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Abstract

The open core protocol (OCP) is an openly licensed, configurable, and scalable interface
protocol for on-chip subsystem communications. The protocol defines read and write
transactions from a master towards a slave across a point-to-point connection and the
protocol assumes a single common clock.

This paper presents the design of two OCP clock domain crossing interface mod-
ules, that can be used to construct systems with multiple clock domains. One module
(called OCPio) supports a single word read-write interface and the other module (called
OCPburst) supports a four word burst read-write interface.

The modules has been developed for the T-CREST multi-core platform [8, 9, 13]
but they can easily be adopted and used in other designs implementing variants of the
OCP interface standard. The OCPio module is used to connect a Patmos processor to
a message passing network-on-chip and the OCPburst is used to connect the Processor
and its cache controllers to a shared off-chip memory.

While the problem of synchronizing a simple streaming interface is well described in
the literature and often solved using bi-synchronous FIFOs we found surprisingly little
published material addressing synchronization of bus-style read-write transaction inter-
faces. An OCP interface typically has control signals related to both the master issuing
a read or write request and the slave producing a response. If all these control signals
are passed across the clock domain boundary and synchronized it may add significant
latency to the duration of a transaction. Our interface designs avoid this and synchronize
only a single signal transition in each direction during a read or a write transaction. The
designs are available as open source, and the modules have been tested in a complete
multi-core platform implemented on an FPGA board.
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Preface

The work presented in this report started as a small project in course 02204 Design of
Asynchronous Circuits in the spring 2014. The work was continued in a special topics
course during the summer and this resulted in a paper presented at the Norchip 2014
conference in Helsinki [5]. This paper presented two alternative designs of a module
implement clock domain crossing of a single-word read-write transaction – a version that
buffers address and data and a version that avoids such buffering.

Following the publication of [5], we continued the work and expanded with a module
implementing implement clock domain crossing burst read-write transaction. In addition
abandoned the unbuffered single-word design and eliminated a potential timing glitch/bug
in the buffered design. In this report, we present the final designs of the single-word
transaction and the burst transaction clock domain crossing modules, and we provide an
analysis of the latency of the read and write transactions as seen from the master. Both
designs have been extensively tested in the T-CREST multicore platform, and the source
code is available as open source.
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Chapter 1

Introduction

The design of Systems-on-Chip (SoCs) where billions of transistors are integrated in a
single chip puts emphasis on modularity and reuse of components. Components like
processors, cache memories, IO-units, and HW-accelerators are typically developed by
different vendors and are collectively known as intellectual property cores (IP-cores). To
support reuse and modular composition of such IP-cores, interfaces are of paramount
importance and a number of interface standards have emerged. Three typical and widely
used interfaces are Wishbone, Open Core Protocol (OCP), and AMBA-AXI, introduced
in more detail in the next chapter. They all specify a point-to-point connection that
offers read and write transactions from a master (M) towards a slave (S), and they all
assume synchronous operation of the master and the slave.

Another important aspect of designing SoCs is the timing organization. IP-cores
may be designed for different clock frequencies and, to save power, scaling of the clock
frequency, and the supply voltage, is often employed at the level of individual IP-cores.
In addition the timing uncertainty in today’s sub-micron CMOS technologies make clock-
distribution and globally synchronous operation practically impossible [12]. As a result
SoCs typically use some form of globally-asynchronous locally-synchronous operation [2].

In this report we address the design of two clock domain crossing interface modules
(in the following denoted CDC-modules), that each implement a distinct subset of the
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Figure 1: Block diagram of the OCP-to-OCP clock domain crossing module.
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OCP, see Figure 1. The CDC-modules have been developed for the T-CREST multicore
platform [13]. One CDC-module supports single-word transactions and the other CDC-
module supports four-word burst transaction. Our designs synchronize only a single
signal in each direction for a complete transaction. In this way, the performance impact
of synchronization is reduced to the minimum possible.

In [5] we presented two designs for the single-word transaction CDC-module; one de-
sign using buffer-registers for all signals and another slightly slower but minimum hard-
ware solution that avoids buffering of address and data signals. It turned out that the
former design suffered from a timing glitch problem. Fixing this problem increased the
latency by one cycle in each direction. As the use of buffer registers simplify timing anal-
ysis by breaking signal paths directly from one clock domain to the other, our preferred
designs use buffer registers. In this report, we extend the work with a CDC-module that
supports four-word burst transactions. In addition, we made a minor improvement of
the single-word CDC-module. The aim of this report is to document the final designs of
the two CDC-modules developed for and used in the T-CREST platform. The report is
largely based on and reusing material from [5]. The designs have been tested in platform
with four processor nodes implemented on an FPGA-board. The code is open sourced
under a simplified (2-Clause) BSD license, and is available on Github [11], as well as
being listed in Appendix A.

The report is organized as follows. Chapter 2 presents background material and
related work. Chapter 3 presents the specific OCP interfaces that we use. Chapter 4
presents the design of the clock domain crossing module. Chapter 6 presents results of
Field Programmable Gate Array (FPGA) realization. Finally, Chapter 7 concludes the
report.
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Chapter 2

Background and related work

The Open Core Protocol (OCP) is an openly licensed interface originally developed by
the OCP International Partnership organization and now maintained by the Accellerata
Systems Initiative [1]. The “Wishbone System-on-Chip (SoC) Interconnection Architec-
ture for Portable IP Cores” – in short the Wishbone bus – is an open source hardware
interface that is used by many designs in the OpenCores project [6]. Both Wishbone and
OCP specify signals and protocols for point-to-point connections between a master and
a slave, allowing a master to perform read or write transactions into the address space of
the slave. Wishbone specifies a single bus standard while OCP is highly configurable and
scalable. Typical instances of OCP are very similar to the wishbone protocol. The Ad-
vanced Microcontroller Bus Architecture, Advanced eXtensible Interface (AMBA-AXI)
is a bus developed by ARM Inc. It uses separate channels for address, write data and
read data while OCP and Wishbone are more conventional bus-style interfaces.

Common to the three interface standards mentioned above is that they all assume a
single common clock. In multi-clock systems there is a need for clock domain crossing
modules that implement the same interface on both sides except for the different clocks.

There is a rich body of literature addressing communication between different clock
domains and the problems related to synchronization and metastability are well under-
stood [3, Ch. 10] [4]. Common to all forms of clock domain crossing is that synchronization
of a signal (by passing it through two or more flip-flops) incurs latency.

Most published solutions consider a simple streaming interface between a producer
and a consumer. A commonly used solution when connecting a producer and a consumer
is to use a bi-synchronous FIFO that provide full and empty signals that are synchronized
to the producer and receiver clocks respectively [3, Ch. 10] [4] [7] [15].

A CDC-module for bus-style transactions like OCP is a more challenging design than
for a simple streaming interface. Read or write transactions are typically atomic and
blocking and use flow control signals related to the transmission of both: (a) command
and address, (b) write-data and, (c) read-data. The blocking behavior means that trans-
actions cannot be pipelined and the accumulated latency of synchronizing several flow
control signals may be significant.

We have only been able to find few publications that address clock domain crossing
between two (bus-style) read/write-transaction interfaces. Closest to our work is [14] [16]
[10]. Common to these designs are the use of several bi-synchronous FIFO’s, for example
for address and data, for write data and for read data. Furthermore both [14] and [10]

3



consider the interfacing between a synchronous domain and an asynchronous domain.
Our designs connect two identical clocked interfaces driven by independent clocks,

and our designs avoid the use of FIFO-based synchronizers resulting in very small and
efficient hardware implementations.
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Chapter 3

OCP transactions in T-CREST

The OCP standard [1] allows for a large variety of specific point-to-point master-to-slave
protocol instances. The context for the work presented in this paper is T-CREST multi-
core processor [8, 13]. In this design two instances of the OCP protocol using the set of
signals shown in Table 1 are used [9]:

1. OCPio; a single-word read-write interface used to access memories and IO-devices
connected to a processor node. Transactions on this interface are generated by load
and store instructions executed by the processor. Some example transactions are
shown in Figure 2.

2. OCPburst; a burst read-write interface used to access a shared memory. Transac-
tions on this interface are initiated by the cache controller in the processor node.
The burst size is fixed to blocks of four words. A burst is identified by an aligned
address and transferred as an immediate succession of words from incrementing
addresses. Some example transactions are shown in Figure 3.

Table 1: Signals in the OCPio and OCPburst interfaces.

Signal Description

MCmd[2:0] Command (idle, read or write)
MAddr[31:0] Address, byte-based, MAdr[1:0] always 00

MData[31:0] Data for writes
MDataValid *) Signal that write data is valid.
MDataByteEn[3:0] Byte-level mask for sub-word writes
MRespAccept Signal that read data is accepted

SCmdAccept Signal that command is accepted
SDataAccept *) Signal that write data is accepted.
SData[31:0] Data for reads
SResp[1:0] Slave response: NULL - No response

DVA - Data valid/accept
FAIL - Request failed
ERR - Response error

*) only implemented in the OCPburst interface.
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Clk

MCmd IDLE RD1 WR2 IDLE RD3 IDLE
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SResp NULL DVA1 NULL DVA2 DVA3 NULL
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Figure 2: Timing diagram for the OCPio interface. (Reprinted from [9] with kind permis-
sion of its authors).
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Figure 3: Timing diagram for the OCPburst interface. (Reprinted from [9] with kind
permission of its authors).
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Both interfaces provide elasticity at the clock-cycle level and include several flow-
control signal pairs: MCmd and SCmdAccept that control the transfer of the command and
also write data for the OCPio interface; MDataValid and SDataAccept that control the
transfer of write data for the OCPburst interface; SResp and MRespAccept that control
the transfer of read data. SResp also serves the purpose of indicating the correct or
faulty conclusion of a complete (read or write) transaction. Thus, for both OCPio and
OCPburst, a write is terminated by a response from the Slave. More details can be found
in the handbook for the PATMOS processor [9].
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Chapter 4

Designs

The designs for both the OCPio and the OCPburst CDC-modules are based the same
key principles, and the OCPburst CDC-module can be seen as an extension of the OCPio
design. In this chapter, we first introduce the design of the OCPio CDC-module and the
underlying principles and we then we present the design of the OCPburst CDC-module.

4.1 The OCPio CDC-module

The design of the OCPio CDC-module is a lightly modified version of the buffered design
we presented in [5]. The design can be seen in Figure 4. As depicted in figure 4 the
design consist of two parts each controlled by a finite state machine, denoted FSM A and
FSM B. These FSMs are responsible for the signaling on the interfaces towards the OCP
master and the OCP slave. The FSMs interact and coordinate their operation using two
signals Req and Ack that are synchronized using a pair of flip-flops in the destination
clock-domain. To minimize the latency of a transaction (as seen from the master) it is
important to minimize the number of signal events that needs to be synchronized. Our
design involves only one event (signal transition) on the Ack signal and one event on the
Req signal per OCP transaction. In this way, the Req and Ack signals implement a non-
return-to-zero (NRZ) or two-phase handshake per transaction. The third flip flop and the
exclusive-or gate involved in the Req and Ack handshaking converts the (synchronized)
signal transitions into pulses with a duration of one clock period.

OCP-signals are buffered in the source side and loading of a buffer registers is con-
trolled by the FSM. The and-gates driving signals B MCmd[2:0] allow FSM B to drive
these signals low until the synchronized signal Req event indicate that a transaction is
in progress. In the same manner, FSM B can drive signal A SResp[1:0] low until the
synchronized signal Ack sync indicate that a response is ready.

The detailed operation of the design is determined by the two FSMs. Figure 5 shows
ASM-charts for FSM A and FSM B.

When a command is issued on the A MCmd signal, the control FSM is in the Idle
state. Upon receiving the command, it stores the signals A MCmd, A MAddr, A MData, and
A MByteEn in registers, and asserts the req on the next rising clock edge of clkA. Upon
this, the FSM A controller will transition to state AckWait. On a req event the FSM B

controller asserts EnB, and waits for the Slave to accept and respond. If the slave does not
accept immediately, the FSM B controller moves into state CmdAcceptWait. If, when in
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CmdAcceptWait, the slave accepts but does not provide a response, the FSM B controller
will transition into RespWait. At any point, when the slave does provide a response, said
response will be stored, and any accompanying data, in the register, by asserting LdB.
When the response has been stored, the controller will assert Ack. When the Ack has been
synchronized, the FSM A controller will assert EnA, and await a response accept. If the
OCP Master does not accept immediately, the controller transitions to RespAcceptWait.
When the response has been accepted, the FSM A controller transitions back to Idle,
ready to receive a new command.

4.2 The OCPburst CDC-module

The design of the OCPburst CDC-module is an extension of the OCPio design. The
design can be seen in Figure 4. The concept of treating all multibit signals as data still
stands for this design. The values of the A MCmd and A MAddr signals are the same for an
entire transaction, as opposed to for example the A MData signal, and thus only require
only a single register. For the signals A MData and A MDataByteEn (on the A-side) and
B SResp and B SData (on the B-side) the design uses a register-file of the same size as
the burst. In addition, each side has a register to keep track of how many words have
been read or written.

The registers on the A-side are clocked using clkA, while the registers on the B-side
are clocked using clkB. Reading from the other side of the interface is a combinatorial
and asynchronous operation.

The state machines for the controllers in the OCPburst CDC-module can be seen in
Figure 7. Unlike the OCPio design where the behavior is independent of the command
type (read or write), both A-side and-B side in the OCP burst design is dependent on
whether it is a read or a write command.

Read Upon a read command the FSM A controller, will assert the LdA signal to register
the ”data”, and on the rising clock edge drive a signal transition of the req signal, and
transition to the state A ReadBlockWait. Once the req signal has been synchronized to B
side, generating a req event the FSM B controller asserts EnB to allow the signals to pass
through to the OCP Slave. If the Slave accepts immediately, the FSM B controller tran-
sitions to the B ReadBlock state. In case it does not accept immediately, it transitions
to B ReadBlockWait, until the command has been accepted. If the command has been
accepted, the FSM B controller will also check if the first response is provided, and incre-
ment the RegAddr. Every time a response is available the RegAddr is incremented. When
the third response has been stored (and RegAddr is reset) ack is asserted. Once ack has
been synchronized, generating an ack event, the FSM A controller asserts A SCmdAccept,
and transitions into A ReadBlock, where, one by one, the responses stored on the B side
are transmitted to the OCP Master.

Write If instead the master issues a write command, the FSM A controller immediately
asserts A SCmdAccept, and begin buffering the data in the register files by transitioning
into A WriteBlock. Once RegAddr reaches 3, the FSM A controller asserts a request, and
transitions into A WriteBlockWait. Once the req has been synchronized, generating a
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Figure 7: OCPburst ASM Chart. The dashed arrows shows a request (I) and acknowledge
(II) handshake
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req event, the FSM B controller asserts EnB allowing the command to pass through to the
OCP Slave. If the slave accepts, it transitions directly to B WriteBlock and transmits
each buffered word. Otherwise, it waits in the state B WriteBlockWait. Once all words
have been transmitted it transitions into B WriteBlockFinal. In B WriteBlockFinal

the FSM B controller waits until the Slave responds, upon which it saves the response, in
the response register file, and asserts ack. When ack has been synchronized, the FSM A

controller asserts EnA, for a single cycle and transitions back to A Idle.
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Chapter 5

Latency of a transaction

In this section we analyze latency of the OCP transactions as seen by a master that
performs a read or write towards a slave that sits on the other side of a clock domain
crossing module. We first analyze the factors that contribute to this latency and then
use this analysis to provide expressions for the worst-case latency of the different OCP-
transactions.

5.1 Analysis

The latency depends on the type of interface (OCPburst or OCPio), the type of trans-
action (read or write), the ratio between the two clock signals (ClkA and ClkB) and the
phase between the two clock signals when a signal from one clock domain is synchronized
to the other domain. Furthermore, it should be kept in mind (c.f. chapter 3) that the
OCPburst and OCPio protocols allow a slave to idle between a command and the asso-
ciated response and allow a master to idle between a response and the acknowledgement
of the response.

The latency of a transaction can be subdivided into 5 intervals. Since the different
transactions ( OCPburst read, OCPburst write, OCPio read and OCPio write) are rela-
tively similar the following analysis is structured according to the 5 intervals. The reader
is encouraged to refer to Figure 4 and Figure 6 while reading the descriptions.

Interval [a]: MCmd 6= idle→ Req l
The time from A MCmd changes from Idle to a valid command until a transition is
produced on signal Req. Everything happens in the ClkA domain and the latencies
for the different transactions are:

OCPio Wr: 1 cycle @ClkA

Rd: 1 cycle @ClkA

OCPburst Wr: N cycles @ClkA

Rd: 1 cycle @ClkA

where N is the number of words in a burst transfer.

Interval [b]: Req l → Req event ↑
The time from an event (an up or down-going transition) on Req until the beginning
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of the synchronized one-cycle wide pulse that is produced on signal Req event. The
time is related to ClkB and also depends on the phase difference between ClkB the
Req signal that is produced in the ClkA domain. If the transition of Req happens
slightly before the rising edge of ClkB the duration of interval [b] is slightly more
than 1 cycle @ClkB and if the transition happens slightly after the rising edge of
the duration of interval [b] is slightly less than 2 cycles @ClkB. If the transition
coincide with the rising edge of ClkB, the first flip-flop in the two flop synchronizer
goes metastable, and the resulting duration of interval [b] is one or two cycles
corresponding to the two previously mentioned scenarios.

In summary, the duration of interval [b] is ]1;2[ cycles @ClkB.

Interval [c]: Req event ↑ → Ack l
The time from a synchronized req event until an event (an up or down-going
transition) on signal Ack. This includes the time it takes for the OCP slave to
respond to the transaction, and the time required to buffer the response. Everything
relates to ClkB and for each of the 4 possible transactions the duration of interval
[c] and is as follows:

OCPio Wr: 1 + nS cycles @ClkB

Rd: 1 + nS cycles @ClkB

OCPburst Wr: 1 + N + nS cycles @ClkB

Rd: 1 + N + nS cycles @ClkB

where N is the number of words in a burst transfer and where nS is the accept/re-
sponse time of the slave. For the OCPio write command illustrated in Figure 2
nS = 1; the cycle from B to C. For the OCPburst write command illustrated in
Figure 3 nS = 1; the cycle from G to H. For the OCPio write command illustrated
in Figure 3 nS = 1; the cycle from B to C. In our current implementation N = 4
and nS = 0.

Interval [d]: Ack l → Ack event ↑
The time from an event (an up or down-going transition) on Ack until the beginning
of the synchronized one-cycle wide pulse that is produced on signal Ack event. The
analysis is similar to interval [b] and the duration of interval [d] is ]1;2[ cycles @ClkA.

Interval [e]: Ack event ↑ → Transaction completed (FSM A enters state Idle)

The time from a synchronized req event until the A-side of the CDC-module is
ready to receive a new command. This includes the time it takes to write buffered
responses (including data) back to the OCP Master, the time it takes the master to
accept a response, and any latency added by the FSM A. For the OCPio transactions
it takes a minimum of 1 cycle for the master to accept the response. However, it can
delay for an unspecified number of cycles nM . For the OCPburst transactions such
delaying is not allowed. Everything relates to ClkA and for each of the 4 possible
transactions the duration of interval [e] and is as follows:
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OCPio Wr: 1 + nM cycles @ClkA

Rd: 1 + nM cycles @ClkA

OCPburst Wr: 1 cycle @ClkA

Rd: N cycles @ClkA

where N is the number of words in a burst transfer and where nM is the delay
between the response and the acknowledgement of the response that is allowed for
the OCPio transactions. In In our current implementation N = 4 and nM = 0.

Figure 8 shows an example OCPio Read transaction propagated across the OCPio
CDC-module. The set of signals shown is reduced to improve readability.

ClkA

A_MCmd IDLE RD1 IDLE

A_MRespAccept

A_SResp NULL DVA1 NULL

A_SCmdAccept

Req

Ack_event

Req_event

Ack

ClkB

B_MCmd IDLE RD1 IDLE

B_MRespAccept

B_SResp NULL DVA1 NULL

B_SCmdAccept

Interval [a] [b] [c] [d] [e]

Figure 8: An example read-transaction propagated across the OCPio CDC-module.
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5.2 Worst-case and best-case bounds

In the following TA, fA, TB and fB denote the period and frequency of ClkA and ClkB

respectively. The latency of a transaction as seen from the master (operating at ClkA)
is the sum of intervals [a] through [e]. Assuming for intervals [b] and [d] the maximum
synchronization latency of 2 cycles we get the following sum for the OCPio write trans-
action.

TWorst OCPio,Rd = 1 · TA + 2 · TB + (1 + nS) · TB + 2 · TA + (1 + nM) · TA (5.1a)

= (4 + nM) · TA + (3 + nS) · TB (5.1b)

Keeping in mind that the latency is seen as an integer number of cycles of ClkA we
get the following worst-case latency of an OCPio Read transaction:

TWorst OCPio,Rd =

{
(4 + nM) +

⌊
(3 + nS) · TB

TA

⌋}
TA (5.2a)

=

{
(4 + nM) +

⌊
(3 + nS) · fA

fb

⌋}
1

fA
(5.2b)

The reason we use the floor-operator rather than the ceiling-operator in an expression
for a worst-case latency is a bit subtle and is illustrated in Figure 9. In the above
expression we calculate interval [d] to be two 2 cycles @ClkA, but as shown in Figure 9
the beginning of interval [d] is related to ClkB. When interval [d] is taken as 2 cycles @
ClkA it overlaps with interval [c], and this explains the use of the floor-operator. With
this explanation the reader is encouraged to refer back to Figure 8.

ClkA

[d]

[c]

ClkB . . . . . .

2 cycles

Figure 9: Relationship between intervals [c] and [d].

In a similar way we we obtain the expressions for the remaining three transactions:

TWorst OCPio,Wr =

{
(4 + nM) +

⌊
(3 + nS) · fA

fb

⌋}
1

fA
(5.3)

TWorst OCPburst,Wr =

{
(3 + N) +

⌊
(3 + N + nS) · fA

fb

⌋}
1

fA
(5.4)

TWorst OCPburst,Rd =

{
3 +

⌊
(3 + N + nS) · fA

fb

⌋}
1

fA
(5.5)
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Chapter 6

Implementation

Both designs have been implemented in RTL VHDL and verified using ModelSim. In
addition to this, both interfaces have been implemented in a 4 core T-CREST platform
synthesized for an Altera DE2-115, with a Master core (Patmos 0) running at a different
clock from the rest of the platform. To ensure independent clocks, the master core is
running using the onboard 50MHz clock, while an external clock generator running at a
variable frequency (up to 50MHz) is driving the rest of the platform.

Altera Quartus 15.0 puts the MTBF for the synchronization chain at greater than 1
billion years. Additionally, the physical setup was tested over a week with no failures.

As both interfaces are fairly simple, their resource and speed measurements are less
interesting than the performance impact. As we noted in Chapter 5 the simplest way
to compare performance impact is to assume that two independent clock domains each
running at equal frequencies, with a constant phase difference always resulting in Worst-
Case Execution Time (WCET), and compare this to an interface without clock crossing.

OCPio For OCPio two best-case performances exist, ie. 1 cycle per word for reads,
and 2 cycles per word for writes. Using worst-case timings with clock domain crossings,
this becomes 7 cycles per word for both. This leaves us with a 1/7 bandwidth for reads
and 2/7 bandwidth for writes. Of course we note that if the slave introduces a read or
write delay nS then we will achieve 1+nS

7+nS
for reads and 2+nS

7+nS
.

OCPburst For OCPburst one best-case performance exist; 5 cycles per 4 words. Using
worst-case timings with clock domain crossings, this becomes 14 cycles per word for both.
This leaves us with a 5/14 bandwidth. Of course we note that if the slave introduces
a read or write delay nS then we will achieve 5+nS

14+nS
. For an external memory, such as

a DRAM, nS is relatively high, meaning that the performance of the domain crossing
interface will trend towards the synchronous interface. Figure 10 shows the performance
of the two interfaces normalized to a situation where the master and the slave operate

Table 2: Synthesis Results
LC Combinatorial LC Register

Burst 309 320
IO 86 93
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Figure 10: Performance of the two OCP CDC-modules normalized to a situation where
the master and slave operate synchronously and are connected directly (without a CDC-
module). For a memory the slave delay is the access time of the memory.

synchronously and without a clock domain crossing module. As seen, the performance
approaches that of a plain synchronous interface as the access time of the slave increases.
The latter is a likely situation when several processors share and access an of chip DRAM-
based memory.
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Chapter 7

Conclusion

This report has presented two different designs of a clock domain crossing module for two
distinct OCP-style interfaces supporting either single word read/write transactions, or
burst read/write transactions, respectively. Both designs use Non-Return-to-Zero (NRZ)
synchronization protocols, and pass the command, address, write data and read data
signals through buffer registers clocked by the source clock.

The performance of the two designs can be quantified by how many cycles a transac-
tion takes when a clock domain crossing module is added between a synchronous master
and slave pair, assuming no accept/response delays. For the OCPio design, this is 7
cycles. For the OCPburst design, it is 14 cycles. We note however that for OCPburst,
whose primary application is interfacing towards a shared main memory, the latency can
be masked by the relatively high access time of the memory.

Furthermore the basic structure and the underlying ideas can be used in the design of
clock domain crossing modules for other bus-style read/write-transaction interfaces such
as Wishbone.
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Appendix A

Code

A.1 OCPio

A.1.1 OCPio A side

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Copyright ( c ) 2016 , Mathias Her lev
3 −− Al l r i g h t s r e s e rved .
4 −−
5 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
6 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
7 −−
8 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
9 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t not ice ,
11 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the documentation
12 −− and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
15 −− AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 −− IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 −− ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18 −− LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 −− CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 −− SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 −− INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
22 −− CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 −− ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 −− POSSIBILITY OF SUCH DAMAGE.
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− T i t l e : OCPIO Clock Crossing I n t e r f a c e S lave
27 −− Type : Ent i t y
28 −− Descr ip t i on : S lave I n t e r f a c e f o r the OCP c l o c k c ro s s i n g . Connects to a
29 −− : master
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 LIBRARY i e e e ;
32 USE i e e e . s t d l o g i c 1 1 6 4 . a l l ;
33 USE i e e e . numer ic std . a l l ;
34 LIBRARY work ;
35 USE work .OCPIOCDC types . a l l ;
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36 USE work . ocp . a l l ;
37
38 ENTITY OCPIOCDC A IS
39 GENERIC( IOSize : INTEGER := 1 ) ;
40 PORT( c l k : IN s t d l o g i c ;
41 r s t : IN s t d l o g i c ;
42 syncIn : IN ocp io m ;
43 syncOut : OUT o c p i o s ;
44 asyncOut : OUT asyncIO A r ;
45 asyncIn : IN asyncIO B r
46 ) ;
47 END ENTITY OCPIOCDC A;
48 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 −− Buf fered Arch i t e c tu re
50 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 ARCHITECTURE Buf fered OF OCPIOCDC A IS
52 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 −− FSM s i g n a l s
54 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 TYPE f sm s t a t e s t IS ( IDLE state , AckWait state , RespAcceptWait state ) ;
56 SIGNAL s ta te , s t a t e n ex t : f sm s t a t e s t ;
57
58 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 −− Async s i g n a l s
60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 SIGNAL ack prev , ack , ack next : s t d l o g i c := ’ 0 ’ ;
62 SIGNAL req , r eq next : s t d l o g i c := ’ 0 ’ ;
63
64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 −− Reg i s t e r s
66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 SIGNAL masterData , masterData next : ocp io m ;
68 SIGNAL writeEnable : s t d l o g i c := ’ 0 ’ ;
69
70 BEGIN
71
72 asyncOut . req <= req ;
73 asyncOut . data <= masterData ;
74
75 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76 −− FSM
77 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 FSM : PROCESS( s ta te , syncIn , asyncIn , ack , ack prev , req )
79 BEGIN
80 s t a t e n ex t <= s ta t e ;
81 syncOut <= OCPIOSlaveIdle c ;
82 writeEnable <= ’0 ’ ;
83 req next <= req ;
84
85 CASE s t a t e IS
86 WHEN IDLE state =>
87 −−I f command i s d i f f e r e n t from i d l e
88 IF syncIn .MCmd /= OCP CMD IDLE THEN
89 −−S igna l the B s i d e
90 req next <= NOT( req ) ;
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91 s t a t e n ex t <= AckWait state ;
92 −−Buf fer the command , address , and data
93 writeEnable <= ’1 ’ ;
94 END IF ;
95 WHEN AckWait state =>
96 −−I f the s l a v e has acknowledged
97 IF ack = NOT ( ack prev ) THEN
98 −− Then s i g n a l the master
99 s t a t e n ex t <= RespAcceptWait state ;

100 syncOut <= asyncIn . data ;
101 syncOut . SCmdAccept <= ’1 ’ ;
102 IF syncIn . MRespAccept = ’1 ’THEN
103 −−I f the master accepts , go to i d l e
104 s t a t e n ex t <= IDLE state ;
105 END IF ;
106 −− Else go to WriteWordFinal
107 END IF ;
108 WHEN RespAcceptWait state =>
109 −− When OCP master accepts , go to i d l e
110 syncOut <= asyncIn . data ;
111 IF syncIn . MRespAccept = ’1 ’THEN
112 s t a t e n ex t <= IDLE state ;
113 END IF ;
114 WHENOTHERS =>
115 s t a t e n ex t <= IDLE state ;
116 END CASE;
117 END PROCESS FSM;
118
119 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
120 −− Reg i s t e r s
121 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 DataRegMux : PROCESS( writeEnable , syncIn )
123 BEGIN
124 masterData next <= masterData ;
125 IF writeEnable = ’1 ’ THEN
126 masterData next <= syncIn ;
127 END IF ;
128 END PROCESS DataRegMux ;
129
130 Reg i s t e r s : PROCESS( c lk , r s t )
131 BEGIN
132 IF r s t = ’1 ’ THEN
133 s t a t e <= IDLE state ;
134 req <= ’0 ’ ;
135 ack prev <= ’0 ’ ;
136 ack <= ’0 ’ ;
137 ack next <= ’0 ’ ;
138 masterData <= OCPIOmasteridle c ;
139
140 ELSIF r i s i n g e d g e ( c l k ) THEN
141 s t a t e <= sta t e n ex t ;
142 req <= req next ;
143 ack prev <= ack ;
144 ack <= ack next ;
145 ack next <= asyncIn . ack ;
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146 masterData <= masterData next ;
147 END IF ;
148 END PROCESS Reg i s t e r s ;
149
150 ENDARCHITECTURE Buf fered ;
151
152 ARCHITECTURE NonBuffered OF OCPIOCDC A IS
153 TYPE f sm s t a t e s t IS ( IDLE state , AckWait state , RespAcceptWait state ,
154 HandshakeFina l s tate ) ;
155 SIGNAL s ta te , s t a t e n ex t : f sm s t a t e s t ;
156
157 SIGNAL ack , ack next : s t d l o g i c := ’ 0 ’ ;
158 SIGNAL req : s t d l o g i c := ’ 0 ’ ;
159
160 BEGIN
161
162 asyncOut . req <= req ;
163 asyncOut . data <= syncIn ;
164
165 FSM : PROCESS( s ta te , syncIn , asyncIn , ack )
166 BEGIN
167 s t a t e n ex t <= s ta t e ;
168 syncOut <= OCPIOSlaveIdle c ;
169 CASE s t a t e IS
170 WHEN IDLE state =>
171 req <= ’0 ’ ;
172 IF ack = ’0 ’ THEN
173 IF syncIn .MCmd /= OCP CMD IDLE THEN
174 req <= ’1 ’ ;
175 s t a t e n ex t <= AckWait state ;
176 END IF ;
177 END IF ;
178 WHEN AckWait state =>
179 req <= ’1 ’ ;
180 IF ack = ’1 ’ THEN
181 s t a t e n ex t <= RespAcceptWait state ;
182 syncOut <= asyncIn . data ;
183 syncOut . SCmdAccept <= ’1 ’ ;
184 IF syncIn . MRespAccept = ’1 ’ THEN
185 −− req <= ’0 ’ ;
186 s t a t e n ex t <= I d l e s t a t e ;
187 END IF ;
188 END IF ;
189 WHEN RespAcceptWait state =>
190 req <= ’1 ’ ;
191 syncOut <= asyncIn . data ;
192 syncOut . SCmdAccept <= ’0 ’ ;
193 IF syncIn . MRespAccept = ’1 ’ THEN
194 s t a t e n ex t <= I d l e s t a t e ;
195 END IF ;
196 WHEN HandshakeFina l s tate =>
197 req <= ’0 ’ ;
198 IF ack = ’0 ’ THEN
199 s t a t e n ex t <= I d l e s t a t e ;
200 END IF ;
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201 WHENOTHERS =>
202 s t a t e n ex t <= IDLE state ;
203 END CASE;
204 END PROCESS FSM;
205
206
207 Reg i s t e r s : PROCESS( c lk , r s t )
208 BEGIN
209 IF r s t = ’1 ’ THEN
210 s t a t e <= IDLE state ;
211 ack <= ’0 ’ ;
212 ack next <= ’0 ’ ;
213 ELSIF r i s i n g e d g e ( c l k ) THEN
214 s t a t e <= sta t e n ex t ;
215 ack <= ack next ;
216 ack next <= asyncIn . ack ;
217 END IF ;
218 END PROCESS Reg i s t e r s ;
219
220 ENDARCHITECTURE NonBuffered ;

A.1.2 OCPio B side

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Copyright ( c ) 2016 , Mathias Her lev
3 −− Al l r i g h t s r e s e rved .
4 −−
5 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
6 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
7 −−
8 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
9 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t not ice ,
11 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the documentation
12 −− and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
15 −− AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 −− IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 −− ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18 −− LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 −− CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 −− SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 −− INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
22 −− CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 −− ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 −− POSSIBILITY OF SUCH DAMAGE.
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− T i t l e : OCPIO Clock Crossing I n t e r f a c e S lave
27 −− Type : Ent i t y
28 −− Descr ip t i on : Master I n t e r f a c e f o r the OCP c l o c k c ro s s i n g . Connects to a
29 −− S lave
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 LIBRARY i e e e ;
32 USE i e e e . s t d l o g i c 1 1 6 4 . a l l ;
33 USE i e e e . numer ic std . a l l ;
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34 LIBRARY work ;
35 USE work .OCPIOCDC types . a l l ;
36 USE work . ocp . a l l ;
37
38 ENTITY OCPIOCDC B IS
39 GENERIC( IOSize : INTEGER := 1 ) ;
40 PORT( c l k : IN s t d l o g i c ;
41 r s t : IN s t d l o g i c ;
42 syncIn : IN o c p i o s ;
43 syncOut : OUT ocp io m ;
44 asyncOut : OUT asyncIO B r ;
45 asyncIn : IN asyncIO A r
46 ) ;
47 END ENTITY OCPIOCDC B;
48
49 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 −− Buf fered Arch i t e c tu re
51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 ARCHITECTURE Buf fered OF OCPIOCDC B IS
53 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 −− FSM s i g n a l s
55 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 TYPE f sm s t a t e s t IS ( IDLE state , CmdAcceptWait state , RespWait state ) ;
57 SIGNAL s ta te , s t a t e n ex t : f sm s t a t e s t ;
58 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 −− Async s i g n a l s
60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 SIGNAL req prev , req , r eq next : s t d l o g i c := ’ 0 ’ ;
62 SIGNAL ack , ack next : s t d l o g i c := ’ 0 ’ ;
63
64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 −− Reg i s t e r s i g n a l s
66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 SIGNAL slaveData , s laveData next : o c p i o s ;
68 SIGNAL loadEnable : s t d l o g i c ;
69
70 BEGIN
71
72 asyncOut . data <= slaveData WHEN loadEnable = ’0 ’ ELSE syncIn ;
73 asyncOut . ack <= ack ;
74
75 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76 −− FSM
77 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 FSM : PROCESS( s ta te , syncIn , asyncIn , req , req prev , ack )
79 BEGIN
80 s t a t e n ex t <= s ta t e ;
81 loadEnable <= ’0 ’ ;
82 syncOut <= OCPIOMasterIdle c ;
83 ack next <= ack ;
84
85 CASE s t a t e IS
86 WHEN IDLE state =>
87 −−I f a new reque s t i s a v a i l a b l e
88 IF req = NOT ( r eq prev ) THEN

29



89 IF ( asyncIn . data .MCmd /= OCP CMD IDLE) THEN
90 −−Relay the command to the OCP s l a v e
91 syncOut <= asyncIn . data ;
92 s t a t e n ex t <= CmdAcceptWait state ;
93 −− I f the command i s accepted
94 IF syncIn . SCmdAccept = ’1 ’ THEN
95 s t a t e n ex t <= RespWait state ;
96 −−And a response i s ready
97 IF syncIn . SResp /= OCP RESP NULL THEN
98 s t a t e n ex t <= IDLE state ;
99 loadEnable <= ’1 ’ ;

100 −− S igna l the A s i d e
101 ack next <= NOT ( ack ) ;
102 syncOut . MRespAccept <= ’1 ’ ;
103 END IF ;
104 END IF ;
105 END IF ;
106 END IF ;
107 WHEN CmdAcceptWait state =>
108 −− I f command has not been accepted , Command+data has not been
109 −− Reg i s t e r ed in OCP Slave . Continue a s e r t i n g command .
110 syncOut <= asyncIn . data ;
111 IF syncIn . SCmdAccept = ’1 ’ THEN
112 s t a t e n ex t <= RespWait state ;
113 IF syncIn . SResp /= OCP RESP NULL THEN
114 s t a t e n ex t <= IDLE state ;
115 ack next <= NOT ( ack ) ;
116 loadEnable <= ’1 ’ ;
117 syncOut . MRespAccept <= ’1 ’ ;
118 END IF ;
119 END IF ;
120 WHEN RespWait state =>
121 IF syncIn . SResp /= OCP RESP NULL THEN
122 s t a t e n ex t <= IDLE state ;
123 ack next <= NOT ( ack ) ;
124 loadEnable <= ’1 ’ ;
125 syncOut . MRespAccept <= ’1 ’ ;
126 END IF ;
127 WHENOTHERS =>
128 s t a t e n ex t <= IDLE state ;
129 END CASE;
130 END PROCESS FSM;
131
132
133 DataRegMux : PROCESS( loadEnable , syncIn )
134 BEGIN
135 s laveData next <= slaveData ;
136 IF loadEnable = ’1 ’ THEN
137 s laveData next <= syncIn ;
138 END IF ;
139 END PROCESS DataRegMux ;
140
141
142 Reg i s t e r s : PROCESS( c lk , r s t )
143 BEGIN
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144 IF r s t = ’1 ’ THEN
145 s t a t e <= IDLE state ;
146 req prev <= ’0 ’ ;
147 req <= ’0 ’ ;
148 req next <= ’0 ’ ;
149 ack <= ’0 ’ ;
150 s laveData <= o c p i o s l a v e i d l e c ;
151 ELSIF r i s i n g e d g e ( c l k ) THEN
152 s t a t e <= sta t e n ex t ;
153 req prev <= req ;
154 req <= req next ;
155 req next <= asyncIn . req ;
156 ack <= ack next ;
157 s laveData <= slaveData next ;
158 END IF ;
159 END PROCESS Reg i s t e r s ;
160
161 ENDARCHITECTURE Buf fered ;
162
163 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164 −− Unbuf fered a r c h i t e c t u r e
165 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 ARCHITECTURE NonBuffered OF OCPIOCDC B IS
167 TYPE f sm s t a t e s t IS ( I d l e s t a t e , CmdAcceptWait state , RespWait state ,
168 ReqWait state ) ;
169 SIGNAL s ta te , s t a t e n ex t : f sm s t a t e s t := I d l e s t a t e ;
170
171 SIGNAL req , r eq next : s t d l o g i c := ’ 0 ’ ;
172 SIGNAL ack : s t d l o g i c := ’ 0 ’ ;
173
174
175 BEGIN
176 −− Async Data S i gna l s
177
178 asyncOut . data <= syncIn ;
179 asyncOut . ack <= ack ;
180
181 FSM : PROCESS( s ta te , syncIn , asyncIn , req )
182 BEGIN
183 s t a t e n ex t <= s ta t e ;
184 syncOut <= OCPIOMasterIdle c ;
185
186 CASE s t a t e IS
187 WHEN I d l e s t a t e =>
188 ack <= ’0 ’ ;
189 IF req = ’1 ’ THEN
190 IF ( asyncIn . data .MCmd /= OCP CMD IDLE) THEN
191 syncOut <= asyncIn . data ;
192 syncOut . MRespAccept <= ’0 ’ ;
193 s t a t e n ex t <= CmdAcceptWait state ;
194 IF syncIn . SCmdAccept = ’1 ’ THEN
195 s t a t e n ex t <= RespWait state ;
196 IF syncIn . SResp /= OCP RESP NULL THEN
197 s t a t e n ex t <= ReqWait state ;
198 −− ack <= ’1 ’ ;
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199 END IF ;
200 END IF ;
201 END IF ;
202 END IF ;
203 WHEN CmdAcceptWait state =>
204 ack <= ’0 ’ ;
205 syncOut <= asyncIn . data ;
206 syncOut . MRespAccept <= ’0 ’ ;
207 IF syncIn . SCmdAccept = ’1 ’ THEN
208 s t a t e n ex t <= RespWait state ;
209 IF syncIn . SResp /= OCP RESP NULL THEN
210 s t a t e n ex t <= ReqWait state ;
211 −− ack <= ’1 ’ ;
212 END IF ;
213 END IF ;
214 WHEN RespWait state =>
215 ack <= ’0 ’ ;
216 IF syncIn . SResp /= OCP RESP NULL THEN
217 s t a t e n ex t <= ReqWait state ;
218 ack <= ’1 ’ ;
219 END IF ;
220 WHEN ReqWait state =>
221 ack <= ’1 ’ ;
222 IF req = ’0 ’ THEN
223 ack <= ’0 ’ ;
224 syncOut . MRespAccept <= ’1 ’ ;
225 s t a t e n ex t <= I d l e s t a t e ;
226 END IF ;
227 WHENOTHERS =>
228 s t a t e n ex t <= IDLE state ;
229 END CASE;
230 END PROCESS FSM;
231
232
233 Reg i s t e r s : PROCESS( c lk , r s t )
234 BEGIN
235 IF r s t = ’1 ’ THEN
236 s t a t e <= IDLE state ;
237 req <= ’0 ’ ;
238 req next <= ’0 ’ ;
239 ELSIF r i s i n g e d g e ( c l k ) THEN
240 s t a t e <= sta t e n ex t ;
241 req <= req next ;
242 req next <= asyncIn . req ;
243 END IF ;
244 END PROCESS Reg i s t e r s ;
245
246 ENDARCHITECTURE NonBuffered ;

A.2 OCPburst

A.2.1 OCPburst A side

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Copyright ( c ) 2016 , Mathias Her lev
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3 −− Al l r i g h t s r e s e rved .
4 −−
5 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
6 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
7 −−
8 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
9 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t not ice ,
11 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the documentation
12 −− and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
15 −− AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 −− IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 −− ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18 −− LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 −− CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 −− SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 −− INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
22 −− CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 −− ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 −− POSSIBILITY OF SUCH DAMAGE.
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− T i t l e : OCPburst Clock Cross ing I n t e r f a c e A Side
27 −− Type : Ent i t y
28 −− Descr ip t i on : S lave I n t e r f a c e f o r the OCPburst c l o c k c ro s s i n g . Connects to a
29 −− : master
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 LIBRARY i e e e ;
32 USE i e e e . s t d l o g i c 1 1 6 4 . a l l ;
33 USE i e e e . numer ic std . a l l ;
34 LIBRARY work ;
35 USe work . o cp con f i g . a l l ;
36 USE work . ocp . a l l ;
37 USE work . OCPBurstCDC types . a l l ;
38
39 ENTITY OCPBurstCDC A IS
40 GENERIC( bu r s tS i z e : INTEGER := 4 ) ;
41 PORT( c l k : IN s t d l o g i c ;
42 r s t : IN s t d l o g i c ;
43 syncIn : IN ocp burst m ;
44 syncOut : OUT o cp bu r s t s ;
45 asyncOut : OUT AsyncBurst A r ;
46 asyncIn : IN AsyncBurst B r
47 ) ;
48 END ENTITY OCPBurstCDC A ;
49
50 ARCHITECTURE behaviour OF OCPBurstCDC A IS
51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 −− Constants
53 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 CONSTANT OCPBurstSlaveIdle c : o cp bu r s t s := (OCP RESP NULL,
55 (OTHERS => ’ 0 ’ ) ,
56 ’ 0 ’ ,
57 ’ 0 ’ ) ;
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58 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 −− FSM Signa l Dec la ra t i ons
60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 TYPE f sm s t a t e s t IS ( IDLE state , ReadBlock , ReadBlockWait ,
62 WriteBlockLoad , WriteBlockWait ) ;
63 SIGNAL s ta te , s t a t e n ex t : f sm s t a t e s t ;
64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 −− Data Reg i s t e r s
66 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 SIGNAL cmd , cmd next : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0)
68 := OCP CMD IDLE;
69 SIGNAL addr , addr next : s t d l o g i c v e c t o r (OCP BURST ADDRWIDTH−1 downto 0)
70 := ( others => ’ 0 ’ ) ;
71
72 TYPE DataArray t IS
73 ARRAY ( burs tS i ze−1 downto 0) OF
74 s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
75 SIGNAL data a r r : DataArray t ;
76
77 TYPE ByteEn Array t IS
78 ARRAY ( bu r s tS i z e downto 0) OF
79 s t d l o g i c v e c t o r (OCP BYTEWIDTH−1 downto 0 ) ;
80 SIGNAL byteEn arr : ByteEn Array t ;
81
82 SIGNAL writeEnable : s t d l o g i c := ’ 0 ’ ;
83
84 SIGNAL RegAddr , RegAddr next : unsigned (1 downto 0) := ( others => ’ 0 ’ ) ;
85 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 −− Asynchronous s i g n a l s
87 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 ALIAS o async IS asyncOut ;
89 ALIAS i a s ync IS asyncIn ;
90
91 SIGNAL ack prev , ack , ack next : s t d l o g i c := ’ 0 ’ ;
92 SIGNAL req , r eq next : s t d l o g i c := ’ 0 ’ ;
93
94 BEGIN
95
96
97 FSM : PROCESS( s ta te , syncIn , asyncIn , ack , ack prev , RegAddr , req , cmd , addr )
98 BEGIN
99 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 −− Defau l t Assignments
101 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 s t a t e n ex t <= s ta t e ;
103 syncOut <= OCPBurstSlaveIdle c ;
104 writeEnable <= ’0 ’ ;
105 req next <= req ;
106 cmd next <= cmd ;
107 addr next <= addr ;
108 RegAddr next <= RegAddr ;
109 asyncOut . RegAddr <= ( others => ’ 0 ’ ) ;
110 asyncOut . data . MDataValid <= ’0 ’ ;
111 syncOut . SCmdAccept <= ’0 ’ ;
112 syncOut . SDataAccept <= ’0 ’ ;
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113
114 CASE s t a t e IS
115 WHEN IDLE state =>
116 −−I f command i s read
117 IF syncIn .Mcmd = OCPCMDRD THEN
118 −− Reg i s t e r Command and addres (MData not v a l i d )
119 cmd next <= syncIn .MCmd;
120 addr next <= syncIn .MAddr ;
121 −− Asser t a r e que s t
122 req next <= NOT ( req ) ;
123 −− And go to ReadBlockWait , to await an acknowledge
124 s t a t e n ex t <= ReadBlockWait ;
125 −−I f command i s wr i t e
126 ELSIF syncIn .Mcmd = OCPCMDWR AND syncIn . MDataValid = ’1 ’ THEN
127 −−S ta r t b u f f e r i n g MData + MCmd + MAddr
128 cmd next <= syncIn .MCmd;
129 addr next <= syncIn .MAddr ;
130 syncOut . SCmdAccept <= ’1 ’ ;
131 syncOut . SDataAccept <= ’1 ’ ;
132 writeEnable <= ’1 ’ ;
133 RegAddr next <= RegAddr + to uns igned (1 ,RegAddr ’LENGTH) ;
134 s t a t e n ex t <= WriteBlockLoad ;
135 END IF ;
136 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
137 −− READ BLOCK
138 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
139 WHEN ReadBlockWait =>
140 −− Wait u n t i l acknowledge
141 IF ack = NOT( ack prev ) THEN
142 s t a t e n ex t <= ReadBlock ;
143 syncOut . SCmdAccept <= ’1 ’ ;
144 END IF ;
145 WHEN ReadBlock =>
146 −− Write each word in b u f f e r back to OCP Master
147 asyncOut . RegAddr <= s t d l o g i c v e c t o r (RegAddr ) ;
148 syncOut <= asyncIn . data ;
149 RegAddr next <= RegAddr + to uns igned (1 ,RegAddr ’LENGTH) ;
150 IF RegAddr = to uns igned ( burs tS i ze −1, RegAddr ’LENGTH) THEN
151 s t a t e n ex t <= IDLE state ;
152 END IF ;
153 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
154 −− WRITE BLOCK
155 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
156 WHEN WriteBlockLoad =>
157 −− Continue b u f f e r i n g MData
158 syncOut . SDataAccept <= ’1 ’ ;
159 writeEnable <= ’1 ’ ;
160 RegAddr next <= RegAddr + to uns igned (1 ,RegAddr ’LENGTH) ;
161 IF RegAddr = to uns igned ( burs tS i ze −1, RegAddr ’LENGTH) THEN
162 −− And a s s e r t r e que s t once a l l words are bu f f e r e d
163 req next <= NOT ( req ) ;
164 asyncOut . data . MDataValid <= ’1 ’ ;
165 s t a t e n ex t <= WriteBlockWait ;
166 END IF ;
167 WHEN WriteBlockWait =>
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168 −− Wait u n t i l B s i d e has acknowledged f i n i s h i n g t r an sac t i on
169 IF ack = NOT( ack prev ) THEN
170 −−And re l a y response to OCP Master
171 syncOut . Sresp <= asyncIn . data . Sresp ;
172 s t a t e n ex t <= IDLE state ;
173 cmd next <= OCP CMD IDLE;
174 addr next <= ( others => ’ 0 ’ ) ;
175 END IF ;
176 WHENOTHERS =>
177 s t a t e n ex t <= IDLE state ;
178 END CASE;
179 END PROCESS FSM;
180
181 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
182 −− Output Map
183 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
184 asyncOut . data .MCmd <= cmd ;
185 asyncOut . data .MData <= data a r r ( t o i n t e g e r ( unsigned ( i a s ync . RegAddr ) ) ) ;
186 asyncOut . data .MAddr <= addr ;
187 asyncOut . data .MDataByteEn <=
188 byteEn arr ( t o i n t e g e r ( unsigned ( i a s ync . RegAddr ) ) ) ;
189 asyncOut . req <= req ;
190
191 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
192 −− Reg i s t e r Processes
193 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
194 Reg i s t e r s : PROCESS( c lk , r s t )
195 BEGIN
196 IF r s t = ’1 ’ THEN
197 s t a t e <= IDLE state ;
198 req <= ’0 ’ ;
199 ack prev <= ’0 ’ ;
200 ack <= ’0 ’ ;
201 ack next <= ’0 ’ ;
202 RegAddr <= ( others=> ’0 ’);
203 cmd <= OCP CMD IDLE;
204 addr <= ( others => ’ 0 ’ ) ;
205 ELSIF r i s i n g e d g e ( c l k ) THEN
206 s t a t e <= sta t e n ex t ;
207 req <= req next ;
208 ack prev <= ack ;
209 ack <= ack next ;
210 ack next <= asyncIn . ack ;
211 RegAddr <= RegAddr next ;
212 cmd <= cmd next ;
213 addr <= addr next ;
214 END IF ;
215 END PROCESS Reg i s t e r s ;
216
217 DataRam : PROCESS( c l k )
218 BEGIN
219 IF r i s i n g e d g e ( c l k ) THEN
220 IF writeEnable = ’1 ’ THEN
221 data a r r ( t o i n t e g e r (RegAddr ) ) <= syncIn .MData ;
222 END IF ;
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223 END IF ;
224 END PROCESS DataRam ;
225
226 ByteEnRam : PROCESS( c l k )
227 BEGIN
228 IF r i s i n g e d g e ( c l k ) THEN
229 IF writeEnable = ’1 ’ THEN
230 byteEn arr ( t o i n t e g e r (RegAddr ) ) <= syncIn .MDataByteEn ;
231 END IF ;
232 END IF ;
233 END PROCESS ByteEnRam ;
234
235 ENDARCHITECTURE behaviour ;

A.2.2 OCPburst B side

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Copyright ( c ) 2016 , Mathias Her lev
3 −− Al l r i g h t s r e s e rved .
4 −−
5 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
6 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
7 −−
8 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
9 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t not ice ,
11 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the documentation
12 −− and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
15 −− AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 −− IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 −− ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18 −− LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 −− CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 −− SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 −− INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
22 −− CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 −− ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 −− POSSIBILITY OF SUCH DAMAGE.
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− T i t l e : OCPBurst Clock Cross ing I n t e r f a c e S lave
27 −− Type : Ent i t y
28 −− Descr ip t i on : Master I n t e r f a c e f o r the OCP c l o c k c ro s s i n g . Connects to a
29 −− : S lave
30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31
32 LIBRARY i e e e ;
33 USE i e e e . s t d l o g i c 1 1 6 4 . a l l ;
34 USE i e e e . numer ic std . a l l ;
35 LIBRARY work ;
36 USE work . ocp . a l l ;
37 USE work . OCPBurstCDC types . a l l ;
38
39 ENTITY OCPBurstCDC B IS
40 GENERIC( bu r s tS i z e : INTEGER := 4 ) ;
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41 PORT( c l k : IN s t d l o g i c ;
42 r s t : IN s t d l o g i c ;
43 syncIn : IN o cp bu r s t s ;
44 syncOut : OUT ocp burst m ;
45 asyncOut : OUT AsyncBurst B r ;
46 asyncIn : IN AsyncBurst A r
47 ) ;
48 END ENTITY OCPBurstCDC B ;
49
50 ARCHITECTURE behaviour OF OCPBurstCDC B IS
51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 −− FSM s i g n a l s
53 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 TYPE f sm s t a t e s t IS ( IDLE state , ReadBlock , ReadBlockWait ,
55 WriteBlock , WriteBlockWait , WriteBlockFinal ) ;
56 SIGNAL s ta te , s t a t e n ex t : f sm s t a t e s t ;
57 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 −− Reg i s t e r s i g n a l s
59 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 SIGNAL RegAddr , RegAddr next : unsigned (1 downto 0) := ( others => ’ 0 ’ ) ;
61
62 TYPE DataArray t IS
63 ARRAY ( burs tS i ze−1 downto 0) OF
64 s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
65 TYPE RespArray t IS
66 ARRAY ( burs tS i ze−1 downto 0) OF
67 s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0 ) ;
68
69 SIGNAL data a r r : DataArray t ;
70 SIGNAL r e s p a r r : RespArray t ;
71
72 SIGNAL loadEnable : s t d l o g i c ;
73 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 −− Async s i g n a l s
75 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76
77 SIGNAL req prev , req , r eq next : s t d l o g i c := ’ 0 ’ ;
78 SIGNAL ack , ack next : s t d l o g i c := ’ 0 ’ ;
79
80 BEGIN
81 asyncOut . ack <= ack ;
82 asyncOut . data . SResp <= re s p a r r ( t o i n t e g e r ( unsigned ( asyncIn . RegAddr ) ) ) ;
83 asyncOut . data . SData <= data a r r ( t o i n t e g e r ( unsigned ( asyncIn . RegAddr ) ) ) ;
84
85 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 −− FSM
87 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 FSM : PROCESS( s ta te , syncIn , asyncIn , req , req prev , RegAddr , ack )
89 BEGIN
90 s t a t e n ex t <= s ta t e ;
91 loadEnable <= ’0 ’ ;
92 RegAddr next <= RegAddr ;
93 syncOut .MCmd <= OCP CMD IDLE;
94 syncOut .MAddr <= ( others => ’ 0 ’ ) ;
95 syncOut .MData <= ( others => ’ 0 ’ ) ;
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96 syncOut .MDataByteEn <= ( others => ’ 0 ’ ) ;
97 asyncOut . RegAddr <= ( others => ’ 0 ’ ) ;
98 syncOut . MDataValid <= ’0 ’ ;
99 ack next <= ack ;

100 CASE s t a t e IS
101 WHEN IDLE state =>
102 −−Wait f o r r e que s t
103 IF req = NOT( r eq prev ) THEN
104 −−I f read command
105 IF asyncIn . data .MCmd = OCPCMDRD THEN
106 −−Relay command to OCP s l a v e and e i t h e r go to wai t s t a t e
107 −−or commence b u f f e r i n g read data
108 s t a t e n ex t <= ReadBlockWait ;
109 syncOut .MCmd <= OCPCMDRD;
110 IF syncIn . SCmdAccept = ’1 ’ THEN
111 s t a t e n ex t <= ReadBlock ;
112 END IF ;
113 −−I f wr i t e command
114 ElSIF asyncIn . data .MCmd = OCPCMDWR THEN
115 s t a t e n ex t <= WriteBlockWait ;
116 syncOut .MCmd <= OCPCMDWR;
117 syncOut . MDataValid <= ’1 ’ ;
118 syncOut .MDataByteEn <= asyncIn . data .MDataByteEn ;
119 syncOut .MAddr <= asyncIn . data .MAddr ;
120 syncOut .MData <= asyncIn . data .MData ;
121 IF syncIn . SCmdAccept = ’1 ’ AND syncIn . SDataAccept = ’1 ’
122 THEN
123 RegAddr next <= RegAddr +
124 to uns igned (1 ,RegAddr ’LENGTH) ;
125 s t a t e n ex t <= WriteBlock ;
126 END IF ;
127 END IF ;
128 END IF ;
129 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 −− READ BLOCK
131 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132 WHEN ReadBlockWait =>
133 syncOut .MCmd <= OCPCMDRD;
134 IF syncIn . SCmdAccept = ’1 ’ THEN
135 s t a t e n ex t <= ReadBlock ;
136 END IF ;
137 WHEN ReadBlock =>
138 IF syncIn . SResp /= OCP RESP NULL THEN
139 loadEnable <= ’1 ’ ;
140 RegAddr next <= RegAddr + to uns igned (1 , RegAddr ’LENGTH) ;
141 IF RegAddr = to uns igned ( burs tS i ze −1,RegAddr ’LENGTH) THEN
142 s t a t e n ex t <= IDLE state ;
143 ack next <= NOT ( ack ) ;
144 END IF ;
145 END IF ;
146 −− WRITE BLOCK
147 WHEN WriteBlockWait =>
148 syncOut .MCmd <= OCPCMDWR;
149 syncOut . MDataValid <= ’1 ’ ;
150 syncOut .MAddr <= asyncIn . data .MAddr ;
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151 syncOut .MDataByteEn <= asyncIn . data .MDataByteEn ;
152 syncOut .MData <= asyncIn . data .MData ;
153 asyncOut . RegAddr <= s t d l o g i c v e c t o r (RegAddr ) ;
154
155 IF syncIn . SCmdAccept = ’1 ’ AND syncIn . SDataAccept = ’1 ’ THEN
156 RegAddr next <= RegAddr + to uns igned (1 ,RegAddr ’LENGTH) ;
157 s t a t e n ex t <= WriteBlock ;
158 END IF ;
159 WHEN WriteBlock =>
160 −− Sync Data S i gna l s
161 syncOut . MDataValid <= ’1 ’ ;
162 syncOut .MDataByteEn <= asyncIn . data .MDataByteEn ;
163 syncOut .MAddr <= asyncIn . data .MAddr ;
164 syncOut .MData <= asyncIn . data .MData ;
165 RegAddr next <= RegAddr + to uns igned (1 ,RegAddr ’LENGTH) ;
166 asyncOut . RegAddr <= s t d l o g i c v e c t o r (RegAddr ) ;
167 IF RegAddr = to uns igned ( burs tS i ze −1, RegAddr ’LENGTH) THEN
168 s t a t e n ex t <= WriteBlockFinal ;
169 −−ack nex t <= NOT ( ack ) ;
170 END IF ;
171 WHEN WriteBlockFinal =>
172 IF syncIn . SResp /= OCP RESP NULL THEN
173 ack next <= NOT( ack ) ;
174 loadEnable <= ’1 ’ ;
175 s t a t e n ex t <= IDLE state ;
176 END IF ;
177 WHENOTHERS =>
178 s t a t e n ex t <= IDLE state ;
179 END CASE;
180 END PROCESS FSM;
181
182 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
183 −− Reg i s t e r s
184 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 Reg i s t e r s : PROCESS( c lk , r s t )
186 BEGIN
187 IF r s t = ’1 ’ THEN
188 s t a t e <= IDLE state ;
189 req prev <= ’0 ’ ;
190 req <= ’0 ’ ;
191 req next <= ’0 ’ ;
192 ack <= ’0 ’ ;
193 RegAddr <= ( others=> ’0 ’);
194 ELSIF r i s i n g e d g e ( c l k ) THEN
195 s t a t e <= sta t e n ex t ;
196 req prev <= req ;
197 req <= req next ;
198 req next <= asyncIn . req ;
199 ack <= ack next ;
200 RegAddr <= RegAddr next ;
201 END IF ;
202 END PROCESS Reg i s t e r s ;
203
204 DataRam : PROCESS( c l k )
205 BEGIN
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206 IF r i s i n g e d g e ( c l k ) THEN
207 IF loadEnable = ’1 ’ THEN
208 data a r r ( t o i n t e g e r (RegAddr ) ) <= syncIn . SData ;
209 END IF ;
210 END IF ;
211 END PROCESS DataRam ;
212
213 RespRam : PROCESS( c l k )
214 BEGIN
215 IF r i s i n g e d g e ( c l k ) THEN
216 IF loadEnable = ’1 ’ THEN
217 r e s p a r r ( t o i n t e g e r (RegAddr ) ) <= syncIn . SResp ;
218 END IF ;
219 END IF ;
220 END PROCESS RespRam ;
221
222 ENDARCHITECTURE behaviour ;

A.3 Packages

A.3.1 OCP Types

Following package is redistributed from the T-CREST project under a Simplified (2-
Clause) BSD License

1 −− Copyright Technica l Un i v e r s i t y o f Denmark . A l l r i g h t s r e s e rved .
2 −− This f i l e i s par t o f the T−CREST pro j e c t .
3 −−
4 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
5 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
6 −−
7 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
8 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
9 −−
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t
11 −− not ice , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the
12 −− documentation and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ‘ ‘AS IS ’ ’ AND ANY EXPRESS
15 −− OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 −− OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 −− NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
18 −− DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
19 −− (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20 −− LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
21 −− ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT
22 −− (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 −− THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 −−
25 −− The views and conc lu s i ons conta ined in the so f tware and documentation are
26 −− t hose o f the authors and shou ld not be i n t e r p r e t e d as r ep r e s en t i n g o f f i c i a l
27 −− p o l i c i e s , e i t h e r expres sed or impl ied , o f the copy r i g h t ho lde r .
28 −−
29
30
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31 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 −− De f i n i t i o n s package
33 −−
34 −− Author : Evange l ia Kasapaki
35 −− Author : Rasmus Bo Soerensen
36 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37
38 l ibrary i e e e ;
39 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
40
41 use work . o cp con f i g . a l l ;
42
43 package ocp i s
44
45 −− OCP
46 constant OCPCMDWIDTH : i n t e g e r := 3 ; −− 8 p o s s i b l e cmds −−> 2
47 constant OCPADDRWIDTH : i n t e g e r := 32 ; −−32
48 constant OCP BURST ADDRWIDTH : i n t e g e r := BURST ADDRWIDTH; −−32
49 constant OCPDATAWIDTH : i n t e g e r := 32 ;
50 constant OCP BYTEWIDTH : i n t e g e r := OCPDATAWIDTH/8 ;
51 constant OCP RESP WIDTH : i n t e g e r := 2 ;
52
53 constant OCP CMD IDLE : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”000” ;
54 constant OCPCMDWR : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”001” ;
55 constant OCPCMDRD : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”010” ;
56 −−cons tant OCP CMDRDEX : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”011”;
57 −−cons tant OCP CMD RDL : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”100”;
58 −−cons tant OCPCMDWRNP : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”101”;
59 −−cons tant OCPCMDWRC : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”110”;
60 −−cons tant OCP CMD BCST : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0) := ”111”;
61
62 constant OCP RESP NULL : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0) := ”00” ;
63 constant OCP RESP DVA : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0) := ”01” ;
64 constant OCP RESP FAIL : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0) := ”10” ;
65 constant OCP RESP ERR : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0) := ”11” ;
66
67 type ocp core m i s record
68 MCmd : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0 ) ;
69 MAddr : s t d l o g i c v e c t o r (OCP ADDRWIDTH−1 downto 0 ) ;
70 MData : s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
71 MByteEn : s t d l o g i c v e c t o r (OCP BYTEWIDTH−1 downto 0 ) ;
72 end record ;
73
74 type o cp co r e s i s record
75 SResp : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0 ) ;
76 SData : s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
77 end record ;
78
79 type ocp io m i s record
80 MCmd : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0 ) ;
81 MAddr : s t d l o g i c v e c t o r (OCP ADDRWIDTH−1 downto 0 ) ;
82 MData : s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
83 MByteEn : s t d l o g i c v e c t o r (OCP BYTEWIDTH−1 downto 0 ) ;
84 MRespAccept : s t d l o g i c ;
85 end record ;
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86
87 type o c p i o s i s record
88 SResp : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0 ) ;
89 SData : s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
90 SCmdAccept : s t d l o g i c ;
91 end record ;
92
93 type ocp burst m i s record
94 MCmd : s t d l o g i c v e c t o r (OCP CMDWIDTH−1 downto 0 ) ;
95 MAddr : s t d l o g i c v e c t o r (OCP BURST ADDRWIDTH−1 downto 0 ) ;
96 MData : s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
97 MDataByteEn : s t d l o g i c v e c t o r (OCP BYTEWIDTH−1 downto 0 ) ;
98 MDataValid : s t d l o g i c ;
99 end record ;

100
101 type o cp bu r s t s i s record
102 SResp : s t d l o g i c v e c t o r (OCP RESP WIDTH−1 downto 0 ) ;
103 SData : s t d l o g i c v e c t o r (OCP DATAWIDTH−1 downto 0 ) ;
104 SCmdAccept : s t d l o g i c ;
105 SDataAccept : s t d l o g i c ;
106 end record ;
107
108 end package ; −− ocp

A.3.2 OCPburst CDC Types

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Copyright ( c ) 2016 , Mathias Her lev
3 −− Al l r i g h t s r e s e rved .
4 −−
5 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
6 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
7 −−
8 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
9 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t not ice ,
11 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the documentation
12 −− and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
15 −− AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 −− IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 −− ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18 −− LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 −− CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 −− SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 −− INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
22 −− CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 −− ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 −− POSSIBILITY OF SUCH DAMAGE.
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− T i t l e : OCPBurst I n t e r f a c e Types
27 −− Type : Type Package
28 −− Descr ip t i on : Record type s f o r OCPburst CDC in t e r f a c e
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29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 LIBRARY i e e e ;
31 USE i e e e . s t d l o g i c 1 1 6 4 . a l l ;
32 LIBRARY work ;
33 USE work . ocp . a l l ;
34
35 PACKAGE OCPBurstCDC types IS
36
37 TYPE OCPBurstCDCIn r IS
38 RECORD
39 clk A : s t d l o g i c ;
40 rs t A : s t d l o g i c ;
41 c lk B : s t d l o g i c ;
42 r s t B : s t d l o g i c ;
43 OCPB slave : o cp bu r s t s ;
44 OCPB master : ocp burst m ;
45 ENDRECORD;
46
47 TYPE OCPBurstCDCOut r IS
48 RECORD
49 OCPB A : ocp bu r s t s ;
50 OCPB B : ocp burst m ;
51 ENDRECORD;
52
53 TYPE AsyncBurst A r IS
54 RECORD
55 req : s t d l o g i c ;
56 Data : ocp burst m ;
57 RegAddr : s t d l o g i c v e c t o r (1 downto 0 ) ;
58 ENDRECORD;
59
60 TYPE AsyncBurst B r IS
61 RECORD
62 ack : s t d l o g i c ;
63 Data : o cp bu r s t s ;
64 RegAddr : s t d l o g i c v e c t o r (1 downto 0 ) ;
65 ENDRECORD;
66 END OCPBurstCDC types ;

A.3.3 OCPio CDC Types

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Copyright ( c ) 2016 , Mathias Her lev
3 −− Al l r i g h t s r e s e rved .
4 −−
5 −− Red i s t r i b u t i on and use in source and b inary forms , wi th or wi thou t
6 −− modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g cond i t i on s are met :
7 −−
8 −− 1 . Red i s t r i b u t i o n s o f source code must r e t a i n the above copy r i g h t not ice ,
9 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
10 −− 2 . Red i s t r i b u t i o n s in b inary form must reproduce the above copy r i g h t not ice ,
11 −− t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer in the documentation
12 −− and/or o ther ma t e r i a l s prov ided wi th the d i s t r i b u t i o n .
13 −−
14 −− THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
15 −− AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
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16 −− IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 −− ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
18 −− LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 −− CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 −− SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 −− INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
22 −− CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 −− ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24 −− POSSIBILITY OF SUCH DAMAGE.
25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− T i t l e : OCPBurst I n t e r f a c e Types
27 −− Type : Type Package
28 −− Descr ip t i on : Record type s f o r OCPio CDC in t e r f a c e
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 LIBRARY i e e e ;
31 USE i e e e . s t d l o g i c 1 1 6 4 . a l l ;
32 LIBRARY work ;
33 USE work . ocp . a l l ;
34 PACKAGE OCPIOCDC types IS
35
36 TYPE OCPIOCDCIn r IS
37 RECORD
38 clk A : s t d l o g i c ;
39 rs t A : s t d l o g i c ;
40 c lk B : s t d l o g i c ;
41 r s t B : s t d l o g i c ;
42 ocpio B : o c p i o s ;
43 ocpio A : ocp io m ;
44 ENDRECORD;
45
46 TYPE OCPIOCDCOut r IS
47 RECORD
48 ocpio A : o c p i o s ;
49 ocpio B : ocp io m ;
50 ENDRECORD;
51
52 TYPE asyncIO A r IS
53 RECORD
54 req : s t d l o g i c ;
55 data : ocp io m ;
56 ENDRECORD;
57
58 TYPE asyncIO B r IS
59 RECORD
60 ack : s t d l o g i c ;
61 data : o c p i o s ;
62 ENDRECORD;
63
64
65 END OCPIOCDC types ;
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