Madry, Gary Miller, Richard Peng, Daniel Spielman, Shanghua Teng)

Electrical flows, linear systems, and faster approximations of maximum flows, minimum \(-\varepsilon\) cuts, and multicorrelation flows in undirected graphs

In this talk, I'll describe a new collection of techniques for approximately solving maximum flow, minimum \(-\varepsilon\) cut, and multicorrelation flow problems in capacitated, undirected graphs. Using these techniques, we obtain asymptotically faster algorithms for all three, breaking running time barriers that have stood for over 30 years.

For graphs with \(n\) vertices and \(m\) edges, I'll show how to compute \(\varepsilon\)-approximately maximum flows in time \(O(n^{4/3} \text{poly}(1/\varepsilon))\) and \(\varepsilon\)-approximately minimum \(-\varepsilon\) cuts in time \(O(m + n^{4/3} \text{poly}(1/\varepsilon))\). We do this by treating our graph as a network of resistors and solving a sequence of electrical flow problems with varying resistances on the edges. Each of these may be reduced to the solution of a system of linear equations in a Laplacian matrix, which can be solved in nearly-linear time.

I'll then discuss why generalizing this approach to the multicorrelation setting requires more general classes of linear systems and iterative methods. Using these, we find \(\varepsilon\)-approximate solutions to the maximum concurrent flow problem with \(k\) commodities in time \(O(m^{4/3} \text{poly}(k, 1/\varepsilon^2))\).

Christophe Weibel, Google Inc. (with Amit Chakrabarti, Lisa Fleischer)

When the cut condition is enough: Characterization of multiflow problems by forbidden minors

For a supply graph \(G = (V, E)\) and a demand graph \(H = (V, F)\), an assignment of capacities to the edges of \(G\) and demands to the edges of \(H\) is said to satisfy the cut condition if for any cut in the graph, the total demand crossing the cut is no more than the total capacity crossing it. The pair \((G, H)\) is called cut-sufficient if for any assignment of capacities and demands that satisfy the cut condition, the demands defined on \(H\) can be routed within the network with capacities defined on \(G\).

For a pair \((G, H)\) as a minor if it is possible to obtain \((G', H')\) from \((G, H)\) by contracting edges of \(G\) and deleting edges of \(G\) and \(H\). We propose to characterize cut-sufficient pairs by forbidden minors.

In particular, we prove a previous conjecture giving the minimal set of forbidden minors for instances with a series-parallel supply graph, and propose a conjecture extending our results to planar supply graphs.

Christopher Weibel, Google Inc. (with Amit Chakrabarti, Lisa Fleischer)

Combinatorial optimization

Conic programming

Algebraic geometry and conic programming III

Caroline Uhler, IST Austria

Maximum likelihood estimation in Gaussian graphical models from the perspective of convex algebraic geometry

We study multivariate normal models that are described by linear constraints on the inverse of the covariance matrix. Maximum likelihood estimation for such models leads to the problem of maximizing the determinant function over a spectrahedron, and to the problem of characterizing the image of the positive definite cone under an arbitrary linear projection. We examine these problems at the interface of statistics and conic optimization from the perspective of convex algebraic geometry.

Thorsten Theobald, Goethe University Frankfurt am Main (with Kai Kellner, Christian Trabandt)

Containment problems for polytopes and spectrahedra

Spectrahedra are the feasible regions of semidefinite programs. In this talk we study the computational question[s] whether a given polytope or spectrahedron \(S_A\) (as given by a linear matrix pencil \(A(x)\)) is contained in another one \(S_B\).

Our results both concern the computational complexity (extending results on the polytope/polytope-case by Gritzmann and Klee) as well as sufficient conditions to certify containness (whose study was initiated by Ben-Tal, Nemirovski and Helton, Klep, McCullough).

Guoyong Su, Nanjing University (with Bingzheng He, Xiaoming Yuan)

Customized proximal point algorithms: A unified approach

This talk revisits a unified approach to the customized proximal algorithms (PPA) to two classes of problems, namely, the linearity constrained convex problem with a generic or separable objective function and a saddle-point problem. We model these two classes of problems as mixed variational inequalities, and show how PPA with customized proximal parameters can yield favorable algorithms, which are both efficient and efficient enough to some
are of interest for graph visualization, VLSI design, quantum dot cellular automata, RNA folding, and other applications. On the other hand, the problem is notoriously difficult. In 1973, Erdős and Guy wrote that: “Almost all questions that one can ask about crossing numbers remain unsolved.” For example, the crossing numbers of complete and complete bipartite graphs are still unknown in general. Moreover, even for cubic graphs, it is NP-hard to compute the crossing number. Different types of crossing numbers may be defined by restricting drawings; thus the two-page crossing number corresponds to drawings where all vertices are drawn or a circle, and all edges either inside or outside the circle. In this talk, we will survey some recent results, where improved lower bounds were obtained for (two-page) crossing numbers of complete and complete bipartite graphs via optimization.

Mariana Eisenberg-Nagy, CWI Amsterdam (with Etienne de Klerk, Renata Sotirov, Van Trarotch)
Symmetry in RLT cuts for the quadratic assignment and standard quadratic optimization problems

The reformulation-linearization technique (RLT), introduced in [W. P. Adams, H. D. Sherali, A tight linearization and an algorithm for zero-one quadratic programming problems, Management Science, 32(10): 1274–1290, 1986], provides a way to compute linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. This type of method has become known as a lift-and-project strategy; the “lifting” refers to the addition of new variables, and the “projection” to projecting the optimal values of the new variables to a feasible point of the original problem.

We study the RLT technique for two specific problems, namely the standard quadratic program and the quadratic assignment problem (QAP). We show how one may solve the second level RLT relaxation with additional semidefinite programming constraints in the presence of suitable algebraic symmetry in the problem data. As a result we are able to compute the best known bounds for certain graph partitioning problems involving strongly regular graphs. These graph partitioning problems have QAP reformulations.

Dino Gijswijt, TU Delft
Symmetric semidefinite programs based on tuples

The independence number in graphs can be bounded using semidefinite programming. Symmetries of the graph can be used to reduce the size of the SDP. A dramatic example of this occurs in coding theory, where the Lovász theta number for exponentially large graphs reduces to a polynomial sized LP (Delarte bound) by virtue of the large symmetry group of the Hamming space.

Here we discuss stronger bounds, related to the Lasserre hierarchy, that involve tuples of vertices of the graph. We show efficient methods to apply symmetry reduction in this case. An explicit result (joint work with A. Schrijver and H. Mittelmann) gives improved bounds on binary codes using four-tuples, and shows that the quadruply shortened Golay code is optimal.

Dmitrii Chertkov, Weierstrass Institute Berlin (with Sergey Gratton, Patrick Lahaye)
Derivative-free optimization for large-scale nonlinear data assimilation problems

Data assimilation consists in techniques to combine observations with a numerical prediction model. The goal is to produce the best estimate of the current state of the system. Two different approaches are used in data assimilation algorithms: the sequential one, based on the statistical estimation theory (Kalman filter) and the variational one, based on the optimal control theory. This last approach amounts to solve a very large nonlinear weighted least-squares problem called 4D-Var (four-dimensional variational problem). In both approaches, evaluating derivatives is challenging as one needs to compute the Jacobian of the model operator. The Ensemble Kalman Filter (EnKF) provides a suitable derivative-free alternative for the first approach by using a Monte-Carlo implementation on the Kalman filter equations. However, no derivative-free variant of the variational approach has been proposed so far. In this talk, we present such a variant, based on a technique to build and exploit a low-rank structure of the approximate low dimensional subspaces. Numerical illustration is shown on a shallow water data assimilation problem, including a comparison with the Ensemble Kalman Filter approach.

Agnieszka Piotrowska, University of Namur (FUNDP) (with Serge Gratton, Patrick Lahaye)
Derivative-free optimization for large-scale nonlinear data assimilation problems

Optimization in financial markets

Organizer/Chair Temu Pennanen, King’s College London - Invited Session
John Schoenmakers, Weierstrass Institute Berlin (with Denis Belomestny, Marcel Ladkau)
Multilevel primal and dual approaches for pricing American options

In this talk we propose two novel simulation based approaches for pricing American options. (I) The first one is in fact a multi level version of the nested Monte Carlo dual algorithm of Andersen and Broadie (2004), whereas the second one (II) is a multi level version of simulation based policy iteration (cf. Kolodko Sch. 2006), hence a primal approach. The multilevel concept is applied to the number of sub-simulations needed for constructing a dual martingale in (I) and for iterating to a new policy in (II). In both cases the overall complexity turns out to be significantly reduced.

Ari-Pekka Perkkis, Aalto University (with Temu Pennanen)
Stochastic programs without duality gaps

This talk is on dynamic stochastic optimization problems parameterized by a random variable. Such problems arise in many applications in operations research and mathematical finance. We give sufficient conditions for the existence of solutions and the absence of a duality gap. Our proof uses extended dynamic programming equations, whose validity is established under new relaxed conditions that generalize certain no-arbitrage conditions from mathematical finance.

Dirk Becherer, Humboldt Universität zu Berlin
Optimal sparse portfolios in continuous time

We discuss sparse portfolio optimization in continuous time. Optimization objective is to maximize the classical expected utility, that is the expectation of a concave functional of portfolio gains. Sparse optimization aims to find asset allocations that contain only few assets or that deviate only in few coordinated from a reference benchmark allocation. Results show that optimal sparse portfolios are less sensitive to estimation errors and performance is superior to optimal portfolio without sparsity constraints, when estimation of model parameters is taken into account.

Decision making

Chair Deepak Kumar, Indian School of Business
Marta Villamil, Universidade do vale do Rio dos Sinos (with Luz Paulo de Oliveira, Bruno Larentes)
Modelling and simulation of social segmentation with individual and competitive parameters

Social influence is the process by which individuals develop real
changes in their feelings and their behavior as a result of interaction with other individuals. When individuals relate to each other, considering a heterogeneous population, behavior patterns allow groups formation. Studies of group behaviors inside a population have applications like preparation to marketing campaign for competitive products, tendencies analysis of electors in political campaigns, and to simulate all situations where groups with antagonist ideas compete for new members. This work proposes the use of Lotka-Volterra differential equations to model the segmentation of a population into two groups, each one associated with concepts/choices competitors. In this scope, the coefficients of the Lotka-Volterra equations are defined from the average of the parameters of the individuals which are member of each group. Furthermore the model is dynamic. Model coefficients are updated as groups update their number of members. Individual parameters also continue to change due interactions. With this, the system modeling is replaced by a stochastic component, becoming the linear stability analysis, ingenious.

Deepak Kumar, Indian School of Business

Simultaneous optimization problems in gambling strategies

The optimization problem in portfolio management of meeting objectives with maximum probability and/or within minimum time uses continuous time Red & Black gambling strategies for answers to the problem of (a) maximizing probability of reaching a target before hitting a low and (b) minimizing the expected time of reaching a target. The problem of trying to maximize probability of reaching a target before hitting a low when there is some deadline constraint makes the problem altogether different. The aim is to look into the mathematical structure of the problem in optimal control framework, try to have a discrete analogue of it and have a look into the theoretical issues related to such optimization problems.

José Gilberto Hernández Ramirez, Universidad Metropolitana [with María García G., Gilberto Hernández G.]

The amplitude model and regret model in decision making under uncertainty

Upon reinforcing the traditional methods for decisions making under uncertainty, especially Hurwicz and Laplace, the amplitude model (TAM) was created. TAM, among the parameters to choose the best alternative, takes into account the amplitude. Although it is created to reinforce other methods, TAM has taken on life. Besides TAM has extended to decisions making under risk, with the model of amplitude for risk and uncertainty [MARU]. Likewise has worked TAM together the regret model [Minimax]. The maximum repentance of Minimax has been used as parameter of TAM and the amplitude of the repentance to evaluate Minimax. In this work continues with this search, of there that the objective of the same one is to create a new model, based on the philosophy of the amplitude model, using simultaneously as parameters the amplitude of the payments and the maximum repentance of the same. To reach this objective will be used like methodology the scientific method for research operations. For the illustration and validation of the new model will be contrasted against the traditional methods and other variant of TAM, through problems created especially for it.

Game theory

Game theoretic models are applied to study markets for differenti- ated product such as personal vehicles, consumer electronics, and vari- ous food products and services. One of the most important applications concerns the impact of regulatory policy on market behavior: Practical insights from such models rest on the ability to compute equilibrium, which in turn requires solving potentially large Mixed Complementarity Problems (MCPs). This seminar discusses several advances in the formulation of such models and the subsequent computation of equilibrium when firms face regulations with non-smooth regulatory costs. Equilibrium prices are modeled with MCPs, while product design decisions are modeled with a Stackelberg-type two-stage game that represents the formation exchange and computation of equilibrium decision of agents over the network. We study the gossip-based distributed algorithm for information exchange and computation of equilibrium decisions of agents over the network. Our primary emphasis is on proving the convergence of the algorithm under an assumption of a diminishing (agent-specific) stepsize sequence. Under standard conditions, we establish the almost-sure convergence of the algorithm to an equilibrium point. Finally, we present numerical results to assess the performance of the gossip algorithm for aggregative games.

W. Ross Morrow, Iowa State University (with Joshua Mineroff, Kate Whitefoot)

Decentralized mechanisms for throughput scheduling

Motivated by the organization of decentralized service systems, we study new models for throughput scheduling. In throughput scheduling we have a set of jobs i with value v_i, processing requirement p_i, and deadline d_i, to be processed non-preemptively on a set of unrelated servers. The goal is to maximize the total value of jobs finished before their deadline. While several approximation algorithms with different performance guarantees exist for this and related models, we are interested in decentralized mechanisms where the servers act selfishly according to some given, simple protocol. We show by simple, combinatorial arguments that, when each server deploys an α-approximation locally, any Nash equilibrium still yields an $((\alpha + 1)\cdot 1)$-approximation with respect to the global optimum. This bound is tight, even in the case of related machines, unit weights and unit processing times. For models with identical machines, the bound can be improved to $\frac{\alpha}{\alpha - 1}$. Some of our results also extend to online models with corresponding competitive ratios.

Jasper de Jong, University of Twente

Decentralized mechanisms for throughput scheduling

Motivated by the organization of decentralized service systems, we study new models for throughput scheduling. In throughput scheduling, we have a set of jobs i with value v_i, processing requirement p_i, and deadline d_i, to be processed non-preemptively on a set of unrelated servers. The goal is to maximize the total value of jobs finished before their deadline. While several approximation algorithms with different performance guarantees exist for this and related models, we are interested in decentralized mechanisms where the servers act selfishly according to some given, simple protocol. We show by simple, combinatorial arguments that, when each server deploys an α-approximation locally, any Nash equilibrium still yields an $((\alpha + 1)\cdot 1)$-approximation with respect to the global optimum. This bound is tight, even in the case of related machines, unit weights and unit processing times. For models with identical machines, the bound can be improved to $\frac{\alpha}{\alpha - 1}$. Some of our results also extend to online models with corresponding competitive ratios.

Jasper de Jong, University of Twente

Decentralized mechanisms for throughput scheduling

Motivated by the organization of decentralized service systems, we study new models for throughput scheduling. In throughput scheduling, we have a set of jobs i with value v_i, processing requirement p_i, and deadline d_i, to be processed non-preemptively on a set of unrelated servers. The goal is to maximize the total value of jobs finished before their deadline. While several approximation algorithms with different performance guarantees exist for this and related models, we are interested in decentralized mechanisms where the servers act selfishly according to some given, simple protocol. We show by simple, combinatorial arguments that, when each server deploys an α-approximation locally, any Nash equilibrium still yields an $((\alpha + 1)\cdot 1)$-approximation with respect to the global optimum. This bound is tight, even in the case of related machines, unit weights and unit processing times. For models with identical machines, the bound can be improved to $\frac{\alpha}{\alpha - 1}$. Some of our results also extend to online models with corresponding competitive ratios.

Jasper de Jong, University of Twente

Decentralized mechanisms for throughput scheduling

Motivated by the organization of decentralized service systems, we study new models for throughput scheduling. In throughput scheduling, we have a set of jobs i with value v_i, processing requirement p_i, and deadline d_i, to be processed non-preemptively on a set of unrelated servers. The goal is to maximize the total value of jobs finished before their deadline. While several approximation algorithms with different performance guarantees exist for this and related models, we are interested in decentralized mechanisms where the servers act selfishly according to some given, simple protocol. We show by simple, combinatorial arguments that, when each server deploys an α-approximation locally, any Nash equilibrium still yields an $((\alpha + 1)\cdot 1)$-approximation with respect to the global optimum. This bound is tight, even in the case of related machines, unit weights and unit processing times. For models with identical machines, the bound can be improved to $\frac{\alpha}{\alpha - 1}$. Some of our results also extend to online models with corresponding competitive ratios.
Global optimization

Structural aspects of global optimization
Organizer/Chair: Oliver Stein, Karlsruhe Institute of Technology - Invited Session

Georg Still, University of Twente
Minimization of nonconvex quadratic functions on special feasible sets
We are interested in global minimization of general quadratic functions on a feasible set. It is well-known that depending on the specific set the problem is possibly tractable or hard. We are especially interested in the minimization on the unit simplex. This problem is just the feasibility problem for copositive programming. The latter recently attracted much attention as it appeared that many hard integer problems can be represented exactly by copositive programs.
In our talk we firstly discuss some interesting properties of quadratic functions such as the number of components of the level sets and the number of global minimizers. We then consider copositive programming and give some recent results on the structure of this problem.

Tomas Bajbar, Karlsruhe Institute of Technology
Nonsmooth versions of Sard’s theorem
We present a comparison between some versions of Sard’s theorem which have been proven recently for special function classes with different definitions of critical points. The motivation for calling a given point a critical point of a function varies. Considering the class of C1 functions, we prove that these classes are unique and call them basic classes. Their representatives in the simplest form are called local models. For particular realizations of equilibrium optimization problems basic classes and their local models are elaborated. The latter include bilevel optimization, general semi-infinite programming and Nash optimization.

Yoshihito Oishi, Tokyo Institute of Technology
High-performance general solver for extremely large-scale semidefinite optimization problems
Semidefinite Program (SDP) is one of the most important problems in current research areas in optimization problems. It covers a wide range of applications such as combinatorial optimization, control theory, economics, quantum chemistry, sensor network location, data mining, etc. Solving extremely large-scale SDPs has a significant importance for the current and future applications of SDPs. In 1995, Fujisawa et al. started the SDPA Project aimed for solving large-scale SDPs with numerical stability and accuracy. It is one of pioneer general SDPs. The SDPARA is a parallel version of the SDPA on multiple processors and distributed memory, which replaces major bottleneck components of the SDPA by their parallel implementation. In particular, it has been successfully applied on quantum chemistry and combinatorial optimization, the SDPARA on a large-scale super computer called TSUBAME 2.0. In Tokyo Institute of Technology has succeeded to solve the largest SDP which has over one million constraints with high accuracy and make a new world record.

Yuji Shinano, Jülich Institute Berlin (with Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch, Stefan Vigerske, Michael Winkler)
ParaSCIP and FiberSCIP – Parallel extensions of SCIP
ParaSCIP is a powerful Mixed Integer Linear and Non-Linear Programming (MILP/MINLP) solver. We will present the implementation of two parallel extensions of SCIP. One is ParaSCIP, which is intended to run on a large scale distributed memory computing environment and the other is FiberSCIP, intended to run in shared memory computing environments. ParaSCIP has successfully been run on the HLRN II supercomputer utilizing up to 7,168 cores to solve a single difficult MILP. It has also been tested on a Fujitsu PRIMERGY RX200S5 using up to 512 cores. Even though ParaSCIP and FibreSCIP have different capabilities, they are realized using a single software: the Ubiquity Generator (UG) framework. The latest computational results using the both ParaSCIP and FiberSCIP will be presented.

Cynthia Phillips, Sandia National Laboratories (with Jonathan Eckstein, Ojas Parekh, John Siirola, Jean-Paul Watson)
PICO’s new hierarchical branch-and-bound system for massively parallel IP
We will discuss the design, implementation, and large-scale parallel computation aspects of the PICO (Parallel Integer and Combinatorial Optimizer) massively-parallel mixed-integer programming solver. We leverage the basic PICO ramp up system for automatic integer program decomposition and carefully manage run-time conditions to effectively run arbitrary black-box IP solvers on massively parallel systems. Our computational results use Sandia National Laboratories’ “Red Sky” system, which has more than 20,000 cores.
computational experiments on the tightness and solution speed of this relaxation are presented.

Marc Pfetsch, TU Darmstadt (with Thomas Rehe)
A computational comparison of symmetry handling methods in integer programming
During the past several years several methods to handle symmetries in integer programs have been introduced. This includes isomorphism pruning by Margot, orbital branching by Ostrowski et al., symmetry breaking constraints by Liberti, etc. In this talk we present a computational comparison of these different approaches in the framework SCIP. We discuss implementation issues like symmetry detection and the detection of interesting subgroups of the symmetry group as well as their exploitation during the solution process. The tests are run on the highly symmetric instances of Margot and on the MIPLIB 2010. We discuss the results of these test runs, which, as can be expected, depend on the instances at hand. We also compare the two different ways to detect symmetry via graph isomorphism.

Jim Ostojarz, University of Tennessee (with Jianhu Wang)
Dominance-strengthened symmetry breaking constraints in the unit commitment problem
Adding symmetry-breaking to a highly symmetric instance of a MILP can reduce the size of the problem’s feasible region considerably. The same can be said for good dominance constraints. In this talk we will examine the impact of using dominance arguments to strengthen symmetry breaking constraints for the Unit Commitment (UC) problem. It is present in [traditional formulations of the UC problem when there are several generators of the same type. We show that by adding dominance strengthened cuts, the number of feasible solutions that need to be considered only grows polynomially as the number of generators increases (so long as the number of unique generators is fixed).

Benjamin Nill, Case Western Reserve University
Recent developments in the geometry of numbers of lattice polytopes
In this talk, I will give an overview about recent results in the geometry of numbers of lattice polytopes. All of these will deal with the question of what we know about lattice polytopes with a certain number of interior lattice points or none at all. I also hope to show how an invariant in Ehrlart theory possibly allows a unifying view on these results.

Andreas Paffenholz, TU Darmstadt (with Barbara Baumeister, Christian Haase, Benjamin Nill)
Permutation polytopes
A permutation polytope is the convex hull of the permutation matrices of a subgroup of Sn. These polytopes are a special class of 0/1-polytopes. A well-known example is the Birkhoff polytope of all doubly-stochastic matrices defined by the symmetric group S2. This is a well studied polytope. Much less is known about general permutation polytopes. I will shortly discuss basic properties, combinatorial characterizations, lattice properties, and connections between the group and the polytope. A main focus of my presentation will be on recent results for cyclic groups. Their permutation polytopes correspond to marginal polytopes studied in algebraic statistics and optimization. In particular, I will present families of facet defining inequalities.

Alexander Kasprzyk, Imperial College London (with Sator Higudu)
Riemannian polytopes
Given a convex lattice polytope P, one can count the number of points in a dilation mP via the Ehrhart polynomial LP. The roots of LP (over C) have recently been the subject of much study, with a particular focus on the distribution of the real parts. In particular, V. Golyshhev conjectured, and the authors recently proved, that any smooth polytope of dimension at most five are so-called Riemannian polytopes: this is, the roots of LP all satisfy Re(z) = −1/2.

I shall discuss some recent results on Riemannian polytopes, with particular emphasis on reflexive polytopes. In particular, I will discuss the distribution of the roots in the case of a reflexive polytope P, and a characterisation of when P is Reimannian.
processes to a particular model. Using simulated gene trees from a known species tree, we compare our non-parametric method to established parametric methods.

Giovanni Felici, Consiglio Nazionale delle Ricerche (with Emanuel Weisschek)

Logic data mining in the presence of noisy data

In this work we consider a method for the extraction of knowledge from data. The knowledge is represented as disjunctive normal form (DNF) logic formulas that identify with high precision subsets of the training data. The method is mainly designed for classification purposes, but can be profitably deployed for information compression and data analysis in general. It is based on three main steps: discretization, feature selection and formula extraction. For each step, a mathematical optimization problem is formulated and solved with ad hoc algorithmic strategies. The method is designed to perform exact separation of training data, and can thus be expected to overfitting when a significant amount of noise is present in the available information. We analyze the main problems that arise when this method deals with noisy data and propose extensions to the discretization, feature selection and formula extraction steps; we motivate these extensions from a theoretical standpoint, and show with experimental evidence how they operate to remove the effect of noise on the mining process.

Takayuki Shiina, Chiba Institute of Technology

Inventory distribution problem under uncertainty

Two different types of transshipment which are called preventive or emergency transshipment, have been studied separately in the inventory distribution problem. The transshipment in inventory distribution system is important to improve customer service and reduce total cost. In this paper, the inventory distribution problem using both transshipments is formulated as the stochastic programming problem in which customer demand is considered as random variable. The algorithm using L-shaped method is developed and the numerical experiments show that the proposed algorithm is quite efficient. Finally, the advantage using the proposed algorithm is developed and the numerical experiments show that the present value of costs over time horizon (consists of the deterioration cost, production cost, inventory holding cost, backordering cost, lost sale cost and ordering cost) and (2) Decreasing the total quantity of goods in the warehouse over time horizon. The ideal point approach has been proposed to formulate the model. Also, the numerical example has been provided for evaluation and validation of the theoretical results.

Stefan Waldherr, Universität Osnabrück

Two-stage order sequence planning in shelf-board production

In cooperation with a supplier of kitchen elements the production of shelf boards is optimized. Because of the problem’s high complexity and the frequent changes of the order situation, the time horizon for the order sequence scheduling should cover at most two days. However, to assure the needed raw material in time for production, it is necessary to determine an appropriate sequence of manufacture outside of the two-day time horizon. Therefore we split the production scheduling into two stages: In a first coarse planning stage we relax the problem by dropping some constraints and consider it as a Min Cost Flow Problem to calculate a production time detailed to the day. This forms the basis for planning the pre-production of the needed raw material to assure their availability. In a second fine planning stage the exact sequence scheduling is carried out taking into account both, resource constraints and sequence-dependent setup- and production times.

Yehua Wei, Massachusetts Institute of Technology (with David Simchi-Levi)

Understanding the performance of the long chain and sparse designs in process flexibility

We study the expected sales of sparse flexibility designs, which are modeled by the expected objective value of a stochastic bipartite max-flow problem. In particular, we focus on the long chain design, a design that has been successfully applied by several industries. First, we uncover an interesting property of the long chain, supermodularity. Then, this property is used to show that the performance of the long chain is characterized by the difference between the expected sales of two simpler designs which leads to the optimality of the long chain among 2-flexibility designs. Finally, under IID demand, this characterization gives rise to three developments: (i) an effective algorithm to compute the expected sales of long chains using only matrix multiplications; (ii) a result that the gap between the fill rate of full flexibility and that of the long chain increases with system size, thus implying that the effectiveness of the long chain relative to full flexibility increases as the number of products decreases; (iii) an interesting result implying that the fill rate of a long chain increases with the number of products, but this increase converges to zero exponentially fast.

Fri.3.M 046

Modelling, reformulation and solution of MINLPs

Organizer/Chair Leo Liberti, École Polytechnique - Invited Session

Marianna de Santis, Istituto di Analisi dei Sistemi ed Informatica (with Stefano Lucidi)

A method for MINLP problems with simple constraints

We are concerned with the problem of minimizing a continuously differentiable function subject to simple constraints on the variables where some of the variables are restricted to take integer values. In order to tackle the problem we propose an approach based on a minimization of distributed type: an appropriate local search is performed depending on whether the variable is continuous or integer. The continuous local search is based on a combined method that combines ideas from projected and Newton-type algorithms. For the discrete local search a grid search along the discrete variables is performed.

Leo Liberti, École Polytechnique (with Pietro Belotti, Sonia Cafieri, Jon Lee)

On feasibility-based bounds tightening

Mathematical programming problems involving nonconvexities are usually solved to optimality using a spatial branch-and-bound (sBB) algorithm. Algorithmic efficiency depends on many factors, among which the widths of the bounding box for the problem variables at each branch-and-bound node naturally play a critical role. The practically fastest box-tightening algorithm is known as FBBT (feasibility-based bounds tightening): an iterative procedure to tighten the variable ranges. Depending on the instance, FBBT may not converge finitely to its limit ranges, even in the case of linear constraints. Tolerance-based termination criteria yield finite termination, but not in worst-case polynomial time. We model FBBT by using fixed-point equations in terms of the variable bounding box, and we treat these equations as constraints of an auxiliary mathematical program. We demonstrate that the auxiliary mathematical program is a linear program, which can of course be

Fri.3.M 016

Inventory routing

Chair Takayuki Shiina, Chiba Institute of Technology

Samira Mirzai, Amir Kabir University of Technology (Tehran Polytechnic) (with Abbas Stell)

Inventory routing problem for distribution of perishable goods

This paper presents a mathematical formulation for inventory routing problem (IRP) that is especially designed for allocating stock of perishable goods. It is assumed herein that the age of perishable inventory has negative impact on the demand of end customers and the percentage of the inventory that is not sold is considered as lost sale. The model balances the transportation cost with the holding cost and lost sale. In addition to regular inventory routing constraints, the model considers a linear function defining lost sale in terms of inventory age. The model is solved to optimality for small instances and is used to obtain lower bounds for larger instances. We have also devised a heuristic method to find good solutions for this class of problems that are later improved within a metaheuristic framework. Computational results indicate that for small size problems, the proposed heuristic can find solutions that are on average no farther than 25% away from the optimal solution in a few seconds. The optimality gap found by CPLEX grows exponentially with the problem size while the ones obtained by the proposed heuristic increase linearly.

Takayuki Shiina, Chiba Institute of Technology

Inventory distribution problem under uncertainty

A new multiple objectives inventory model has been presented in this paper to determine the optimal production quantity. The deterioration items have been considered and the systems costs will be change over the time horizon. In the real situation, some but not all customers will require fresh deliveries during the production time horizon. The model incorporates partial backlogging. The demand rate can be a function of inflation and time value of money where the inflation and time horizon i.e., period of business, both are random in nature. The objectives of the problem are: (1) Minimization of the total expected cost in an interval of time horizon (consists of the deterioration cost, production cost, inventory holding cost, backordering cost, lost sale cost and ordering cost) and (2) Decreasing the total quantity of goods in the warehouse over time horizon. The ideal point approach has been proposed to formulate the model. Also, the numerical example has been provided for evaluation and validation of the theoretical results.

Stefan Waldherr, Universität Osnabrück

Two-stage order sequence planning in shelf-board production

In cooperation with a supplier of kitchen elements the production of storage boards is optimized. Because of the problem’s high complexity and the frequent changes of the order situation, the time horizon for the order sequence scheduling should cover at most two days. However, to assure the needed raw material in time for production, it is necessary to determine an appropriate sequence of manufacture outside of the two-day time horizon. Therefore we split the production scheduling into two stages: In a first coarse planning stage we relax the problem by dropping some constraints and consider it as a Min Cost Flow Problem to calculate a production time detailed to the day. This forms the basis for planning the pre-production of the needed raw material to assure their availability. In a second fine planning stage the exact sequence scheduling is carried out taking into account both, resource constraints and sequence-dependent setup- and production times.

Yehua Wei, Massachusetts Institute of Technology (with David Simchi-Levi)

Understanding the performance of the long chain and sparse designs in process flexibility

We study the expected sales of sparse flexibility designs, which are modeled by the expected objective value of a stochastic bipartite max-flow problem. In particular, we focus on the long chain design, a design that has been successfully applied by several industries. First, we uncover an interesting property of the long chain, supermodularity. Then, this property is used to show that the performance of the long chain is characterized by the difference between the expected sales of two simpler designs which leads to the optimality of the long chain among 2-flexibility designs. Finally, under IID demand, this characterization gives rise to three developments: (i) an effective algorithm to compute the expected sales of long chains using only matrix multiplications; (ii) a result that the gap between the fill rate of full flexibility and that of the long chain increases with system size, thus implying that the effectiveness of the long chain relative to full flexibility increases as the number of products decreases; (iii) an interesting result implying that the fill rate of a long chain increases with the number of products, but this increase converges to zero exponentially fast.

Fri.3.M 046

Modelling, reformulation and solution of MINLPs

Organizer/Chair Leo Liberti, École Polytechnique - Invited Session

Marianna de Santis, Istituto di Analisi dei Sistemi ed Informatica (with Stefano Lucidi)

A method for MINLP problems with simple constraints

We are concerned with the problem of minimizing a continuously differentiable function subject to simple constraints on the variables where some of the variables are restricted to take integer values. In order to tackle the problem we propose an approach based on a minimization of distributed type: an appropriate local search is performed depending on whether the variable is continuous or integer. The continuous local search is based on a combined method that combines ideas from projected and Newton-type algorithms. For the discrete local search a grid search along the discrete variables is performed.

Leo Liberti, École Polytechnique (with Pietro Belotti, Sonia Cafieri, Jon Lee)

On feasibility-based bounds tightening

Mathematical programming problems involving nonconvexities are usually solved to optimality using a spatial branch-and-bound (sBB) algorithm. Algorithmic efficiency depends on many factors, among which the widths of the bounding box for the problem variables at each branch-and-bound node naturally play a critical role. The practically fastest box-tightening algorithm is known as FBBT (feasibility-based bounds tightening): an iterative procedure to tighten the variable ranges. Depending on the instance, FBBT may not converge finitely to its limit ranges, even in the case of linear constraints. Tolerance-based termination criteria yield finite termination, but not in worst-case polynomial time. We model FBBT by using fixed-point equations in terms of the variable bounding box, and we treat these equations as constraints of an auxiliary mathematical program. We demonstrate that the auxiliary mathematical program is a linear program, which can of course be
solved in polynomial time. We demonstrate the usefulness of our approach by improving the open-source SBB solver Couenne.

Claudia D’Ambrosio, CNRS Ecole Polytechnique [with Andrea Lodi, Riccardo Rovatti, Martello Silvano] Optimistic modeling of non-linear optimization problems by mixed-integer linear programming

We present a new piecewise linear approximation of non-linear optimization problems. It can be seen as a variant of classical triangulations that leaves more degrees of freedom to define any point as a convex combination of the samples. For a hyper-rectangular domain $U \subseteq \mathbb{R}^d$, partitioned into hyper-rectangular subdomains through a grid defined by n_l points on the l-axis ($l = 1, \ldots, L$), the number of potential simplices is $\prod_{l=1}^L (n_l - 1)$, and an MILP model incorporating it without complicated encoding strategies must have the same number of additional binary variables. In the proposed approach the choice of the simplices is optimistically guided by one between two approximating objective functions, and the number of additional binary variables needed by a straightforward implementation drops to only $\sum_{l=1}^L (n_l - 1)$. The method allows the use of recent methods for representing such a partition with a logarithmic number of constraints and binary variables. We show theoretical properties of the approximating functions, and provide computational evidence of the impact of the method when embedded in MILP models.

Optimization conditions in multiobjective optimization
Organizer/Chair Akhtar Khan, Rochester Institute of Technology - Invited Session

Qinghong Zhang, Northern Michigan University [with G. J. Zalmai] Efficiency conditions for semi-infinite multiobjective optimization problems

In this study, we present a theorem of the alternative concerning an infinite system of equalities and inequalities, and then, utilizing this result and the concepts of Dini and Hadamard directional derivatives and differentials, we establish a set of Karush-Kuhn-Tucker-type necessary efficiency conditions under the generalized Abadie and Guignard constraint qualifications for a semi-infinite multiobjective optimization problem. Furthermore, we briefly discuss the relevance and applicability of the necessary efficiency results to some semi-infinite multiobjective optimization problems, including a nonclassical problem in the calculus of variations with an infinite number of isoperimetric-type equality and inequality constraints, and problems involving support functions, arbitrary norms, and positive semidefinite quadratic forms.

Akhtar Khan, Rochester Institute of Technology Second-order optimality conditions and sensitivity analysis in set-valued optimization

This talk will focus on new second-order optimality conditions and sensitivity analysis in set-valued optimization problems. Second-order contingent derivatives and second-order asymptotic derivatives will be used to give optimality conditions and sensitivity analysis. Our second-order results recover a number of known first order optimality conditions and results from sensitivity analysis as special cases. Numerous examples will be presented to explain the main ideas.

Baanamuere Jemutia, Rochester Institute of Technology [with Fabio Rachli] Regularization of stochastic variational inequalities and comparison of f_1 and a sample-path approach for network problems

The talk will focus on recent results on stochastic variational inequalities by using regularization techniques. We will also present a comparison between our approach to stochastic variational inequalities and another approach used extensively in the literature. Two small scale network equilibrium problems will be discussed in detail to better illustrate the conceptual difference between the two approaches as well as the computational methods.

Decomposition and relaxation methods
Chair Oleg Burbakov, Linköping University

Quentin Louveaux, University of Liège [with Bernard Biauguet, Damien Ernst, Raphaël Fontenot] Relaxation schemes for the evaluation of a policy in batch mode reinforcement learning

We study the min max optimization problem introduced for computing policies for batch mode reinforcement learning in a deterministic setting. First, we show that this problem is NP-hard. In the two-stage case, we provide two relaxation schemes. The first relaxation scheme works by dropping some constraints in order to obtain a problem that is solvable in polynomial time. The second relaxation scheme, based on a Lagrangian relaxation where all constraints are dualized, leads to a conic quadratic programming problem. We also theoretically prove and empirically illustrate that both relaxation schemes provide better results than those given previously for the same problem.

Oleg Burbakov, Linköping University [with John Dunn, Mike Kalish] An approach to solving decomposable optimization problems with coupling constraints
We consider a problem of minimizing $f_1(x) + f_2(y)$ over $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ subject to a number of extra coupling constraints of the form $g_1(x)g_2(y) \geq 0$. Due to these constraints, the problem may have a large number of local minima. For any feasible combination of signs of $g_1(x)$ and $g_2(y)$, the coupled problem is decomposable, and the resulting two problems are assumed to be easily solved. An approach to solving the coupled problem is presented. We apply it to solving coupled monotonic regression problems arising in experimental psychology.

Optimality conditions II
Chair Alexander Strekalovskiy, Institute for System Dynamics & Control Theory, Siberian Branch of Russian Academy of Sciences

Mourad Naffouri, ESST Tunisie [with Adenrashen Bouskicha, Mahnoub Dallal] On the second order optimality conditions for optimization problems with inequality constraints
A non-linear optimization problem with inequality constraints can be converted into a new optimization problem where equality constraints are increased. This is a Valentine method for finite dimensional optimization. We review second order optimality conditions for optimization problems with inequality constraints. However, classical optimization theory and methods do not provide tools to escape stationary critical points. We consider complementarity problems, bivale optimization problems, which can be solved by convex optimization methods and convex optimization methods applied to nonconvex problems. An optimization problem may have a global solution trapped at a local extremum or even a critical point depending on a starting point. So, the nonconvexity hidden or explicit, classical optimization methods allow to obtain a global solution through, say, a number of critical points. In such a situation we advanced another approach the core of which is composed by global optimization conditions (GOC) for principal classes of d.c. programming problems. Furthermore, several special search methods (MGIS) have been developed. Such an approach should be really efficient and allows to apply suitable package as X-Press, GPLEX etc.

Fast gradient methods for nonlinear optimization and applications II
Organizer/Chair William Hager, University of Florida - Invited Session

Ya-Feng Liu, Chinese Academy of Sciences [with Yu-Hong Dai, Zhi-Quan Luo] Max-min fairness linear transceiver design for a multi-user MIMO interference channel
Consider the max-min fairness linear transceiver design problem for a multi-user multi-input multi-output (MIMO) interference channel. When the channel knowledge is perfectly known, this problem can be formulated as the maximization of the minimum signal to interference plus noise ratio (SINR) utility subject to individual power constraints at each transmitter. We prove in this paper that, if the number of antennas is at least two at each transmitter (receiver), we have established a set of target SINR levels that is weakly NP-hard. We then propose two iterative algorithms to solve the max-min fairness linear transceiver design problem. The transceivers generated by these algorithms monotonic improve the min-rate utility and are guaranteed to converge to a stationary solution. The efficiency and performance of these proposed algorithms are empirically illustrated.
A primal-dual active set algorithm for nonlinear optimization with polynomial constraints

A primal-dual active set algorithm is developed for nonlinear optimization with polynomial constraints. The algorithm consists of a non-monotone gradient projection phase implemented by dual active set techniques, an unconstrained optimization phase in the subspace determined by the active set, and a set of rules for branching between the two phases. Global convergence to a stationary point is established. For a nondegenerate stationary point, the algorithm eventually reduces to an unconstrained optimization in a subspace without restarts. Similarly, for a degenerate stationary point where the strong second-order sufficient optimality condition holds, the algorithm eventually reduces to unconstrained optimization in a subspace. A specific implementation of the algorithm is given which exploits a new dual active set algorithm for the gradient projection step and the conjugate gradient algorithm CO_PDESCENT for unconstrained optimization.

A perfect example for the BFGS method

Consider the BFGS quasi-Newton method applied to a general non-convex function that has continuous second derivatives. This paper aims to construct a four-dimensional example such that the BFGS method need not converge. The example is perfect in the following sense: (a) All the step sizes are exactly equal to one; (b) the unit step size is the unique minimizer of each line search function. Hence the example also applies to the global line search and the Armijo line search that always picks the first local minimizer; (c) The objective function is polynomial and hence is indefinitely continuously differentiable. If relaxing the convexity requirement of the line search function, namely, (b), we are able to construct a relatively simple polynomial example.

Optimization in energy systems

Stochastic equilibria in energy markets II

Organizer/Chair Daniel Ralph, University of Cambridge - Invited Session

Juan Pablo Luna, Instituto de Matemática Pura e Aplicada – IMPA (with Claudia Sagastizábal, Mikhail Solodov)

Finding equilibrium prices for energy markets with clearing conditions

Energy markets often involve a large number of agents, responsible for production, transportation, storing, or consumption of items such as generated power, distributed energy, stored gas. We analyze an equilibrium model for a market whose agents seek to maximize profits by selling items through a network at a price determined by market clearing. This type of market can be modeled as a large complementarity problem obtained by gathering the agents profit-maximization conditions together with the market-clearing relation. We consider an alternative model formulated as a generalized Nash equilibrium problem, with agents seeking to minimize costs instead of maximizing profits. Interestingly, this alternative formulation turns out to be equivalent to the more common complementarity model mentioned above. At the same time, it reduces substantially the size of the variational problem and is amenable to decomposition schemes, thus making it possible to consider more realistic situations dealing, for example, with uncertainty and risk for large gas or power networks.

Generation capacity investments in electricity markets: Perfect competition

We focus on perfectly competitive electricity markets with alternative resource adequacy mechanisms: with VOLL pricing, additional capacity market, and operating-reserve pricing. We model each firm’s problem as a two-stage problem where generation capacities are instated in the first stage and generation takes place in future spot market at the second stage. When future spot market conditions are not known in advance (i.e., uncertain demand), we have a stochastic equilibrium model. We assess the extent to which these stochastic equilibrium models can be cast into a two-stage stochastic program. In case of all the market mechanisms except operating-reserve pricing, the equilibrium point can be found by solving a two-stage stochastic program. This provides the prevalence of stochastic programming for solving stochastic equilibrium models. For operating-reserve pricing, while the formulation of an equivalent stochastic optimization problem is possible when operating-reserves are based on observed demand, this simplicity is lost when operating-reserves are based on installed capacities. We illustrate how all these models can be numerically tackled by using the framework of sample path method.

Risk averse long term capacity equilibria: An optimization formulation extending MARKAL

Linear Programming (LP) and other optimization models are standard & useful for long term capacity equilibria, eg, MARKAL for energy capacity equilibria. Such models:

- assume Perfect competition
- can handle uncertainty via risk neutral valuation, i.e., expectation with respect to given probability density.

Our main result is that risk aversion can be included in LP/optimization models for long term capacity equilibria:

- assuming Perfect competition
- where valuation of uncertain assets is modelled by Coherent Risk Measures
- by using financial securities which are traded in a Complete Risk Market

Optimization in energy systems

MPEC problems and market coupling

Chair Daniel Hoppmann, DIW Berlin

Bertrand Cornélusse, n-Side (with Yves Langer, Gilles Meyer, Gilles Scouvaut, Mathieu Van Vyve)

Coupling European day-ahead electricity markets with COSMOS

Market coupling allows matching orders submitted by participants of several electricity markets while satisfying network constraints. It mimics the economic welfare of the whole system instead of modeling each market interconnection capacity. Several types of orders are available, including “block orders” that must either be accepted in full or rejected. This problem translates into a MIGP with complicating constraints. Maximizing welfare subject to market clearing and the line search that always picks the first local minimizer; (c) The objective function is polynomial and hence is indefinitely continuously differentiable. If relaxing the convexity requirement of the line search function, namely, (b), we are able to construct a relatively simple polynomial example.

Linear clearing prices in non-convex european day-ahead electricity markets

The European power grid can be divided into several market areas where the price of electricity is determined in a day-ahead auction. Market participants can generate continuous and combinatorial orders with associated quantities given the prices. The goal of our auction is to maximize the economic surplus of all participants subject to transmission constraints and the existence of linear prices. In general, linear prices do not exist in the presence of non-convex constraints. Therefore we enforce the existence of linear prices such that no one incurs a loss and only combinatorial orders might see a not realized gain. The resulting model is an MPEC that can not be solved efficiently by standard solvers. We present an exact algorithm and a fast heuristic for this type of problem. Both algorithms decompose the MPEC into a master MIP and a price subproblem (LP). The modeling technique and the algorithms are applicable to all MIP based combinatorial auctions.

Approximating unit commitment using mathematical programming under equilibrium constraints

Modeling the electricity market and computing optimal dispatch is difficult due to many specific features of the power sector, such as unit commitment (i.e., binary decision variables), non-linear cost functions due to the varying efficiency of a power plant contingent on capacity utilization, and other engineering constraints. Models that capture these aspects grow quickly in complexity and are usually intractable in large-scale applications. Hence, researchers frequently resort to linear models. This, however, raises the question of choosing the parameters for a linear model to describe a highly non-linear interrelation as accurately as possible. We propose a mathematical program under equilibrium constraints (MPEC) to solve this problem; it minimizes the “distance” between a complex unit commitment model (mixed integer non-linear
program, MINLP), and a linear mixed complementarity program (MCP) by setting the parameters of the MCP accordingly. This problem is applied to several data sets and time horizons to derive an understanding of the sensitivity of the obtained parameters. We conclude that our approach offers a feasible path to calibrate linear electricity market models.

Robust iterative solvers for a class of PDE-constrained optimization problems

In this talk we discuss the construction and analysis of robust solution techniques for saddle point problems with a natural 2-by-2 structure where the left upper and the right lower block are different mass matrices. For these systems, solvers are discussed. Saddle point systems of this structure are, e.g., optimality systems of optimal control problems where the observation domain differs from the control domain or the linearized systems resulting after applying a semi-smooth Newton method to the nonlinear optimality systems of optimal control problems with inequality constraints on the control or the state. As examples we discuss the distributed elliptic optimal control problem and the distributed optimal control problem for the Stokes equations. Numerical examples are given which illustrate the theoretical results.

Reduced order models in preconditioning techniques

The main effort of solving a PDE constrained optimization problem is devoted to solving the corresponding large scale linear system, which is usually sparse and ill conditioned. As a result, a suitable Krylov subspace solver is favorable, if a proper preconditioner is embedded. Other than the commonly used block preconditioners, we exploit knowledge of proper orthogonal decomposition (POD) for preconditioning and add some interesting features. Numerical results on nonlinear test problems are presented.

Stochastic collocation for optimal control problems with stochastic PDE constraints

The use of stochastic collocation schemes for the solution of optimal control problems, constrained by stochastic partial differential equations (SPDE), is presented. Here, SDP depends on random data and accordingly, the randomness will propagate to the states of the system, whereas the control is assumed to be deterministic. There exist different efficient numerical schemes for the solution of SPDE, one of them is the stochastic collocation method, which is based on the generalized polynomial chaos. For the minimization of the constrained optimization problems we combine the stochastic collocation method with a gradient descent method as well as a sequential quadratic program (SQP). In the presented work, different optimization problems are considered, i.e., we define different objective functions of tracking type to show different application possibilities. The functions involve several higher order moments of the random states as well as classical regularization of the control. The developed methods are compared to the widely used Monte Carlo method. Numerical results illustrate the performance of the new optimization approach with stochastic collocation.

Claudia Schillings, University Trier (with Volker Schulz)

One influence of robustness measures on shape optimization with stochastic uncertainties

The unavoidable presence of uncertainties poses several difficulties to the numerical treatment of optimization tasks. In this talk, we discuss a general framework attacking the additional computational complexity of the treatment of uncertainties with optimization problems. Appropriate measure of robustness and a proper treatment of constraints to reformulate the underlying deterministic problem are investigated. In order to solve the resulting robust optimization problems, we propose efficient discretization techniques of the probability space as well as algorithmic approaches based on multiple-setpoint ideas in combination with one-shot methods. Finally, numerical results considering optimal aerodynamic design under shape uncertainties will be presented.

Matthias Heinrenschloss, Rice University

A trust-region based adaptive stochastic collocation method for PDE constrained optimization with uncertain coefficients

Many optimization problems in engineering and science are governed by partial differential equations (PDEs) with uncertain parameters. Although such problems can be formulated as optimization problems in Banach spaces and derivative based optimization methods can in principle be applied, the numerical solution of these problems is more challenging than the solution of deterministic PDE constrained optimization problems. The difficulty is that the PDE solution is a random field and the numerical solution of the PDE requires a discretization of the PDE in space/time as well as in the random variables. As a consequence, these optimization problems are substantially larger than the already large deterministic PDE constrained optimization problems.

In this talk we discuss numerical solution of such optimization problems using stochastic collocation methods. We explore the structure of this method in gradient and Hessian computations. We use a trust-region framework to adapt the collocation points based on the progress of the algorithms and structure of the problem. Convergence results are presented. Numerical results demonstrate significant savings of our adaptive approach.

John Pearson, University of Oxford

Iterative solution techniques for Stokes and Navier-Stokes control problems

The development of efficient iterative methods for the solution of PDE-constrained optimization problems is an area of much recent interest in computational mathematics. In this talk, we discuss preconditioned iterative methods for the Stokes and Navier-Stokes control problems, two of the most important problems of this type in fluid dynamics. We discuss the Krylov subspace methods used to solve the matrix systems involved, develop the relevant preconditioners using the theory of saddle point matrices, and present analytical and numerical results to demonstrate the effectiveness of our proposed preconditioners in theory and practice.

Ekkehard Sachs, University of Trier (with Xuancan Ye)

Reduced order models in preconditioning techniques

The main effort of solving a PDE constrained optimization problem is devoted to solving the corresponding large scale linear system, which is usually sparse and ill conditioned. As a result, a suitable Krylov subspace solver is favorable, if a proper preconditioner is embedded. Other than the commonly used block preconditioners, we exploit knowledge of proper orthogonal decomposition (POD) for preconditioning and add some interesting features. Numerical results on nonlinear test problems are presented.

Hanne Tørseter, Jacobs University & Fraunhofer MEVIS (with Robert Kirkby, Tobias Preusser, Dongbin Xiu)

Stochastic collocation for optimal control problems with stochastic PDE constraints

The use of stochastic collocation schemes for the solution of optimal control problems, constrained by stochastic partial differential equations (SPDE), is presented. Here, SDP depends on random data and accordingly, the randomness will propagate to the states of the system, whereas the control is assumed to be deterministic. There exist different efficient numerical schemes for the solution of SPDE, one of them is the stochastic collocation method, which is based on the generalized polynomial chaos. For the minimization of the constrained optimization problems we combine the stochastic collocation method with a gradient descent method as well as a sequential quadratic program (SQP). In the presented work, different optimization problems are considered, i.e., we define different objective functions of tracking type to show different application possibilities. The functions involve several higher order moments of the random states as well as classical regularization of the control. The developed methods are compared to the widely used Monte Carlo method. Numerical results illustrate the performance of the new optimization approach with stochastic collocation.

Claudia Schillings, University Trier (with Volker Schulz)

One influence of robustness measures on shape optimization with stochastic uncertainties

The unavoidable presence of uncertainties poses several difficulties to the numerical treatment of optimization tasks. In this talk, we discuss a general framework attacking the additional computational complexity of the treatment of uncertainties with optimization problems. Appropriate measure of robustness and a proper treatment of constraints to reformulate the underlying deterministic problem are investigated. In order to solve the resulting robust optimization problems, we propose efficient discretization techniques of the probability space as well as algorithmic approaches based on multiple-setpoint ideas in combination with one-shot methods. Finally, numerical results considering optimal aerodynamic design under shape uncertainties will be presented.

Matthias Heinrenschloss, Rice University

A trust-region based adaptive stochastic collocation method for PDE constrained optimization with uncertain coefficients

Many optimization problems in engineering and science are governed by partial differential equations (PDEs) with uncertain parameters. Although such problems can be formulated as optimization problems in Banach spaces and derivative based optimization methods can in principle be applied, the numerical solution of these problems is more challenging than the solution of deterministic PDE constrained optimization problems. The difficulty is that the PDE solution is a random field and the numerical solution of the PDE requires a discretization of the PDE in space/time as well as in the random variables. As a consequence, these optimization problems are substantially larger than the already large deterministic PDE constrained optimization problems.

In this talk we discuss numerical solution of such optimization problems using stochastic collocation methods. We explore the structure of this method in gradient and Hessian computations. We use a trust-region framework to adapt the collocation points based on the progress of the algorithms and structure of the problem. Convergence results are presented. Numerical results demonstrate significant savings of our adaptive approach.

John Pearson, University of Oxford

Iterative solution techniques for Stokes and Navier-Stokes control problems

The development of efficient iterative methods for the solution of PDE-constrained optimization problems is an area of much recent interest in computational mathematics. In this talk, we discuss preconditioned iterative methods for the Stokes and Navier-Stokes control problems, two of the most important problems of this type in fluid dynamics. We discuss the Krylov subspace methods used to solve the matrix systems involved, develop the relevant preconditioners using the theory of saddle point matrices, and present analytical and numerical results to demonstrate the effectiveness of our proposed preconditioners in theory and practice.

Ekkehard Sachs, University of Trier (with Xuancan Ye)

Reduced order models in preconditioning techniques

The main effort of solving a PDE constrained optimization problem is devoted to solving the corresponding large scale linear system, which is usually sparse and ill conditioned. As a result, a suitable Krylov subspace solver is favorable, if a proper preconditioner is embedded. Other than the commonly used block preconditioners, we exploit knowledge of proper orthogonal decomposition (POD) for preconditioning and add some interesting features. Numerical results on nonlinear test problems are presented.
that can be used by an optimization algorithm to solve the problem. Although the original input process is modeled with an periodic autoregressive model, by making a transformation we can reduce the input process to one that is stage-wise independent. That in turn allows us to proceed with generating scenarios stage-by-stage following the approach in Mirrlees and Pflug (2007). The algorithm we propose hinges on the stage-wise independence property and consists of two phases: first, we generate a scenario tree where the distribution in each stage is approximated by a discrete distribution with large number of points; then, we apply a reduction method to find a distribution with smaller support that minimizes the Wasserstein distance to that discrete distribution. We show how this minimization problem can be solved with a structured binary linear program. Some numerical results are presented to illustrate the ideas.

Stochastic optimization

PDE constrained stochastic optimization

Organizer/Chair Rüdiger Schultz, University of Duisburg-Essen - Invited Session

Rüdiger Schultz, University of Duisburg-Essen (with Sergio Conti, Harald Held, Martin Pach, Martin Runggaldier)

Shape optimization under uncertainty via stochastic optimization

Shape optimization with linearized elasticity and stochastic loading is put into the framework of two-stage stochastic programming. Principal model set ups, both risk neutral and risk averse, are discussed. Outlines of solution procedures and some computational experiments complete the talk.

Benedikt Gehke, Bonn University

A two-scale approach for risk averse shape optimization

In optimal control problems driven by stochastic differential equations, the detection of optimal (Markovian) decision rules is a very challenging task. Explicit solutions can be found in only very few cases by considering the corresponding Hamilton–Jacobi–Bellman equation. Thus numerical methods, e.g., based on Markov chains, have attracted great interest.

In this contribution, we introduce a new methodology for solving continuous finite-horizon stochastic optimal control problems. We utilize ideas for approximating stochastic differential equations within the framework of Polynomial Chaos and expand this to reformulate stochastic optimal control problems directly into deterministic ones. This allows us to use Bock’s direct multiple shooting method, a state of the art simultaneous method to solve optimization and simulation tasks at the same time. We implement different approaches to preserve the feedback character of the optimal decision rules. Numerical examples illustrate this new methodology and show the validity of the developed reformulations.

Tony Huynh, University of Heidelberg (with Sebastian Sagot)

Solving stochastic optimal control problems by a polynomial chaos approach

In optimal control problems driven by stochastic differential equations, the detection of optimal (Markovian) decision rules is a very challenging task. Explicit solutions can be found in only very few cases by considering the corresponding Hamilton–Jacobi–Bellman equation. Thus numerical methods, e.g., based on Markov chains, have attracted great interest.

In this contribution, we introduce a new methodology for solving continuous finite-horizon stochastic optimal control problems. We utilize ideas for approximating stochastic differential equations within the framework of Polynomial Chaos and expand this to reformulate stochastic optimal control problems directly into deterministic ones. This allows us to use Bock’s direct multiple shooting method, a state of the art simultaneous method to solve optimization and simulation tasks at the same time. We implement different approaches to preserve the feedback character of the optimal decision rules. Numerical examples illustrate this new methodology and show the validity of the developed reformulations.

Ferdinand Schäfer, University of Duisburg-Essen (with Christa Büsing)

Telecommunications & Networks

Robust network design and applications

Organizer/Chair Christian Raack, Zuse Institute Berlin - Invited Session

Agostino Agra, University of Aveiro (with Marielle Christiansen, Reza Figliopolo, Lars Hordt, Michael Pors, Cristina Requejo)

The robust vehicle routing problem with time windows

This work addresses the robust vehicle routing problem with time windows. We are motivated by a problem that arises in maritime transportation where delays are frequent and should be taken into account. Our model contains entities that are feasible for all values of the travel times in a predetermined uncertainty polytope, which yields a robust optimization problem. We propose two new formulations for the robust problem, each based on a different robust approach. The first formulation extends the well-known resource inequalities formulation by employing robust programming with recourse. We propose two techniques, which, using the structure of the problem, allow to reduce significantly the number of extreme points of the uncertainty polytope. The second formulation generalizes a path inequalities formulation to the uncertain context. The uncertainty appears implicitly in this formulation, so that we develop a new cutting plane technique for robust combinatorial optimization problems with complicated constraints. In particular, efficient separation procedures are discussed. We compare the two formulations on maritime transportation instances.

Sara Martia, IASI-CNR

The robust network loading problem

The Robust Network Loading (RNL) problem is a generalization of the well known Network Loading (NL) problem. Given a graph with capacity installation costs for the edges, the RNL problem consists of choosing minimum cost integer capacities to serve all the demands belonging to a given polyhedron of feasible traffic matrices. If the routing scheme must be the same for all the matrices, it is called static or oblivious; if it can be changed according to the matrix, it is called dynamic. If only the point-to-point demand in the matrix must be served using a single path, the flows are called unsplittable, otherwise they are said to be splittable. In this talk we present an algorithm for solving the RNL with dynamic routing and splittable flows and a preliminary comparison between the static and the dynamic approach.

Fabio D'Andrea Giovanni, Zuse Institute Berlin (ZIB) (with Christina Büsing)

On the adoption of multi-band uncertainty in robust network design

Handling uncertainty in the design of telecommunication networks has become a key challenge for leading network operators. Uncertainty in Network Design has been mainly tackled by the Bertsimas-Sim model (BS). However, the central assumption of BS that the deviation band of each uncertain parameter is single may be too restrictive in practice. Experience indeed suggests that relevant deviations also occur internally and asymmetrically over the band. Breaching the band into multiple sub-bands looks thus advisable.

In this work, we study the robust counterpart of an LP with uncertain coefficient matrix, when a multi-band uncertainty set is considered. We show that the robust counterpart corresponds to a compact LP formulation and that separating robustness cuts corresponds to solving a min-cost flow problem. Finally, we assess the effectiveness of our approach on realistic instances of robust network design problems considered by our industrial partners.

Variational analysis

Monotone operators

Organizer/Chair Radu Ioan Bot, Chemnitz University of Technology - Invited Session

Radu Ioan Bot, Chemnitz University of Technology (with Sorin-Mihai Grad)

Approximating the maximal monotonicity of bifunctions via representative functions

In this talk we provide an approach to maximal monotone bifunctions by means of the theory of representative functions. Thus we extend to nonreflexive Banach spaces recent results due to A. N. Iusen (Journal of Convex Analysis, 2011) and, respectively, N. Hadjisawas and H. Khatibzadeh (Optimization, 2010), where sufficient conditions guaranteeing the maximal monotonicity of bifunctions were introduced.

Marco Rocca, Bank of Italy (with Juan Enrique Martinez-Legaz)

On a surjectivity-type property of maximal monotone operators

In this paper we carry on the inquiry into surjectivity and related properties of maximal monotone operators initiated in Martinez-Legaz, Some generalizations of Rockafellar's surjectivity theorem (Pac. J. Optim., 2008) and Rocco and Martinez-Legaz, On surjective results for maximal monotone operators of type [D] (J. Convex Anal., 2011). Providing a correction to a previous result, we obtain a new generalization of the surjectivity theorem for maximal monotone operators.

Szilárd László, Babes-Bolyai University, Cluj-Napoca

Regularity conditions for the maximal monotonicity of the generalized parallel sum

We give several regularity conditions, both closeness and interior point type, that ensure the maximal monotonicity of the generalized parallel sum of two strongly representable maximal monotone operators, and we extend some recent results concerning on the same problem. Our results are based on the concepts of representative function and Fenchel conjugate, while the technique used to establish closeness type, respectively interior-point type regularity conditions, that ensure the maximal monotonicity of this generalized parallel sum, is stable strong duality. We give an useful application of the stable strong duality for the problem involving the function $f + A + g$, where f and g are proper, convex and lower semicontinuous functions, and A is a linear and continuous operator. We also introduce some new generalized infimal convolution formulas, and establish some results concerning on their Fenchel conjugate.
Index of names

(Marked page numbers refer to talks.)

Aardal, Karen Delft University of Technology Wed.2.H 2033, 176, 176
Abad, Carlos Columbia University Fri.2.H 1029, 259, 259
Abdessamad, Barbara IMB Université de Bourgogne Thu.1.H 2036, 199
Achterberg, Tobias IBM, 20 Wed.3.H 0110, 189
Adjaivishvili, David ETH Zurich Mon.3.MA 304, 117
Adler, Ilan University of California, Berkeley Wed.1.H 3008, 156
Afsharirad, Maria Ferdowsi University of Mashhad Wed.1.H 3013, 157
Agarwal, Rachit University of Illinois at Urbana-Champaign Mon.3.H 1008, 102
Aggoun, Abder KLS OPTIM Mon.3.H 3003A, 104
Ahmed, Faizan University of Twente Mon.3.H 0107, 109, 109
Aid, Rene EDF R&D Wed.1.MA 549, 165
Akatunali, Kerem The University of Strathclyde Fri.3.H 3503, 275
Ahmad, Iftikhar King Fahd University of Petroleum and Minerals Fri.1.H 1012, 247
Ahmad, Izhar Admir Ali Mit Tue.2.H 2038, 131
Ahmed, Faizan University of Twente Thu.1.H 2038, 200
Ahmetoglou, Feyzullah Giresun University Fri.2.H 0112, 125
Ahoosh, Masoud University of Vienna Mon.3.H 0107, 109, 109
Aida, Agostinho University of Aveiro Fri.3.MA 3503, 275
Agrawal, Sandro FU Berlin Fri.2.H 1029, 259
Angulo, Gustavo Georgia Institute of Technology Tue.1.H 2032, 120
Andruscu, Mihaei Argonne National Laboratory Mon.1.MA 144, 85 Tue.2.H 0112, 136 Tue.3.MA 041, 144
Andruscu, Mihaei Argonne National Laboratory Wed.2.MA 144, 182 Fri.3.MA 141, 274
Anjos, Miguel École Polytechnique de Montreal Mon.1.H 2038, 77 Tue.1.H 2053, 119 Tue.3.H 2036, 144 Wed.1.H 2036, 158
Anstreicher, Kurt University of Iowa Tue.3.MA 005, 149
Aoudia, Lamia University of Sciences and Technologies Houari Boumedien (U.S.T.H.B) Thu.2.H 3004, 211
Applegate, David AT&T Labs – Research Thu.1.H 3008, 198
Araujo, Joao Paulo Pontificia Universidade Catolica (PUC-Rio) Tue.1.H 3002, 127
Argiroffo, Gabriela Universidad Nacional de Rosario Fri.2.H 3004, 251
Armand, Paul XLIM Research Institute – University of Limoges Wed.1.H 0107, 164
Armentano, Vinicius Universidade Estadual de Campinas Tue.2.H 0106, 134
Arthanari, Tirtha The University of Auckland Thu.2.MA 043, 215, 215
Arulselvan, Ashwin TU Berlin Wed.3.H 3002, 196
Arunugasamy, Chandra Shekhar Central University of Tamil Nadu Wed.1.MA 313, 158, 158
Arvyadan, Aram Peoples’ Friendship University of Russia Tue.2.H 2035, 141 Thu.3.H 2035, 154
Asadpour, Arash New York University - Stern School of Business Thu.3.H 0106, 231, 231
Asgerseyn, Eyjolfur Reykjavik University Tue.2.MA 041, 128
Astrov, Sergey Design Technological Institute of Digital Techniques Mon.2.H 3002, 100
Audenaert, Pieter Ghent University – IBBT Wed.1.H 0111, 163
Auger, Anne INRIA Scalay-Ile-de-France Wed.3.H 3503, 187
Avex, Gennady University of Magdeburg Fri.2.H 2032, 257
Babaie-Kafaki, Sanan Semnan University Mon.3.H 0112, 109
Baes, Michel ETH Zurich Mon.3.H 1028, 112, 112
Bagchi, Deepak Infosys Ltd. Fri.1.MA 549, 247, 247
Bagirov, Adil University of Ballarat Fri.1.H 2051, 251
Baier, Robert University of Bayreuth Mon.1.H 1012, 83 Fri.1.H 2051, 251
Bajbar, Tomas Karlstrobe Institute of Technology Fri.3.MA 0110, 269
Balas, Egon Carnegie Mellon University Mon.3.MA 550, 117
Balasubramanian, Rumen INRIA and University of Rennes 1 Thu.1.H 2023, 121 Tue.2.H 2033, 134
Bailey, Sandro FU Berlin Fri.2.MA 376, 258
Bajouk, Mina University of Sao Paulo Fri.2.H 1010, 256
Barbosa, Rafael Universidade Federal do Ceará Wed.2.H 3005, 170
Bartak, Roman Charles University Wed.2.H 2033, 176, 176
Baraniuk, Richard G. Rice University Plenary lecture, 13
Baraniuk, Richard G. Rice University Plenary lecture, 13
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brenner, Ulrich</td>
<td>University of Bonn</td>
<td>Mon.1.H 3004, 74</td>
</tr>
<tr>
<td>Briceño-Arias, Luis</td>
<td>Universidad Tecnico Federico Santa Maria</td>
<td>Wed.2.H 0111, 177</td>
</tr>
<tr>
<td>Breden, Andreas</td>
<td>Universität der Bundeswehr München</td>
<td>Mon.3.H 3013, 102</td>
</tr>
<tr>
<td>Brooks, James</td>
<td>Virginia Commonwealth University</td>
<td>Fri.1.H 2013, 243</td>
</tr>
<tr>
<td>Brown, David</td>
<td>Duke University</td>
<td>Mon.1.MA 141, 85</td>
</tr>
<tr>
<td>Bruhn, Henning</td>
<td>Université Pierre et Marie Curie</td>
<td>Mon.3.H 3005, 101</td>
</tr>
<tr>
<td>Bruns, Florian</td>
<td>Universität Osnabrück</td>
<td>Wed.2.MA 004, 187</td>
</tr>
<tr>
<td>Brunsch, Tobias</td>
<td>University of Bonn</td>
<td>Thu.1.H 3021, 199</td>
</tr>
<tr>
<td>Buchanan, Austin</td>
<td>Texas A&M University</td>
<td>Wed.2.H 2053, 174</td>
</tr>
<tr>
<td>Buchheim, Christoph</td>
<td>TU Dortmund</td>
<td>Wed.3.MA 041, 197</td>
</tr>
<tr>
<td>Bueno, Luis Felipe</td>
<td>University of Sao Paulo</td>
<td>Fri.2.H 0110, 256</td>
</tr>
<tr>
<td>Bukhsh, Waqquas</td>
<td>University of Waterloo</td>
<td>Mon.1.MA 549, 247</td>
</tr>
<tr>
<td>Buyuktahtakin, Esra</td>
<td>Sabanci University</td>
<td>Thu.1.H 2032, 203</td>
</tr>
<tr>
<td>Byrka, Jaroslaw</td>
<td>University of Wroclaw</td>
<td>Tue.1.H 3008, 115</td>
</tr>
<tr>
<td>Bärmann, Andreas</td>
<td>FAU Erlangen-Nürnberg</td>
<td>Fri.2.H 2033, 257</td>
</tr>
<tr>
<td>Bárány, Gábor</td>
<td>Die University of Debrecen</td>
<td>Thu.1.H 2053, 201, 202</td>
</tr>
<tr>
<td>Burdakov, Oleg</td>
<td>Linköping University</td>
<td>Fri.3.H 0107, 273, 272</td>
</tr>
<tr>
<td>Burer, Samuel</td>
<td>University of Iowa</td>
<td>Thu.2.MA 041, 218</td>
</tr>
<tr>
<td>Burgdorf, Sabine</td>
<td>École Polytechnique Fédérale de Lausanne</td>
<td>Fri.1.H 2036, 240</td>
</tr>
<tr>
<td>Butenko, Sergey</td>
<td>Texas A&M University</td>
<td>Wed.2.H 2053, 174</td>
</tr>
<tr>
<td>Butulb, Kerem</td>
<td>Sabanci University</td>
<td>Thu.2.H 3002, 222</td>
</tr>
<tr>
<td>Buyuktahtakin, Esra</td>
<td>Wichita State University</td>
<td>Fri.2.H 2033, 257</td>
</tr>
<tr>
<td>Byrka, Jaroslaw</td>
<td>University of Wroclaw</td>
<td>Tue.1.H 3008, 115</td>
</tr>
<tr>
<td>Bärmann, Andreas</td>
<td>FAU Erlangen-Nürnberg</td>
<td>Fri.2.H 2033, 252</td>
</tr>
<tr>
<td>Bérczi, Krisztina</td>
<td>Eötvös Loránd University, Budapest</td>
<td>Tue.2.H 3013, 129</td>
</tr>
<tr>
<td>Büsing, Christina</td>
<td>RWTH Aachen</td>
<td>Mon.2.H 3013, 89</td>
</tr>
<tr>
<td>Büttikofer, Stephan</td>
<td>Institute of Data Analysis and Process Design,</td>
<td>Fri.2.H 0107, 259</td>
</tr>
<tr>
<td>Büttner, Sabine</td>
<td>University of Kaiserslautern</td>
<td>Thu.1.H 3002, 209</td>
</tr>
<tr>
<td>Cacciani, Valentina</td>
<td>University of Bologna</td>
<td>Fri.1.H 2033, 244</td>
</tr>
<tr>
<td>Cada, Roman</td>
<td>University of West Bohemia</td>
<td>Fri.2.MA 550, 261, 261</td>
</tr>
<tr>
<td>Cai, Xingju</td>
<td>Nanjing University</td>
<td>Fri.3.MA 313, 266</td>
</tr>
<tr>
<td>Caines, Peter</td>
<td>McGill U.</td>
<td>Mon.2.MA 043, 92</td>
</tr>
<tr>
<td>Calinescu, Melania</td>
<td>VU University Amsterdam</td>
<td>Wed.2.MA 042, 179</td>
</tr>
<tr>
<td>Call, Mikael</td>
<td>Linköping University</td>
<td>Thu.3.H 3012, 226</td>
</tr>
<tr>
<td>Candes, Emmanuel</td>
<td>Stanford University</td>
<td>Mon.2.H 1028, 98</td>
</tr>
<tr>
<td>Canto dos Santos, Jose</td>
<td>Unisinos - Brazil</td>
<td>Mon.2.MA 550, 97</td>
</tr>
<tr>
<td>Canzar, Stefan</td>
<td>Johns Hopkins University</td>
<td>Wed.2.MA 376, 174</td>
</tr>
<tr>
<td>Caragiannis, Ioannis</td>
<td>University of Patras & CTI</td>
<td>Wed.2.MA 043, 174</td>
</tr>
<tr>
<td>Caragiani, Constantine</td>
<td>The University of Texas at Austin</td>
<td>Thu.2.MA 005, 214</td>
</tr>
<tr>
<td>Carbonneau, Réal</td>
<td>GÉRAD and HEC Montréal [Université de Montréal]</td>
<td>Thu.1.H 3012, 198, 198</td>
</tr>
<tr>
<td>Cardona, Carlos</td>
<td>IBM Research – Brazil</td>
<td>Tue.3.H 0106, 148</td>
</tr>
<tr>
<td>Carello, Giuliana</td>
<td>Politecnico di Milano</td>
<td>Fri.1.H 3002, 250</td>
</tr>
<tr>
<td>Carfi, David</td>
<td>University of California at Riverside</td>
<td>Thu.2.MA 043, 215</td>
</tr>
<tr>
<td>Carnes, Tim</td>
<td>Link Analytics</td>
<td>Tue.3.H 0111, 148</td>
</tr>
<tr>
<td>Carrasco, Rodrigo</td>
<td>Columbia University</td>
<td>Tue.2.MA 041, 128</td>
</tr>
<tr>
<td>Carreno, Oscar</td>
<td>XM S.A.E.S.P.</td>
<td>Tue.2.MA 550, 137</td>
</tr>
<tr>
<td>Carrizosa, Emilio</td>
<td>Universidad de Sevilla</td>
<td>Mon.3.H 1029, 108</td>
</tr>
<tr>
<td>Cartis, Coralia</td>
<td>University of Edinburgh</td>
<td>Thu.2.H 0107, 218</td>
</tr>
<tr>
<td>Casacca, Luciana</td>
<td>UNICAMP - University of Campinas</td>
<td>Thu.2.H 0110, 219</td>
</tr>
<tr>
<td>Castaneda Lozano, Robert</td>
<td>Swedish Institute of Computer Science (SICS)</td>
<td>Mon.3.H 3003A, 106</td>
</tr>
<tr>
<td>Castro, Pedro</td>
<td>Laboratório Nacional de Energia e Geologia (LNEG)</td>
<td>Mon.2.MA 005, 95</td>
</tr>
<tr>
<td>Catanzaro, Daniele</td>
<td>Université Libre de Bruxelles</td>
<td>Thu.2.H 3013, 212</td>
</tr>
<tr>
<td>Cayir, Beyanzur</td>
<td>Anadolu University</td>
<td>Wed.3.H 3012, 184, 184</td>
</tr>
<tr>
<td>Celebi, Emre</td>
<td>Kadir Has University</td>
<td>Fri.3.H 2033, 270</td>
</tr>
<tr>
<td>Celik, Melih</td>
<td>Georgia Institute of Technology</td>
<td>Fri.1.MA 144, 249</td>
</tr>
<tr>
<td>Cerisola, Santiago</td>
<td>Universidad Pontificia Comillas</td>
<td>Wed.2.MA 550, 180</td>
</tr>
<tr>
<td>Cerveira, Adelaide</td>
<td>UTAD</td>
<td>Thu.1.H 3012, 198</td>
</tr>
<tr>
<td>Cetinkaya, Etkin</td>
<td>Lehigh University</td>
<td>Wed.1.MA 004, 166</td>
</tr>
<tr>
<td>Ceyer, Volkan</td>
<td>École Polytechnique Fédérale de Lausanne</td>
<td>Mon.3.H 1012, 110</td>
</tr>
<tr>
<td>Chabbar, Raphael</td>
<td>PSR</td>
<td>Mon.1.MA 549, 83</td>
</tr>
<tr>
<td>Chakraborty, Deeparnab</td>
<td>Microsoft Research, India</td>
<td>Tue.1.H 3010, 114</td>
</tr>
<tr>
<td>Chandrasekaran, Venkat</td>
<td>Caltech</td>
<td>Tue.3.H 2038, 445</td>
</tr>
<tr>
<td>Chen, Bo</td>
<td>University of Warwick</td>
<td>Thu.2.H 3021, 212</td>
</tr>
<tr>
<td>Chen, Chandra</td>
<td>University of Illinois, Urbana-Champaign</td>
<td>Wed.1.H 3013, 157, 157</td>
</tr>
<tr>
<td>Chen, Jein-Shan</td>
<td>National Taiwan Normal University</td>
<td>Wed.1.MA 313, 158</td>
</tr>
<tr>
<td>Chen, Jian-Jia</td>
<td>KIT</td>
<td>Mon.2.H 3010, 87</td>
</tr>
<tr>
<td>Chen, Lijian</td>
<td>University of Louisville</td>
<td>Mon.3.MA 141, 112</td>
</tr>
<tr>
<td>Chen, Lin</td>
<td>University of Kiel</td>
<td>Fri.1.H 3004, 238</td>
</tr>
<tr>
<td>Chen, Richard</td>
<td>Sandia National Laboratories</td>
<td>Mon.2.MA 550, 97</td>
</tr>
<tr>
<td>Chen, Wen</td>
<td>The University of Western Australia</td>
<td>Wed.3.MA 313, 185, 185</td>
</tr>
<tr>
<td>Chen, Xiaojun</td>
<td>Hong Kong Polytechnic University</td>
<td>Semi-plenary lecture, 75</td>
</tr>
<tr>
<td>Chen, Yin</td>
<td>City University of Hong Kong</td>
<td>Fri.1.MA 005, 242, 242</td>
</tr>
<tr>
<td>Chen, Yudong</td>
<td>The University of Texas at Austin</td>
<td>Tue.2.MA 004, 138</td>
</tr>
<tr>
<td>Chen, Zhan-Tao</td>
<td>The Hong Kong Polytechnic University</td>
<td>Mon.3.H 2035, 174</td>
</tr>
<tr>
<td>Cheng, Cong</td>
<td>The Logistics Institute, Northeastern University</td>
<td>China</td>
</tr>
<tr>
<td>Cheng, Jiangang</td>
<td>IRI University of Paris-Sud</td>
<td>Thu.3.H 144, 236</td>
</tr>
<tr>
<td>Chekrouk, Michael</td>
<td>Los Alamos National Laboratory</td>
<td>Thu.1.H 3004, 197</td>
</tr>
<tr>
<td>Cheng, Yuen-Lam Vris</td>
<td>University of Waterloo</td>
<td>Tue.3.H 3005, 142</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Location</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Samuel Dreyer</td>
<td>Humboldt University</td>
<td>Berlin</td>
</tr>
<tr>
<td>Dominik Dorsch</td>
<td>RWTH Aachen University</td>
<td></td>
</tr>
<tr>
<td>Mahdi Doostmohammadi</td>
<td>University of Aveiro</td>
<td></td>
</tr>
<tr>
<td>Yiqiu Dong</td>
<td>Helmholtz Zentrum Muenchen</td>
<td></td>
</tr>
<tr>
<td>Zdenek Dostal</td>
<td>VSB-Technical University of Ostrava</td>
<td></td>
</tr>
<tr>
<td>Hongbo Dong</td>
<td>University of Wisconsin-Madison</td>
<td></td>
</tr>
<tr>
<td>Julian Duchi</td>
<td>University of California, Berkeley</td>
<td></td>
</tr>
<tr>
<td>Laurent Dumas</td>
<td>University of Versailles</td>
<td></td>
</tr>
<tr>
<td>Declan Durre</td>
<td>IBM Research</td>
<td></td>
</tr>
<tr>
<td>Jean-Pierre Dussault</td>
<td>Université de Sherbrooke</td>
<td></td>
</tr>
<tr>
<td>Paola Detti</td>
<td>University of Siena</td>
<td></td>
</tr>
<tr>
<td>Olivier Devolder</td>
<td>Université Catholique de Louvain (UCL)</td>
<td></td>
</tr>
<tr>
<td>Antoine Deza</td>
<td>McMaster University</td>
<td></td>
</tr>
<tr>
<td>Raul Diao</td>
<td>Institute of Computational Mathematics</td>
<td></td>
</tr>
<tr>
<td>Javier Díaz</td>
<td>University of Campinas</td>
<td></td>
</tr>
<tr>
<td>Italio Di Summa</td>
<td>Università degli Studi di Padova</td>
<td></td>
</tr>
<tr>
<td>Peter Diao, Rui</td>
<td>Institute of Computational Mathematics</td>
<td></td>
</tr>
<tr>
<td>Johann Bernoulli Institute</td>
<td>University of Groningen</td>
<td></td>
</tr>
<tr>
<td>Holger Diedam</td>
<td>Otto-von-Guericke-Universität Magdeburg</td>
<td></td>
</tr>
<tr>
<td>Denny Diehl</td>
<td>KU Leuven</td>
<td></td>
</tr>
<tr>
<td>Vasily Dikusar</td>
<td>Computing Centre</td>
<td></td>
</tr>
<tr>
<td>Raffaele Dimitroff</td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Holger Dippold</td>
<td>National University of Singapore</td>
<td></td>
</tr>
<tr>
<td>Holger Dirkse</td>
<td>GAMS Development Corporation</td>
<td></td>
</tr>
<tr>
<td>Karl Djdouanne</td>
<td>ZAK Technology</td>
<td></td>
</tr>
<tr>
<td>Nikolai Djemoufoe</td>
<td>Russian Academy of Sciences</td>
<td></td>
</tr>
<tr>
<td>Michael Dikyrov</td>
<td>Lancaster University</td>
<td></td>
</tr>
<tr>
<td>Dimitar Dimov</td>
<td>Interdisciplinary Center for Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>Andrey Dmitriy Drusvyatskiy</td>
<td>The University of Auckland</td>
<td></td>
</tr>
<tr>
<td>Christian Eberhard</td>
<td>RMIT University</td>
<td></td>
</tr>
<tr>
<td>Lea Epstein, Mariana</td>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>Elena Eliscu</td>
<td>Interdisciplinary Center for Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>Matthew Elliott</td>
<td>Microsoft Research</td>
<td></td>
</tr>
<tr>
<td>Jonas Ekblom</td>
<td>Linköping University</td>
<td></td>
</tr>
<tr>
<td>Adam Elithoud</td>
<td>MIT</td>
<td></td>
</tr>
<tr>
<td>Michael Engelhart</td>
<td>Interdisciplinary Center for Scientific Computing</td>
<td></td>
</tr>
<tr>
<td>Marina Epelman</td>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>Ioan Epstein, Leah</td>
<td>University of Haifa</td>
<td></td>
</tr>
<tr>
<td>Thoeris Erbs</td>
<td>DGF SUED</td>
<td></td>
</tr>
<tr>
<td>László Erdős</td>
<td>Swiss Institute of Banking and Finance, University of St. Gallen</td>
<td></td>
</tr>
<tr>
<td>Georg Engelke</td>
<td>Georgia Tech</td>
<td></td>
</tr>
<tr>
<td>Jennifer Erway</td>
<td>Wake Forest University</td>
<td></td>
</tr>
<tr>
<td>Laureano Escudero</td>
<td>Universidad de Chile</td>
<td></td>
</tr>
<tr>
<td>Daniel Espinoza</td>
<td>University of Chile</td>
<td></td>
</tr>
<tr>
<td>Miguel Evers</td>
<td>T Systems International GmbH</td>
<td></td>
</tr>
<tr>
<td>Karel Dostor</td>
<td>Oxfen Academy</td>
<td></td>
</tr>
<tr>
<td>Dominik Dorfik</td>
<td>University of Aveiro</td>
<td></td>
</tr>
<tr>
<td>Dominik Dorsch</td>
<td>RWTH Aachen University</td>
<td></td>
</tr>
</tbody>
</table>
Garing, Martin University of Liverpool
Tue.2 MA 043, 122

Gavrilovski, Alexei Norwegian University of Science and Technology
Thu.3 MA 141, 236

Gafuri, Mattheus SAS Institute
Wed.3.H 2032, 190

Galli, Laura University of Warwick
Wed.1 MA 042, 163

Gammath, Gerald Zuse Institute Berlin
Mon.3.H 1058, 106

Gams, Mette Technical University of Denmark
Thu.2.H 2032, 216

Gao, Xin King Abdullah University of Science and Technology (KAUST)
Fri.2 MA 376, 127

Garín, María University of the Basque Country, UPV/EHU
Tue.1 MA 376, 126

Garatti, Simone Politecnico di Milano
Thu.3 MA 141, 235

Garcia, Sergio Universidad Carlos III de Madrid
Mon.1.H 0136, 80

Garcia Ramos, Yboon Universidad Del Pacifico
Mon.3.H 1058, 106

Gar, Xin King Abdullah University of Science and Technology (KAUST)
Fri.2 MA 376, 127

Garcia Quiles, Sergio Universidad Carlos III de Madrid
Mon.1.H 0136, 80

Garmanjani, Rohollah University of Coimbra

Garnier, Angelos Imperial College London
Fri.1.H 0111, 177

Gao, Ashish Stanford University
Wed.2.H 0111, 177

Goel, Dagan Google Research
Mon.1.H 3008, 75

Goerigk, Marc Universität Göttingen
Thu.2 MA 004, 221

Göpel, Inge Technical University of Denmark
Tue.3 MA 376, 154

Goetzmann, Kai-Simon TU Berlin
Mon.3.H 1029, 109

Goffin, Jean-Louis McGill University
Fri.1.H 1012, 247

Gokce, Mahmut İzmir University of Economics
Wed.2.H 2013, 175

Gokgur, Burak İzmir University of Economics
Tue.3.H 3003A, 143

Goldberg, Andrew Microsoft Research
Wed.3.H 3021, 185

Goldberg, Noam Mathematics and Computer Science Division, Argonne National Laboratory
Wed.2 MA 041, 177, 177

Goldfarb, Donald Columbia University
Wed.2.H 1028, 181

Goldman, Michael CMAP Polytechnique
Tue.1.H 1012, 123

Goldman, Ralf University of Duisburg-Essen
Thu.3 MA 550, 234

Gollwitzer, Stefan University of Vienna
Wed.3.H 3002, 176

Goldstein, Eugene CEMI RAS
Wed.1 MA 043, 160

Gomadam, Ravindran Indian Statistical Institute
Thu.2 MA 043, 215

Goncharov, Vladimir Universidade de Evora
Fri.1.H 2051, 281

Goncharova, Elena Institute for System Dynamics and Control Theory, SB RAS
Tue.3.H 2035, 155

González-Brevis, Pablo University of Edinburgh

Gonzaga, Clovis Federal University of Santa Catarina – Brazil
Wed.3.H 2036, 186

González-Brevis, Pablo University of Edinburgh
Fri.2.H 2038, 253

Gonçalves, Rui University of Coimbra
Wed.2.H 2038, 253

González-Brevis, Pablo University of Edinburgh
Fri.2.H 2038, 254

Gonçalves, Raphael UFSC – LabPlan
Wed.2 MA 550, 138

Gorge, André University Paris-Sud, LRI
Thu.2.H 3012, 212

Gorissen, Bram Tilburg University
Tue.3 MA 042, 152

Gorka, Art Erskine College
Mon.2.H 1007, 95

Gott, Jun-Ya Chu University
Tue.1.H 3027, 119

Gould, Nicholas STFC Rutherford Appleton Laboratory
Tue.3.H 1100, 150

Gourvenec, Elena Institute for System Dynamics and Control Theory, SB RAS
Tue.3.H 2035, 155

Gourvenec, Laurent CNRS
Wed.2 MA 043, 122

Gouveia, João University of Coimbra
Wed.3.H 0107, 164

Gouveia, João University of Coimbra
Wed.2.H 1017, 178

Gouveia, João University of Coimbra
Fri.2.H 2038, 253

Gouveia, João University of Coimbra
Fri.2.H 2038, 254

Gouveia, João University of Coimbra
Fri.3.H 2028, 227

Goyal, Vineet Columbia University
Tue.1.MA 004, 125

Grad, Sorin-Mihai Technische Universität Darmstadt
Wed.3.H 2036, 186

Grad, Sorin-Mihai Chemnitz University of Technology
Fri.2.H 2051, 244

Granot, Daniel Sauder School of Business
Tue.2.H 1111, 135

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128

Granot, Daniel Sauder School of Business
Thu.2.H 3008, 128
Hernández Jiménez, María Beatriz Universidad Pablo de Olavide Thu.1.H 1029, 205
Herskovits, Jose COPPE / Federal University of Rio de Janeiro Tue.3.H 2036, 144
Hervet, Cédric Orange Labs / CNAM Mon.1.H 3002, 86
Herzog, Alexander Philipps-Universität Marburg Fri.1.MA 376, 244, 246
Herzog, Roland TU Chemnitz Mon.1.H 2035, 86 Wed.1.MA 415, 166 Fri.3.H 0111, 274
Heyde, Frank University of Graz Fri.1.H 1029, 264, 246
Hildebrand, Robert University of California, Davis Fri.2.H 2033, 257
Hildebrand, Roland Univ. Grenoble 1 / CNRS Thu.2.H 2038, 213
Hildenbrandt, Achim Universität Heidelberg Fri.1.H 3013, 239
Hildenbrandt, Regina Ilmenau Technical University Wed.1.MA 144, 167
Hillier, Benjamin Jüse Institute Berlin Thu.1.MA 549, 206
Hintermüller, Michael Humboldt-Universität zu Berlin, 1, 20 Tue.2.MA 313, 130 Tue.3.MA 041, 744 Tue.3.MA 313, 144
Hiriart-Urruty, Jean-Baptiste Paul Sabatier University (Toulouse III) Thu.3.H 3005, 245
Höhn, Wiebke TU Berlin Tue.3.MA 550, 170
Höhn, Ruth Georg-August-Universität Göttingen Fri.3.H 3005, 265
Hoang, Nam Dung Vietnam National University Hanoi Thu.3.H 2033, 230
Hoehn, Rolf UC Berkeley Tue.3.H 3012, 143, 143
Hochreiter, Ronald WU Vienna University of Economics and Business Thu.2.H 1058, 215
Hochstädtler, Winfried FernUniversität in Hagen Tue.1.H 3013, 116, 116
Hofer, Martin RWTH Aachen University Fri.3.MA 043, 268
Hoekstra, Ruben University of Twente Mon.3.H 3004, 101
Hoffmann, Peter TU Chemnitz Thu.3.H 3503, 227
Hoffmann, Sebastian Johannes Gutenberg-Universität Mainz Wed.2.H 0110, 174
Hofmann, Bernd TU Chemnitz Thu.1.H 2051, 210
Hokenmaier, Stephanie Linde AG Wed.3.MA 415, 194
Hoiland, Alan University College Cork Wed.3.H 3003A, 186, 186
Holm, Åsa Linköping University Mon.3.H 2033, 107
Holmberg, Kaj Linköping University Thu.3.MA 042, 231, 231
Holmberg, Pär Research Institute of Industrial Economics [IFN] Thu.3.MA 549, 233
Homem-de-Mello, Tito Universidade Adolfo Ibañez Fri.2.MA 141, 274
Hongchao, Zhang Louisiana State University Fri.2.MA 004, 260
Hoppe, Ronald University of Augsburg Tue.1.MA 415, 125
Hotta, Keisuke Bunkyo University Tue.1.H 2013, 120
Hougardy, Stefan University of Bonn Thu.2.H 3012, 129, 129
Houska, Boris Imperial College London Thu.2.MA 042, 139
Hu, Ming School of Informatics, Kyoto University Fri.1.MA 005, 242
Hu, Xudong Academy of Math and Systems Science, Chinese Academy of Sciences Fri.1.H 3004, 238
Huang, Chien-Chung Humboldt-University Thu.3.H 3005, 225
Huang, Wei TU Munich Fri.2.MA 041, 258
Huang, Wen-Lung National Chung Cheng University Mon.2.MA 144, 99
Huang, Xuexiang Chongqing University Thu.2.H 1029, 218, 218
Huang, Zheng-Hai Tianjin University Wed.1.H 0112, 163
Huang, Zhijie University of Pennsylvania Tue.2.H 3021, 130
Humana, Jesco Zuse Institute Berlin Tue.3.MA 550, 170
Hungerford, James University of Florida Mon.2.H 0107, 95
Hungerlander, Philipp Alpen-Adria-Universität Klagenfurt Mon.1.H 2038, 77
Huppmann, Daniela DIW Berlin Fri.3.MA 550, 273, 273
Husain, Iqbal Jaypee University of Engineering and Technology, Guna, M.P., India Fri.1.H 2035, 250
Huschto, Tony University of Heidelberg Fri.3.MA 144, 275
Huyer, Waltraud Universität Wien Thu.1.H 1012, 206, 206
Hähnel, Nikola TU Berlin Tue.2.H 3008, 129
Höhn, Weike TU Berlin Thu.2.H 3010, 210
Hömburg, Dietmar Weierstrass Institute for Applied Analysis and Stochastics Tue.2.MA 415, 138 Tue.3.MA 415, 151 Wed.1.MA 415, 166 Wed.2.MA 415, 180 Wed.3.MA 415, 194 Thu.1.MA 415, 207, 207
Hübner, Jens Leibniz Universität Hannover Wed.1.MA 141, 167
Hübner, Ruth Georg-August-Universität Göttingen Fri.3.H 3005, 265
Iancu, Dan Stanford University Tue.1.MA 004, 125 Wed.3.H 3027, 187 Thu.1.H 3027, 207
Ibrahim, Abada GDF SUEZ Thu.2.MA 549, 220
Imaizumi, Jun Toyo University Mon.1.H 3013, 75
Immorma, Nicole Northwestern University Fri.1.MA 043, 242
Ionescu, Lucian Department Information Systems Fri.1.MA 042, 245
Irlulappasamy, Jegaraman The Institute of Mathematical Sciences Tue.1.MA 041, 117
Iusem, Alfredo Instituto de Matemática Pura e Aplicada Mon.1.H 2051, 87 Wed.3.H 2035, 196
Iwata, Satoru Kyoto University Tue.3.H 3005, 142
Iyer, Krishnamurthy Stanford University Thu.1.MA 043, 297
Izmailov, Alexey Moscow State University Thu.2.H 2035, 223
Jadamba, Baasansuren Rochester Institute of Technology Fri.3.H 1029, 272
Jadbabaie, Ali University of Pennsylvania Wed.1.MA 005, 160
Jafarzisagh, Nahid RMIT University Thu.2.MA 376, 217
Jagabathula, Srikanth NYU Stern School of Business Thu.3.MA 144, 266
Jain, Kamal eBay Research Mon.1.H 3008, 75
Jain, Prateek Microsoft Research Lab Tue.3.H 1029, 249
Jain, Vikas Jaypee University of Engineering and Technology Wed.1.MA 043, 160, 161
Janka, Dennis Heidelberg University Mon.1.H 0112, 83
Jaraczewski, Manuel Helmut-Schmidt-Universität - Universität der Bundeswehr Hamburg Tue.2.H 0107, 136
Jargalsaikhan, Bolor University of Groningen Thu.1.H 2038, 200
Jarre, Florian Universität Düsseldorf Mon.2.H 2038, 70
Jarne, Florian Universität Düsseldorf Thu.2.H 1058, 236
Jaumard, Brigitte Concordia University Mon.3.H 3002, 113, 113
Jean-Alexis, Celia Université des Antilles et de la Guyane Mon.1.H 1012, 83
Fri.1.H 0107, 246, 187
Thu.3.H 3003A,
Mon.1.H 3004,
Mon.3.MA 550,
Thu.1.MA 550, 206
Wed.2.H 3021,
Thu.3.H 3010,
Wed.2.H 3003A,
Fri.2.H 3003A,
Thu.1.H 3004,
Wed.2.H 0111,
Wed.3.H 3013,
Mon.3.H 3002,
Mon.3.H 3021,
Fri.2.H 0107,
Thu.3.MA 313,
Thu.2.H 3027,
Fri.3.MA 141, 174
Thu.1.MA 3008,
Wed.3.H 2032,
Mon.2.H 0106, 94
Fri.1.H 2038,
Thu.3.MA 141,
Wed.2.H 1028,
Fri.3.H 0106,
Thu.3.MA 042, 245
Fri.1.H 3008, 88
Tue.1.H 3013, 116
Fri.3.H 3503, 275
Fri.3.H 3010, 264
Mon.1.H 3002, 86
Thu.3.H 3027, 228, 228
Mon.3.H 3021, 103
Thu.1.MA 550, 207
Thu.3.H 2032, 230
Thu.2.H 2032, 216
Thu.2.H 3032, 192
Wed.3.H 1017, 192
Wed.3.H 2032, 189, 189
Thu.1.H 2032, 203
Thu.2.H 3032, 216
Thu.3.H 3032, 230
Wed.3.H 2032, 189
Thu.1.H 2032, 203
Thu.2.H 3032, 216
Thu.3.H 3032, 230
Mon.3.H 0106, 14
Wed.3.H 2032, 189
Wed.3.H 2032, 189
Thu.1.H 2032, 203
Thu.2.H 3032, 216
Thu.3.H 3032, 230
Ma, Shiqian University of Minnesota
Wed.2.H 1028, 187, 181
Ma, Wing-Kin The Chinese University of Hong Kong
Thu.3.H 2034, 227
Maciel, Maria Universidad Nacional del Sur
Fri.1.H 0107, 246
Maculan, Nelson Federal University of Rio de Janeiro (UFRJ)
Thu.2.H 3005, 211
Madry, Aleksander EPFL
Thu.3.H 3010, 224
Magabaole, Joshua Joseph Ayo Babalola University, Ikeji-Arakeji
Mon.3.H 0106, 107
Maggioni, Francesca University of Bergamo
Thu.3.MA 141, 235
Magon, Victor École Polytechnique INRIA
Fri.1.H 2038, 240
Mahajan, Ashuhl Argonne National Lab
Thu.1.MA 043, 244
Mahdian, Mohammad Google
Thu.3.H 3005, 225
Maher, Stephen University of New South Wales
Fri.1.MA 042, 244, 245
Mahey, Philippe ISIMA – Université de Clermont-Ferrand
Mon.3.H 3002, 113
Mahjoub, Ridha Université Paris-Dauphine
Thu.3.H 3002, 236
Maksimenko, Aleksandr Yaroslavl State University
Wed.3.H 3013, 185
Malaguti, Enrico DEIS – University of Bologna
Wed.1.H 2032, 162
Malapert, Arnaud 135 CNRS – Université Nice Sophia Antipolis
Tue.1.H 3003A, 118
Malekian, Azarakhsh Massachusetts Institute of Technology
Wed.2.H 0111, 177
Fri.1.MA 043, 243
Malitsky, Yuri University College Cork
Thu.1.H 3003A, 200
Mannor, Shie Technion – Israel Institute of Technology
Thu.1.MA 141, 298
Marchetti-Spaccamela, Alberto Sapienza University of Rome
Thu.3.H 3013, 226
Marcia, Roummel University of California, Merced
Mon.3.H 0112, 109, 110
Marecek, Jakub IBM Research
Wed.3.H 3005, 184, 184
Margot, Francois Carnegie Mellon University, 20
Fri.1.MA 041, 245
Margulies, Susan Pennsylvania State University
Wed.2.MA 041, 177
Markakis, Vangelis Athens University of Economics and Business
Wed.2.MA 043, 174
Thu.1.MA 005, 201
Markov, Igor University of Michigan
Mon.1.H 3004, 74
Mars, Sonja TU Darmstadt
Thu.3.H 2033, 230
Marschall, Tobias Centrum Wiskunde & Informatica
Wed.2.MA 376, 276
Martin, Alexander FAU Erlangen-Nürnberg, 20
Tue.3.H 2013, 147
Thu.1.MA 550, 206
Martin, Denis Paul Scherrer Institute
Mon.3.MA 550, 110
Martin-Campo, F. Javier University Complutense of Madrid
Thu.2.MA 042, 186
Martineili, Rafael Pontificia Universidad Católica do Rio de Janeiro (PUC-Rio)
Fri.2.H 3012, 252, 252
Martinez, Laura Universidad de Vigo
Wed.2.H 3503, 172
Martin-Utrera, Alberto University Carlos III of Madrid
Wed.3.H 3027, 187
Martínez, José María University of Campinas
Wed.3.H 0107, 192
Thu.3.H 3003A, 227
Fri.1.H 0107, 246
Marín, Alfredo Universidad de Murcia
Tue.3.H 2033, 148
Mättig, Jeroen University of Ulm
Mon.2.H 3008, 88
Matsui, Yasuko Tokai University
Tue.1.H 3013, 116
Mattia, Sara ISI-CNR
Fri.3.H 3503, 275
Matuschke, Jannik TU Berlin
Fri.3.H 3010, 264
Maurer, Olaif TU Berlin
Mon.1.H 3002, 86
Mayer, Janos University of Zurich
Thu.3.H 3027, 228, 228
McCormick, Tom UBC Sauder School of Business
Mon.3.H 3021, 103
McKinnon, Ken Edinburgh University
Thu.1.MA 550, 207
McCay, Laura Virginia Commonwealth University
Mon.2.H 2013, 92
Medel, Fabian Universidad de Chile
Fri.2.H 3002, 263, 263
Medhi, Deep University of Missouri-Kansas City
Fri.3.H 3002, 250
Megow, Nicole Technische Universität Berlin
Mon.2.H 3021, 89
Wed.2.H 3010, 169
Thu.2.H 3010, 210
Fri.3.H 3010, 264
Mehta, Rahul Northwestern University
Fri.3.MA 141, 274
Mehta, Ruta IIT Bombay
Tue.3.MA 043, 146
Meng, Xiaoxuan City University of Hong Kong
Thu.2.H 3027, 214
Mephu Nguifo, Engelbert LIMOS, Clermont University, UBP, CNRS
Thu.1.MA 376, 203
Mestre, Julian University of Sydney
Fri.2.MA 376, 257
Meszaros, Csaba MTA SZTAKI
Wed.1.H 1058, 167
Meunier, Frédéric CERIMICS, École des Ponts
Mon.3.H 3005, 101, 101
Mevissen, Martin IBM Research Ireland
Mon.2.H 3503, 98
Meyer, Christian TU Dortmund
Mon.1.H 2035, 86
Thu.2.MA 313, 130
Thu.3.MA 313, 144
Meyerhenke, Henning Karlsruhe Institute of Technology
Wed.2.H 3021, 171
Meza, Juan UC Merced
Fri.3.H 3003A, 267
Michał, Dennis ETH Zurich
Mon.3.MA 005, 108
Michini, Carla Sapienza Università di Roma
Wed.2.H 2032, 175
Mierendorff, Konrad University of Zürich
Mon.3.MA 043, 195
Miettinen, Kaisa University of Jyvaskyla and KTH Royal Institute of Technology
Tue.2.H 1029, 135, 135
Mifflin, Robert Washington State University
Thu.3.H 1012, 233, 233
Migorski, Stanislav Jagiellonian University, Faculty of Mathematics and Computer Science
Tue.3.MA 313, 144
Miguel, Ian University of St Andrews
Wed.1.H 3003A, 159
Mijangos, Eugenio University of the Basque Country (UPV/EHU)
Tue.3.MA 144, 153
Milano, Michela University of Bologna, 20
Miller, Andrew Université Bordeaux 1
Thu.1.MA 005, 204
Miltonberger, Matthias Zuse Institute Berlin
Thu.3.H 2033, 231
Miracle, Sarah Georgia Institute of Technology
Tue.2.H 3021, 130
Mirokin, Vahab Google Research NYC
Thu.3.H 3010, 224
Mizraei, Samira Amir Kabir University of Technology (Tehran Polytechnic)
Fri.3.H 0106, 271
Mizrahi, Aboltoz Islamic Azad University of Karaj
Fri.3.MA 042, 271
Mishra, Bdmdev University of Liege
Tue.3.H 2038, 145
Mishra, Shashi Banaras Hindu University
Wed.2.H 1029, 178, 178
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wakolbinger, Tina</td>
<td>WU (Vienna University of Economics and Business)</td>
<td>183</td>
</tr>
<tr>
<td>Waki, Hayato</td>
<td>Kyushu University</td>
<td>201</td>
</tr>
<tr>
<td>Waechter, Andreas</td>
<td>Northwestern University, 20</td>
<td>251</td>
</tr>
<tr>
<td>Wachsmuth, Gerd</td>
<td>TU Dortmund University</td>
<td>127</td>
</tr>
<tr>
<td>Wachsmuth, Daniel</td>
<td>Universität Zürich</td>
<td>209</td>
</tr>
<tr>
<td>Voller, Zachary</td>
<td>Iowa State University</td>
<td>121</td>
</tr>
<tr>
<td>Vieira, Manuel</td>
<td>Nova University of Lisbon</td>
<td>173</td>
</tr>
<tr>
<td>Vialil, Marta</td>
<td>Universidade do vale do Rio dos Sinos</td>
<td>267</td>
</tr>
<tr>
<td>Vilim, Petr</td>
<td>IBM Czech Republic</td>
<td>77</td>
</tr>
<tr>
<td>Vogel, Silvia</td>
<td>TU Ilmenau</td>
<td>139</td>
</tr>
<tr>
<td>Vohra, Rakesh V.</td>
<td>Northwestern University</td>
<td>163</td>
</tr>
<tr>
<td>Voll, Robert</td>
<td>TU Dortmund University</td>
<td>94</td>
</tr>
<tr>
<td>Voller, Zachary</td>
<td>Iowa State University</td>
<td>121</td>
</tr>
<tr>
<td>von Haartman, Meggie</td>
<td>inome</td>
<td>167</td>
</tr>
<tr>
<td>von Falkenhausen, Philipp</td>
<td>Technische Universität Berlin</td>
<td>265</td>
</tr>
<tr>
<td>von Heymann, Frederik</td>
<td>TU Delft</td>
<td>176</td>
</tr>
<tr>
<td>Voronin, Sergey</td>
<td>Princeton University</td>
<td>167</td>
</tr>
<tr>
<td>Vossen, Georg</td>
<td>Niederrhein University of Applied Sciences</td>
<td>127</td>
</tr>
<tr>
<td>Vredeveld, Tjark</td>
<td>Maastricht University</td>
<td>199</td>
</tr>
<tr>
<td>Wagen, Jens</td>
<td>University of Bonn</td>
<td>20</td>
</tr>
<tr>
<td>Vocking, Bernd</td>
<td>RWTH Aachen University</td>
<td>174</td>
</tr>
<tr>
<td>Vossen, Georg</td>
<td>Niederrhein University of Applied Sciences</td>
<td>127</td>
</tr>
<tr>
<td>Wachsmuth, Daniel</td>
<td>Universität Würzburg</td>
<td>173</td>
</tr>
<tr>
<td>Wachsmuth, Gerd</td>
<td>TU Chemnitz</td>
<td>130</td>
</tr>
<tr>
<td>Waecker, Andreas</td>
<td>Northwestern University, 20</td>
<td>251</td>
</tr>
<tr>
<td>Wagler, Annegret</td>
<td>University Blaise Pascal [Clermont-Ferrand II/CNRS]</td>
<td>251</td>
</tr>
<tr>
<td>Waki, Hayato</td>
<td>Kyushu University</td>
<td>277</td>
</tr>
<tr>
<td>Waki, Hayato</td>
<td>Kyushu University</td>
<td>277</td>
</tr>
<tr>
<td>Wakolbinger, Tina</td>
<td>WU (Vienna University of Economics and Business)</td>
<td>183</td>
</tr>
</tbody>
</table>

Index of names
Zhao, Ping City University of Hong Kong
 Wed. 3.MA 043, 188
Zheng, Zhichao National University of Singapore
 Thu. 2.H 3021, 212
Zhi, Lihong Academy of Mathematics and Systems Science
 Thu. 3.H 0110, 232
Zhiobich, Pavel University of Edinburgh
 Mon. 2.MA 415, 97
Zhou, Wenwen SAS Institute Inc.
 Tue. 2.H 0110, 136
Zhou, Zhili IBM Research
 Wed. 3.MA 141, 195
Zhupanska, Olesya University of Iowa
 Mon. 2.H 2053, 92
Zidani, Hasnaa ENSTA ParisTech & Inria
 Thu. 2.H 1012, 219, 219
Ziegler, Günter M. FU Berlin
 Fri. 2.H 2032, 257
 Fri. 3.H 2032, 270
 Historical lecture, 16, 17
Zigrino, Stefano University of Bergamo
 Fri. 2.MA 550, 261
Zikrin, Spartak Linköping University
 Tue. 3.H 1028, 753
Zinchenko, Yuriy University of Calgary
 Tue. 2.H 3008, 129
Zsolt, Csizmadia FICO
 Mon. 2.H 0107, 95, 95
Zubelli, Jorge IMPA
 Wed. 1.MA 550, 165
Zuluaga, Luis Lehigh University
 Tue. 2.H 2036, 130
Zuse, Horst Zuse-Multimedia-Anwendungen
 Historical lecture, 16
Zwick, Uri Tel Aviv University
 Wed. 1.H 3009, 156
How can you get the leading optimization software for free?

It’s Academic!

Since 2002, FICO’s Academic Partner Program (APP) has provided FICO® Xpress Optimization Suite free to academic institutions and their students. In fact, you can even use Xpress for research and consulting.

Join us at ISMP 2012 in Berlin, Germany, on 19–24 August. Visit the FICO booth in the exhibit hall to hear about new features of Xpress Release 7.3, meet with the Xpress developers or sign up for the FICO Academic Partner Program.

Learn more at www.fico.com/app
Specialists in Optimisation Modelling and Risk Analysis

MODELLING SUPPORT
- AMPL Shell
- AMPLDev (IDE)
- AMPL Net (API/Object Library)
- AMPLDev/SP Edition

SP Modelling supported by
- Stochastic AMPL: SAMPL

Stochastic Constructs include:
- Two/multi stage recourse
- Chance Constrained Programs
- Integrated Chance Constrained Programs

Robust Constructs include:
- Polyhedral Uncertainty Sets
- Ellipsoidal Uncertainty Sets

SOLVERS
- CPLEX: Full Range with AMPL
- FortMP: SSX, IPM, MIP, QP, QMIP
- FortSP: Two/Multi Stage (integer) stochastic solver
- MOSEK
- GUROBI

SERVICES
- MP Modelling
- MP Solver Tuning
- Uncertainty and Risk Analysis/Modelling

TRAINING
- Linear & Integer Programming
- Stochastic Programming
- Quadratic Programming
- Portfolio Planning
- Asset & Liability Management

CONTACT
One Oxford Road, Uxbridge, UB9 4DA, UK
Tel: +44 (0) 1895 819 486
Email: raunak.guha@optirisk-systems.com