Livscyklusscreening af affaldsforebyggelse
Emballageaffald og bygge- og anlægsaffald

Brogaard, Line Kai-Sørensen; Damgaard, Anders; Astrup, Thomas Fruergaard

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Livscyklus-screening af affaldsforebyggelse

Emballageaffald og bygge- og anlægsaffald

Miljøprojekt nr. 1849, 2016
Titel: Livscyklus-screening af affaldsforebyggelse

Redaktion: Line Kai-Sørensen Brogaard
Anders Damgaard
Thomas Astrup

Udgiver: Miljøstyrelsen
Strandgade 29
1401 København K
www.mst.dk

År: 2016
ISBN nr. 978-87-93435-63-6

Ansvarsfraskrivelse:

Må citeres med kildeangivelse.
Indhold

Forord..4

Sammenfatning..5

Summary..8

1. Indledning ..11
 1.1 Baggrund ..11
 1.2 Formål ..11
 1.3 Afgrænsning af LCA-screening...12

2. Metodebeskrivelse..13
 2.1 LCA-screening ..13
 2.2 Beregningsmetode ..13
 2.2.1 Funktionel enhed ..13
 2.2.2 Fastlæggelse af miljøpåvirkninger for produktion af materialer14
 2.2.3 Systemafgrænsning ..14
 2.3 Miljøpåvirkningskategorier, LCIA-metoder og fortolkning af resultater15
 2.4 Livscyklusvurderings-værktøjet EASETECH ..16

3. Data anvendt i LCA-screening ..18
 3.1 Affaldssammensætning ...18
 3.1.1 Emballage – aluminium, glas, metal, pap, papir, plast18
 3.1.2 Bygge- og anlægsaffald – mursten, gips og beton ..20
 3.2 Affaldsbehandling ..21
 3.2.1 Emballage – aluminium, glas, metal, pap, papir, plast21
 3.2.2 Bygge/anlægsaffald – mursten, gips og beton ..22
 3.3 Opstillede scenarier ..23

4. Resultater og diskussion ...24

5. Konklusion ..28

Referencer ..29

Bilag 1: Normaliserede resultater ..31
Bilag 2: Rangordning ..40
Forord

LCA-screeningen er udført for Miljøstyrelsen af DTU Miljø i 2015 som en del af en ydelsesaftale mellem Miljøstyrelsen og DTU om forskningsbaseret myndighedsbetjening inden for affald- og ressourceområdet. LCA-screeningen blev udført vha. LCA-modellen EASETECH, som er udviklet af DTU Miljø til miljøvurdering af affaldssystemer. Rapporten har ikke været under eksternt review.

Fra Miljøstyrelsen er kontaktpersonerne Anne-Mette Lysemose Bendsen og Thilde Fruergaard Astrup.

Rapporten blev udarbejdet af Line Kai-Sørensen Brogaard, Anders Damgaard og Thomas Astrup fra DTU Miljø.

TABEL S1
Karakteriserede resultater per ton affald forebygget for emballageaffald og bygge og anlægsaffald. Negativer verdier indikerer besparelser ved at forebygge fremfor at genanvende det pålideligte affald. CTU: Comparable Toxic Unit. AE: Accumulated Exceedence. EQ: Equivalent.

Miljøpåvirkning kategori

<table>
<thead>
<tr>
<th>Enhed</th>
<th>Aluminium</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drivhuseffekt</td>
<td>kg CO₂-Eq</td>
<td>-4518</td>
<td>-125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-585</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-483</td>
<td>-181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-335</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-401</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratosferisk ozon nedbrydning</td>
<td>kg CFC-11-Eq</td>
<td>-7·10⁻⁵</td>
<td>-2·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1·10⁻⁵</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3·10⁻⁵</td>
<td>-5·10⁻⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5·10⁻⁵</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1·10⁻⁵</td>
<td>-2·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fotokemisk ozondannelse</td>
<td>kg NMVOC</td>
<td>-11</td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5·10⁻¹</td>
<td>-5·10⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-12</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ioniserende stråling, human sundhed</td>
<td>kg U335-Eq</td>
<td>-162</td>
<td>-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3·10⁻¹</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partikler</td>
<td>kg PM2.5-Eq</td>
<td>-1</td>
<td>-1·10⁻²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1·10⁻³</td>
<td>-3·10⁻³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5·10⁻⁴</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8·10⁻⁵</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forsuring</td>
<td>AE</td>
<td>-15</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-2·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferskvands-eutrofiering</td>
<td>kg P-Eq</td>
<td>-4·10⁻⁴</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5·10⁻⁵</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7·10⁻⁴</td>
<td>-3·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4·10⁻⁵</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marin-eutrofiering</td>
<td>kg N-Eq</td>
<td>-3</td>
<td>-2·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-3·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2·10⁻⁵</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrik eutrofiering</td>
<td>AE</td>
<td>-38</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8</td>
<td>-1·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>-2·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2</td>
<td>-3·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanitetskcit, cancereffekter</td>
<td>CTU</td>
<td>-5·10⁻⁷</td>
<td>-2·10⁻⁸</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2·10⁻⁸</td>
<td>-6·10⁻⁸</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6·10⁻⁸</td>
<td>-9·10⁻⁸</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanitetskcit, ikke-cancerffekter</td>
<td>CTU</td>
<td>-4·10⁻⁵</td>
<td>-3·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8·10⁻⁵</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2·10⁻⁶</td>
<td>-3·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Økotoksicitet</td>
<td>CTU</td>
<td>-108</td>
<td>-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-53</td>
<td>-6·10⁻²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbrug af biotiske ressourcer, fossile brændsel</td>
<td>MJ</td>
<td>-12533</td>
<td>-4140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3260</td>
<td>-4112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2739</td>
<td>-20794</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-567</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3290</td>
</tr>
<tr>
<td>Forbrug af biotiske ressourcer, grundstoffer</td>
<td>kg antimon-Eq</td>
<td>-2·10⁻³</td>
<td>-7·10⁻⁹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3·10⁻⁴</td>
<td>-3·10⁻³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3·10⁻⁴</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3·10⁻⁴</td>
<td>-3·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1·10⁻³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3·10⁻⁴</td>
</tr>
</tbody>
</table>
Livscyklus-
screening af affaldsforebyggelse

Tabel S2 viser rangordning af affaldsfraktioner for hver miljøpåvirkningskategori. For hver række er materialet med den største besparelse af miljøpåvirkning angivet med scoren i (grøn). Omvendt er materialet med den største miljøpåvirkning, hvilket stadig godt kan være en besparelse, angivet med scoren 9 (rød). Forebygelse af aluminium og plast giver de største besparelser af miljøpåvirkninger, for næsten alle miljøpåvirkningskategorier.Sammenlignet med emballageaffald giver bygge- og anlægsaffald lavere besparelser, men som det kan ses i Tabel S1 opnås stadig miljøbesparelser ved forebygelse af bygge- og anlægsaffald.

Tabel S2
RANGORDNING FRA 1-9 AF NETTO MILJØPÅVIRKNING FOR FOREBYGGELSE AF 1 TON AF HVER AFFALDSFRAKTION. GRØN/1: AFFALDSFRAKTION MED LAVEST MILJØPÅVIRKNING OGD RØD/9: AFFALDSFRAKTION MED HØJEST STØRST MILJØPÅVIRKNING.

<table>
<thead>
<tr>
<th>Miljøpåvirknings-kategori</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alumunium</td>
<td>Glas</td>
</tr>
<tr>
<td>Drivhusseffekt</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Stratosfæris ozon ned-brydning</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Fotokemisk ozonannelse</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ioniserende stråling, human sundhed</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Partikler</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Forsuring</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ferskvands-eutrofiering</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Marin-eutrofiering</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Terrestrisk eutrofiering</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Humantoksisitet, cancer-effekter</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Humantoksisitet, ikke-cancer-effekter</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Økotoksisitet</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer, fossile brændstoffer</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer, grundstoffer</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Data for de producerede mængder af hver affaldstype blev brugt til at vægte resultaterne i Tabel S2. På den måde gives et overblik (i Tabel S3) over betydningen af affaldsfraktioner, som produceres i store mængder med en lille miljøgevinst (i forhold til de andre affaldsfraktioner). Da mængderne af bygge- og anlægsaffald er meget større end de øvrige affaldsfraktioner, vil rangordningen mellem fraktionerne potentielt ændres, se Tabel S3. Aluminium og plast er dog stadig højt placeret i rangordenen i Tabel S3. Det betyder, at disse fraktioner altid vil være fordelagtige at forebygge. Mængden af papir er større end de andre emballagetyper og papir rangeres højt, når mængden inddrages i vurderingen. Ved vægtning med mængderne af produceret affald er beton, plast og papir rangeret højest.

Livscyklus-screening af affaldsforebyggelse 6
TABEL S3
RANGORDNING FRA 1-9 AF SAMLET MILJØPÅVIRKNING PÅ DRIVHUSEFFEKT FOR FOREBYGGELSE AF HVER AFFALDSFRAKTION.

<table>
<thead>
<tr>
<th>Rangordning</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference flow</td>
<td>Aluminium</td>
<td>Glas</td>
</tr>
<tr>
<td>1 ton affald</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total mængde affald produceret</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

For nogle få miljøpåvirkningskategorier ses ikke besparelser ved forebyggelse. Dette kan skyldes, at der i denne LCA-screening ikke er vurderet usikkerhed på data. En anden grund kan være, at der kun er anvendt data fra tilgængelige databaser og litteratur, og altså ikke indsamlet data specifikt for danske forhold. Kvaliteten af data er ikke efterprøvet og følsomheden overfor resultaterne er ikke vurderet. Denne screening giver derfor udelukkende et overordnet indblik i miljøpåvirkningerne ved at forebygge fremfor at genanvende. Ved vurdering af konkrete initiativer til forebyggelse er det nødvendigt med en specifik vurdering af datakvalitet og datausikkerheder for at opnå robuste konklusioner.
The project aims to develop a methodological basis for evaluating the environmental impacts of waste prevention. In this project, the environmental impacts of prevention were compared to the environmental impacts from recycling. In addition, the purpose was to perform a LCA-screening of selected waste fractions; packaging waste (aluminium, glass, metal, cardboard, paper and plastic) and construction and demolition waste (concrete, gypsum and bricks).

Environmental savings were found by preventing waste instead of recycling it. Table S1 shows characterized results for all materials and all environmental impact categories per tonne of waste prevented. For some of the materials net environmental impacts are close to zero, this can be due to high substitution rates for example for gypsum (1:1). This means that an equally large amount of material is recycled compared to what is produced upstream, and if the waste treatment / recycling process does not provide major environmental impacts, the total will be very small or close to zero.

TABLE S1

CHARACTERISED RESULTS PER TONNE OF WASTE PREVENTED OF PACKAGING WASTE AND CONSTRUCTION AND DEMOLITION WASTE. NEGATIVE VALUES MEANS SAVINGS WHEN PREVENTING THE RELEVANT WASTE. CTU: COMPARABLE TOXIC UNIT. AE: ACCUMULATED EXCEEDENCE. EQ: EQUIVALENTS.

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Unit</th>
<th>Packaging waste</th>
<th>Construction and demolition waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aluminium</td>
<td>Glass</td>
</tr>
<tr>
<td>Climate change</td>
<td>kg CO₂-Eq</td>
<td>-4518</td>
<td>-585</td>
</tr>
<tr>
<td>Stratospheric ozone depletion</td>
<td>kg CFC-11-Eq</td>
<td>-7·10⁻³</td>
<td>-1·10⁻⁷</td>
</tr>
<tr>
<td>Photochemical oxidant formation</td>
<td>kg NMVOC</td>
<td>-11</td>
<td>-2</td>
</tr>
<tr>
<td>Ionising radiation</td>
<td>kg U²³⁵-Eq</td>
<td>-162</td>
<td>-3·10⁻³</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>kg PM₂·₅-Eq</td>
<td>-1</td>
<td>-1·10⁻¹</td>
</tr>
<tr>
<td>Terrestrial acidification</td>
<td>AE</td>
<td>-15</td>
<td>-3</td>
</tr>
<tr>
<td>Freshwater eutrophication</td>
<td>kg P-Eq</td>
<td>-4·10⁻⁴</td>
<td>-5·10⁻⁵</td>
</tr>
<tr>
<td>Marine eutrophication</td>
<td>kg N-Eq</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>Terrestrial eutrophication</td>
<td>AE</td>
<td>-38</td>
<td>-8</td>
</tr>
<tr>
<td>Human toxicity, carcinogenic</td>
<td>CTU</td>
<td>-5·10⁻⁷</td>
<td>-2·10⁻⁸</td>
</tr>
<tr>
<td>Human toxicity, non-carcinogenic</td>
<td>CTU</td>
<td>-4·10⁻⁵</td>
<td>-3·10⁻⁶</td>
</tr>
<tr>
<td>Ecotoxicity</td>
<td>CTU</td>
<td>-108</td>
<td>-1</td>
</tr>
<tr>
<td>Resources, depletion of abiotic re-</td>
<td>MJ</td>
<td>-12533</td>
<td>-4140</td>
</tr>
<tr>
<td>ources, fossil</td>
<td>kg anti-mony-Eq</td>
<td>-2·10⁻³</td>
<td>-7·10⁻⁹</td>
</tr>
</tbody>
</table>
Table S2 shows the ranking of environmental effects for each of the waste types. Each row shows the material that had the largest saving of environmental impact, this material got the score 1 (green). The material with the largest environmental impact, which could still be a saving, got the score 9 (red). Prevention of aluminium and plastic provides the largest savings of environmental impacts for almost all impact categories compared to the other types of waste. When comparing packaging waste with construction and demolition waste, the latter provides lower savings, but as can be seen in Table S1 prevention of construction and demolition waste still leads to environmental savings.

TABLE S2
RANKING FROM 1-9 OF TOTAL ENVIRONMENTAL IMPACT OF PREVENTION OF 1 TON OF EACH WASTE FRACTION.
GREEN / 1: WASTE FRACTION WITH LOWEST ENVIRONMENTAL IMPACT AND RED / 9: WASTE FRACTION WITH HIGHEST / LARGEST IMPACT.

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Packaging waste</th>
<th>Construction and demolition waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alumini-um</td>
<td>Glass</td>
</tr>
<tr>
<td>Climate change</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Stratospheric ozone depletion</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Photochemical oxidant formation</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ionising radiation</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Terrestrial acidification</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Freshwater eutrophication</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Marine eutrophication</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Terrestrial eutrophication</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Human toxicity, carcinogenic</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Human toxicity, non-carcinogenic</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Ecotoxicity</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Resources, depletion of abiotic resources,</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>fossil</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Data for the quantities produced of each type of waste, were used to weight the results in Table S2. This shows that waste fractions produced in large quantities with a low environmental impact (relative to the other waste fractions). Since quantities of construction and demolition waste are much larger than the other waste fractions, the ranking of the fractions will potentially change, see Table S3. Aluminium and plastic are still high in the ranking in Table S3. This means that these will always be preferable to prevent. The amount of paper is larger than the other types of packaging and paper are ranked high when the results are weighted by the amount. Concrete, plastic and paper ranked the best in savings of environmental impacts when weighting the results by the amounts of waste generated.
No savings were seen by preventing waste for a few impact categories. This was partly due to the fact that in this LCA screening uncertainty of data was not evaluated. Another reason may be that only data from available databases and literature are used and not data collected specifically for Danish conditions. The quality of the data is not verified and sensitivity analysis was not done. This screening provides an overview of the environmental impact by preventing instead of recycling. Specific assessment of data quality and uncertainties are needed to obtain robust conclusions when evaluating specific initiatives to waste prevention.

Table S3
RANKING FROM 1-9 OF TOTAL IMPACT ON CLIMATE CHANGE OF PREVENTION OF THE WASTE FRACTIONS.

<table>
<thead>
<tr>
<th>Reference flow</th>
<th>Packaging waste</th>
<th>Construction and demolition waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium</td>
<td>Glass</td>
</tr>
<tr>
<td>1 ton of waste</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total amount of waste produced</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
1. Indledning

1.1 Baggrund

I affaldshierarkiet er forebygglelse af affald øverst og har første prioritet, efterfulgt af: forberedelse med henblik på genbrug, genanvendelse, anden nyttiggørelse, f.eks. energiudnyttelse, og bortskaffelse som sidste prioritet. I det Europæiske affaldsdirektiv er affaldsforebyggelse defineret som foranstaltninger, der træffes, inden stoffer, materieler eller produkter bliver til affald, og som mindsker:

- affaldsmængden, herunder via genbrug af produkter eller forlængelse af produkternes levetid
- de negative konsekvenser, som det producerede affald har for miljøet og menneskers sundhed, eller
- indholdet af skadelige stoffer i materialer og produkter.

Affaldsforebyggelse kan derved ske gennem undgået produktion, affaldsminimering, altså hvor mængden af affald gøres mindre, men også ved at affaldets sammensætning ændres og farlige stoffer fjernes. I denne screening medtages udelukkende affaldsforebyggelse i form af undgået produktion. Dette betyder, at det antages, at materialet reelt kan undgås og ikke vil kræve andre materialer eller tilsyneladende til andet forbrug.

1.2 Formål

Formålet med projektet er fastlæggelse af metodegrundlag for LCA af affaldsforebyggelse og dernæst en kvantificering af miljøpåvirkningerne ved affaldsforebyggelse, med udgangspunkt i fraktionerne: emballageaffald fra husholdninger samt bygge- og anlægsaffald.

Rapporten præsenterer metodebeskrivelse for livscyklusvurdering (LCA) af affaldsforebyggelse. Derudover præsenteres en LCA-screening af udvalgte cases for emballageaffald og bygge- og anlægsaffald. Data anvendt i screeningserne, affaldssammensætningen og data for affaldsbehandlingen præsenteres. Figurer for de opstillede scenarier vises og derefter vises resultaterne for miljøpåvirkningerne fra forebygglelsen. Rapporten tager udgangspunkt i to yderpunkter: det ene er forebygglese
ved undgået produktion og den anden er den bedst mulige behandling af affaldet i form af 100 % indsamling og genanvendelse.

1.3 Afgrænsning af LCA-screening

I denne rapport er det valgt at fokusere screeningen på undgået produktion uden at tage højde for afledte effekter, såsom anden produktion og forbrug af produkter som kobes i stedet for de forebyggede. For alle typer affald gælder, at affaldet oprindeligt har været en vare, som kobes af en forbruger og hvis dette køb ikke foretages kan pengene bruges anderledes til andre varer.

Transport er ikke medtaget i LCA-screeningen, da dette vil være meget forskelligt i specifikke tilfælde og fokus er på miljøpåvirkninger ved forebyggelse og affaldsbehandlingen. Transporten betyder normalt ikke meget – der kan køres langt før det svarer til hvad der udledes ved produktion og affaldsbehandling. Tilsvarende er det forudsat, at de berørte affaldsfaktioner udsorteres og indsamles med 100 % effektivitet hos borgeren, dvs. eventuelle tab og alternativ behandling (så som forbrænding) af genanvendelige fraktioner er ikke medtaget.

De valgte affaldsfaktioner kan forebygges på forskellig vis. Der er tidligere udgivet en rapport om indikatorer for affaldsforebygelse fra Kirkeby et al. (2014). Denne rapport beskriver blandt andet at affaldsforebygelsen af fraktioner, som er svære at undgå, kan ske i form af færre farlige stoffer i materialet/varen. For emballage vil ændret produktion medføre materialebesparelse (og dermed undgået produktion) eller en produktion, som er mindre miljøbelastende. For bygge- og anlægsaffald vil ændret og undgået produktion kunne være relevant, men også færre farlige stoffer i materia-lerne.
2. **Metodebeskrivelse**

2.1 LCA-screening

2.2 Beregningsmetode
Hvis der i et affaldsbehandlingsystem genanvendes affald som kan erstatte et konventionelt produkt/energi, spares de miljøpåvirkninger, som ellers ville have opstået ved at producere det konventionelle produkt/energi. Dermed ses resultater fra LCA af affaldssystemer ofte som besparelser, da de miljømæssige omkostninger, der er ved at genanvende/behandle affaldet, mindre end be- sparelsler der fremkommer ved at hente konventionel produktion af materialer og energi. Det vil også sige, at jo mere affald der behandles, des større besparelse af miljøpåvirkninger. Forebyggelse af affald i en ”normal” livscyklusvurdering, vil give færre miljøbesparelser i forhold til det oprindelige system, idet der nu kun håndteres og udnyttes en mindre mængde affald. Scenariet med mere affald vil dermed være at foretrække, hvilket ikke er reelt.

Ved LCA’er med sammenligning af flere scenarier for affaldsforebyggelse, vil den funktionelle enhed være mængden af affald, som sendes til behandling i et bestemt geografisk område (Ekvall et al., 2007; Nessi et al., 2013). Det betyder også, at miljøpåvirkningerne fra produktionen af materialerne og fodevarer skal medtages i livscyklusvurderingen. På den måde vurderes det hvor meget af de opstrøms byrder fra produktionen, som kan genvinde gennem affaldsbehandling. Det scenarie hvor der forebygges affald vil dermed være bedre, da der er færre byrder opstrøms som skal forsøges genvundes. ”Nul-byrde”-tilgangen, som normalt anvendes for affaldshåndteringssystemer, er derfor ikke brugbar i relation til affaldsforebyggelse (Finnveden, 1999; Ekvall et al. 2007).

2.2.1 Funktionel enhed
Den funktionelle enhed beskriver den service, som vurderingen undersøger. Hvis systemer skal sammenlignes, skal den funktionelle enhed være sammenlignelig og udføre samme service.

I denne rapport er fokus på forskellige produkter og miljøpåvirkningerne ved forebyggelse sammenlignet med alternative muligheder for genanvendelse eller energiudnyttelse. Den funktionelle enhed er defineret som:
Forebygelse af 1 ton affald (emballageaffald fra husholdninger eller bygge- og anlægsaffald) i Danmark. Sammensætningen af de udvalgte affaldsfraktioner er beskrevet under afsnit 3.1 og data for genanvendelsen af de samme fraktioner er beskrevet i afsnit 3.2.

2.2.2 Fastlæggelse af miljøpåvirkninger for produktion af materialer

For de opstrøms processer skal vandindholdet i affaldet (f.eks. papiraffald) omregnes til et niveau som svarer til jomfrueligt papir (eller til det vandindhold som den jomfruelige proces beskriver). Derfor bestemmes massen af hvert af materialerne i affaldet, og da dette vil indeholde et vandindhold fra materialets brug eller fra andre mere våde affaldstyper multiplicerer massen af hvert materiale med tørstofindholdet i materialet. Dette gøres for at undgå at overestimere mængden af materialet, som er produceret opstrøms. Derved bliver 1 ton papiraffald med et tørstofindhold på 84 % opstrøms repræsenteret af 0,84 ton jomfrueligt produceret pap. Data for tørstof-indholdet brugt i dette studie kan findes i Sektion 3.

Substitutionen af genanvendte materialer nedstrøms skal udgøres af de samme processer som bruges opstrøms. Det er gældende hvis det er teknisk muligt at genanvende og derved substituere et materiale, som er det samme som blev produceret opstrøms. I nogle tilfælde f.eks. for genanvendelse af knust beton, vil det ikke være muligt at substituere beton, men derimod vil det være relevant at substituere grus.

2.2.3 Systemafgrænsning

For at illustrere systemafgrænsningen i dette projekt er Figur 1 opstillet. Basisscenariet vurderer produktion af x ton materiale og behandlingen af dette materiale, når det bliver til affald. For at kunne vurdere effekterne ved undgåelse af at producere og behandle 1 ton vurderes scenarie b, dvs. affaldsforebygelsesscenariet. Her vurderes samme system som i basisscenariet, dog med et ton mindre. Hvis man trækker de to scenarier fra hinanden, får man scenarie c som er forskellen mellem den almindelige affaldsbehandling og f.eks. genanvendelse og så affaldsforebygelse.

Den er i denne LCA-screening ikke taget højde for relaterede effekter, såsom hvilke materialer der ville produceres i stedet for de forebyggede eller hvilke produkter forbrugeren ville købe, hvis de skulle undgå at købe det som forebygges.

Alle materialer er antaget at blive produceret fra jomfruelige materialer og ingen genanvendte materialer indgår i den opstrøms produktion af materialerne.

Det antages også at markedet for materialer og energi har stigende eller uændret efterspørgsel.

Siden affaldet forebygges, ved undgået produktion, skal jomfruelige materialer og energi produceres andetsteds, da disse ellers ville mangle i samfundet.

2.3 Miljøpåvirkningskategorier, LCIA-metoder og fortolkning af resultater

De valgte miljøpåvirkningskategorier er vist i Tabel 1. USEtox og UPFM metoderne er behæftet med en del usikkerhed, hvilket bør tages i betragtning ved fortolkning af resultater.

De potentielle miljøpåvirkninger kan endvidere omregnes for hver af påvirkningskategorierne til en fælles enhed i form af en personækvivalent (PE), idet de faktiske belastninger divideres med den gennemsnitlige årlige belastning fra én person i et specifikt område i et specifikt år – dette kaldes normalisering. Tabel 1 viser ligeledes de anvendte normaliseringsreferencer for omregning til personækvivalenter for de benyttede miljøpåvirkningskategorier (Blok et al., 2013).
2.4 Livscyklusvurderings-værktøjet EASETECH

Modellen indeholder data for udvalgte anlæg og processer, men tillader også at specifikke anlæg opstilles og gemmes i modellen. Scenarier med flere strengte kan opstilles for et givet system startende med affaldsgenereringen og afsluttende med slutdisponeringen i et deponi, ved industriel materialeudnyttelse, udspredt på landbrugsjord, udnyttelse i energianlæg eller ved materialeudnyttelse. Hvor der sker materialeudnyttelse, energiudnyttelse eller materialeudnyttelse, krediteres affaldssystemet for de ressourcemæssige og miljømæssige besparelser, der opnås ved, at den tilsvarende produktion baseret på jomfruelige materialer undgås. EASETECH indeholder databaser for en række centrale processer, for eksempel for transport, elektricitets- og varmefremstilling. Herudover kan data importeres fra kommercielle databaser.
3. Data anvendt i LCA-screening

3.1 Affaldssammensætning

Til at udføre en miljøvurdering af produktionen af materialerne opstrøms, dvs. inden materialerne bliver til affald og for behandlingen af de valgte affaldstyper, er der brug for store mængder data. Disse data skal dække forbrug af materialer, kemikalier, energi og vand såvel som alle typer af emissioner til jord, vand og luft. Data indsamles for den jomfruelige produktion såvel som for affaldsbehandlingen herunder genanvendelse og forbrænding for hver af de undersøgte affaldstyper.

3.1.1 Emballage – aluminium, glas, metal, pap, papir, plast

TABEL 2
PROCENTFORDELING FOR EMBALLAGEFRAKTIONER AF TOTAL MÅNGDE HUSHOLDNINGSAFFALD OG AF MATERIALEFRAKTION. MÅNGDE TØRSTOF PER UNDERFRAKTION I % (EASETECH DATABASE, 2015; MØLLER ET AL., 2010).

<table>
<thead>
<tr>
<th>Materialefraktion og underfraktioner</th>
<th>Procentfordeling af total mængde husholdningsaffald</th>
<th>Procentfordeling på materialefraktioner</th>
<th>Mængde tørstof i affaldsfraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dåser til drikkevarer (aluminium)</td>
<td>0,57</td>
<td>40</td>
<td>0,92</td>
</tr>
<tr>
<td>Aluminium folie og beholdere</td>
<td>0,47</td>
<td>33</td>
<td>0,81</td>
</tr>
<tr>
<td>Plast-coated aluminium folie</td>
<td>0,38</td>
<td>27</td>
<td>0,89</td>
</tr>
<tr>
<td>Total</td>
<td>1,42</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Glas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunt glas</td>
<td>0,28</td>
<td>8</td>
<td>0,95</td>
</tr>
<tr>
<td>Grønt glas</td>
<td>1,16</td>
<td>33</td>
<td>0,97</td>
</tr>
<tr>
<td>Klart glas</td>
<td>2,04</td>
<td>59</td>
<td>0,88</td>
</tr>
<tr>
<td>Materiale</td>
<td>Affaldsfraktion</td>
<td>Procesnavn</td>
<td>År</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Grønt glas</td>
<td>packaging glass production, green</td>
<td>2000-2014</td>
</tr>
<tr>
<td></td>
<td>Brunt glas</td>
<td>packaging glass production, brown</td>
<td>2000-2014</td>
</tr>
<tr>
<td>Pap</td>
<td>Andet rent pap</td>
<td>corrugated board box production</td>
<td>2008-2014</td>
</tr>
<tr>
<td></td>
<td>Mælkekartoner (pap/plast)</td>
<td>liquid packaging board, at plant, RER</td>
<td>2009-2014</td>
</tr>
<tr>
<td></td>
<td>Juicekartoner (pap/plast/aluminium)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABEL 3
PROCESSDATA ANVENDT I DENNE RAPPORT FOR JOMFRUELIG PRODUKTION AF EMBALLAGE-MATERIALER.
Livscyklus - screening af affaldsforebyggelse

Metal

<table>
<thead>
<tr>
<th>Material</th>
<th>Process Description</th>
<th>Year</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dåser til madvarer (hvid-blik/stål)</td>
<td>Steel Sheets (97.75% primary), Sweden</td>
<td>2008</td>
<td>EASETECH, 2015</td>
<td></td>
</tr>
</tbody>
</table>

Plast

<table>
<thead>
<tr>
<th>Material</th>
<th>Process Description</th>
<th>Year</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plast flasker</td>
<td>polyethylene terephthalate production, granulate, bottle grade</td>
<td>1999-2014</td>
<td>Ecoinvent, 2015</td>
<td></td>
</tr>
<tr>
<td>Hård plast</td>
<td>Polyethylene high density granulate (PE-HD), RER</td>
<td>1999</td>
<td>ELCD, 2014</td>
<td></td>
</tr>
</tbody>
</table>

Aluminium

<table>
<thead>
<tr>
<th>Material</th>
<th>Process Description</th>
<th>Year</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dåser til drikkevarer (aluminium)</td>
<td>Aluminum, Al (Primary), World average</td>
<td>2005</td>
<td>EASETECH, 2015</td>
<td></td>
</tr>
<tr>
<td>Aluminium folie og beholde-re</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plast-coated aluminium folie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Papir

<table>
<thead>
<tr>
<th>Material</th>
<th>Process Description</th>
<th>Year</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avispapir</td>
<td>Virgin Newspaper, Europe (generic)</td>
<td>2001</td>
<td></td>
<td>Frees et al., 2005</td>
</tr>
<tr>
<td>Andet rent papir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reklamer</td>
<td>Virgin Fine Paper, Europe (generic)</td>
<td>2001</td>
<td></td>
<td>Frees et al., 2005</td>
</tr>
<tr>
<td>Bøger, telefonbøger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontorpaper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 Bygge- og anlægsaffald – mursten, gips og beton

TABEL 4

PROCESSDATA ANVENDT I DENNE RAPPORT FOR JOMFRUELG PRODUKTION AF BYGGE-MATERIALER.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Procesnavn</th>
<th>År</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton</td>
<td>Concrete production, normal</td>
<td>2007-2014</td>
<td>Schweitz</td>
<td>Ecoinvent, 2015</td>
</tr>
<tr>
<td>Mursten</td>
<td>Facademursten og bagmursten</td>
<td>2006</td>
<td>Danmark</td>
<td>Møller et al., 2013</td>
</tr>
</tbody>
</table>
3.2 Affaldsbehandling

3.2.1 Emballage – aluminium, glas, metal, pap, papir, plast

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Procesnavn</th>
<th>Substitutions rate</th>
<th>År</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>Aluminium scrap to new alu sheets (remelting)</td>
<td>1:0,94</td>
<td>2007</td>
<td>Sverige</td>
<td>EASETECH, 2015</td>
</tr>
<tr>
<td>Glas</td>
<td>Glass cullet to new bottles (remelting)</td>
<td>1:1</td>
<td>1998</td>
<td>Danmark</td>
<td>EASETECH, 2015</td>
</tr>
<tr>
<td>Metal</td>
<td>Shredding and reprocessing of steel scrap</td>
<td>1:0,87</td>
<td>2007</td>
<td>Sverige</td>
<td>EASETECH, 2015</td>
</tr>
<tr>
<td>Pap</td>
<td>Paper (Cardboard and mixed paper) to cardboard, Fiskybybruk</td>
<td>1:0,94</td>
<td>2006</td>
<td>Sverige</td>
<td>EASETECH, 2015</td>
</tr>
<tr>
<td>Papir</td>
<td>Paper (Newspaper and magazines) to Newspaper, Stora Enso</td>
<td>1:0,86</td>
<td>2008</td>
<td>Sverige</td>
<td>EASETECH, 2015</td>
</tr>
<tr>
<td>Plast</td>
<td>Plastic to granulate, SWEREC</td>
<td>1:0,37</td>
<td>2006</td>
<td>Sverige</td>
<td>EASETECH, 2015</td>
</tr>
</tbody>
</table>
3.2.2 Bygge/anlægsaffald – mursten, gips og beton

Mursten

Gips
Af gipsaffald som modtages til sortering og genanvendelse udsorteres ca. 10 % i form af pap, papir og metal. Sorteringen er medtaget som i Møller et al. (2012) (se Tabel 6) med energiforbrug til sortering, men de 10 % er ikke medtaget videre efter sortering og dermed er det kun gipsaffaldet som er omhandlet her. Affaldsgipsen bruges i cementproduktion i stedet for naturgips. Cementproduktionen medtages ikke i vurderingen, da den ikke er en del af affaldsbehandlingen for gips, men ville have foregået alligevel. Dog substitueres naturgips med det anvendte affaldsgips. I Danmark foregår den største produktion af cement hos Aalborg Portland og de aftager gips fra det nærliggende Nordjyllandsværk og det vil derfor ikke være relevant at for dem at aftage affaldsgips. I rapporten om LCA af behandling af gipsaffald i Danmark (Møller et al., 2012) blev det vurderet, at det ville være mere relevant at sende det behandlede gipsaffald til cementproduktion i Sverige, da der ikke er samme adgang til gips fra kraftværker som i Danmark.

Beton

<table>
<thead>
<tr>
<th>TABEL 6</th>
<th>DATA FOR ENERGI OG VAND FORBRUG VED KNUSNING OG SORTERING AF BYGGE- OG ANLÆGSAFFALD BRUGT I DENNE RAPPORT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbrug til knuseværk til bygge- og anlægsaffald</td>
<td></td>
</tr>
<tr>
<td>Mursten og beton</td>
<td>Gips</td>
</tr>
<tr>
<td>Elektricitet</td>
<td>2,59</td>
</tr>
<tr>
<td>Diesel</td>
<td>36,6</td>
</tr>
<tr>
<td>Vand</td>
<td>0,001</td>
</tr>
</tbody>
</table>
TABEL 7

Processdata brugt i denne rapport til genanvendelse af bygge- og anlægsaffald.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Procesnavn</th>
<th>År</th>
<th>Land</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton</td>
<td>Knuseværk og Nytiggørelse af knust bygge- og anlægsaffald</td>
<td>2011-2013</td>
<td>Danmark</td>
<td>Butera, 2012; Møller et al., 2013</td>
</tr>
<tr>
<td>Mursten</td>
<td>Oparbejdning af mursten på virksomheden 'Gamle Mursten'</td>
<td>2011-2013</td>
<td>Danmark</td>
<td>Butera, 2012; Møller et al., 2013</td>
</tr>
<tr>
<td>Gips</td>
<td>Genanvendelse til cementfremstilling</td>
<td>2012</td>
<td>Danmark</td>
<td>Møller et al., 2012</td>
</tr>
</tbody>
</table>

3.3 Opstillede scenarier

For hver af de valgte affaldstyper (emballageaffald og bygge- og anlægsaffald) er opstillet nogle specifikke scenarier med udgangspunkt i Figur 1.

For scenariet med emballageaffald vurderes undgået produktion af 1 ton af hver af underfraktionerne aluminium, glas, metal, pap, papir og plast. Ligeledes undgås at disse materialer skal genanvendes og derfor vil der være en jomfruvelig produktion af materiale, i stedet for det som ikke genanvendes (se Figur 2). Dermed vil der være den samme mængde materiale i samfundet. Der tages i denne LCA-screening ikke højde for affaldsbehandling af de materialer som tabes i forbindelse med sortering og genanvendelse.

(c) **Scenarie for vurdering af forskellen mellem at forebygge og genanvende**

Figur 2

SCENARIE OPSTILLING FOR FOREBYGGELSE AF 1 TON EMBALLAGEAFFALD (ALUMINIUM, GLAS, METAL, PAP, PAPIR, PLAST) VED UNDGÅET PRODUKTION. STIPLEDE LINJER REPRÆSENTERER UNDGÅET PRODUKTION. VED SCENARIE FOR PLAST INDGÅR OGSÅ FORBRÆNDING AF TAB FRA GENANVENDELSEN.

Forebygelse af bygge- og anlægsaffald modelleres på samme vis som emballageaffald med undgået produktion af byggematerialer og genanvendelse (se Figur 3). Der er regnet med jomfruvelig produktion af materialer da det forebyggede affald ikke genanvendes og der derfor er brug for disse materialer fra andre kilder.

(c) **Scenarie for vurdering af forskellen mellem at forebygge og genanvende**

Figur 3

SCENARIE OPSTILLING FOR FOREBYGGELSE AF 1 TON BYGGE- OG ANLÆGSAFFALD VED UNDGÅET PRODUKTION. STIPLEDE LINJER REPRÆSENTERER UNDGÅET PRODUKTION.
4. Resultater og diskussion

Der er miljøbesparelser for de vurderede scenarier ved at forebygge affald i stedet for at genanvende. I Tabel 8 er de karakteriserede resultater vist for alle materialer og alle miljøpåvirkningsskategorier per ton affald forebygget. De normaliserede resultater kan findes i bilag 1. I Figur 4 sammenlignes kg CO₂ ækvivalenter per ton affald forebygget og her er der ingen samlede byrder, men kun besparelser. Dog er der nogle af materialerne hvor netto-miljøgevinsten ligger tæt ved nul, hvilket skyldes høje substitutionsrater for f.eks. gips (på 1:1). Det betyder, at der genanvendes en lige så stor mængde materiale, som der produceres opstrøms og hvis affaldsbehandlingen/ genanvendelsesprocessen ikke yder store miljøpåvirkninger, bliver totalen tæt ved nul, eller forskellen bliver meget lille mellem ikke at producere og genanvende. Dette repræsenterer således en optimal situation for genanvendelsen, hvor der ikke tages højde for evt. manglende udsortering af materialerne i husholdningerne. Det ville give større besparelser at forebygge affald hvis tab i udsortering i husholdningen blev medtaget. Dermed ville der være mindre at genanvende, men stadig samme mængde som kunne forebygges/undgå at producere. Det kunne gøres ved at starte LCA-screeningen ved det producerede affald i stedet for det indsamlede, men disse tab skal kendes eller estimeres før det kan inkluderes i en LCA-screening.

FIGUR 4
RESULTATER FOR MILJØPÅVIRKNINGSSKATEGORIEN DRIVHUSEFFEKT FOR AFFALDSFOREBYGGELSE AF 1 TON AF HVER AF DE VISTE MATERIALER. BEMÆRK ALUMINIUMSEMBALLAGE ER VIST FOR SIG SELV TIL VENSTRE MED ANDEN SKALA PÅ Y-AKSEN.
TABEL 8
KARAKTERISERede RESULTATER PER TON AFFALD FOREBYGGET FOR SCENARIO C FOR EMBALLAGEAFFALD OG BYGGE OG ANLÆGSAFFALD. NEGATIVE VÆRDER BETYDER BESPARELSER VED AT FOREBYGGE DET PÅGÆLDENDE AFFALD. CTU: COMPARABLE TOXIC UNIT. AE: ACCUMULATED EXCEEDENCE. EQ: EKVIvaLENTER.

<table>
<thead>
<tr>
<th>Miljøpåvirkningskategori</th>
<th>Enhed</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium</td>
<td>Glas</td>
<td>Metal</td>
</tr>
<tr>
<td>Drivhuseffekt</td>
<td>kg CO2-Eq</td>
<td>-4518</td>
<td>-985</td>
</tr>
<tr>
<td>Stratosfærisk ozon nedbrydning</td>
<td>kg CFC-11-Eq</td>
<td>-7·10⁻⁵</td>
<td>-1·10⁻⁷</td>
</tr>
<tr>
<td>Fotokemisk ozon dannelse</td>
<td>kg NNMOC</td>
<td>-11</td>
<td>-2</td>
</tr>
<tr>
<td>Ioniserende stråling, human sundhed</td>
<td>kg U_{235} Eq</td>
<td>-162</td>
<td>-3·10⁻³</td>
</tr>
<tr>
<td>Partikler</td>
<td>kg PM_{2.5} Eq</td>
<td>-1</td>
<td>-1·10⁻⁴</td>
</tr>
<tr>
<td>Forsuring</td>
<td>AE</td>
<td>-15</td>
<td>-3</td>
</tr>
<tr>
<td>Ferskvands- eutrofiering</td>
<td>kg P-Eq</td>
<td>-4·10⁻⁴</td>
<td>-5·10⁻⁵</td>
</tr>
<tr>
<td>Marin- eutrofiering</td>
<td>kg N-Eq</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>Terrestrial eutrofiering</td>
<td>AE</td>
<td>-38</td>
<td>-8</td>
</tr>
<tr>
<td>Humantoksisitet, cancerteffekter</td>
<td>CTU</td>
<td>-5·10⁻⁷</td>
<td>-2·10⁻⁸</td>
</tr>
<tr>
<td>Humantoksisitet, ikke-cancerteffekter</td>
<td>CTU</td>
<td>-4·10⁻⁵</td>
<td>-3·10⁻⁵</td>
</tr>
<tr>
<td>Økotoksisitet</td>
<td>CTU</td>
<td>-108</td>
<td>-1</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer, fossile brændstoffer</td>
<td>MJ</td>
<td>-12533</td>
<td>-4140</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer, grundstoffer</td>
<td>kg antimony-Eq</td>
<td>-2·10⁻³</td>
<td>-7·10⁻⁹</td>
</tr>
</tbody>
</table>

TABEL 9
RANGORDNING FRA 1-9 AF SAMLET MILJØPÅVIRKNING FOR 1 TON FOREBYGGELSE AF HVER AFFALDSFRATION. GRØN/1: AFFALDSFRATION MED LAVEST MILJØPÅVIRKNING OG RØD/9: AFFALDSFRATION MED HØJTEST/STØRST MILJØPÅVIRKNING.

<table>
<thead>
<tr>
<th>Miljøpåvirkningskategori</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium</td>
<td>Glas</td>
</tr>
<tr>
<td>Drivhuseffekt</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Stratosfærisk ozon nedbrydning</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Fotokemisk ozondannelse</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ioniserende stråling, human</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>sundhed</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Forsuring</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ferskvands-eutrofiering</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Marin-eutrofieriering</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Terrestrisk eutrofiering</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Humantoksicitet, cancereffekter</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Humantoksicitet, ikke-</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>cancereffekter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Økotoksicitet</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer,</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>fossile brændsel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer,</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>grundstoffer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For en vurdering af hvilke affaldsfractioner, der kan prioriteres at forebygge i stedet for at genanvende, giver aluminium og plast de største miljøbesparelser per ton affald. Siden mængderne af bygge- og anlægsaffald er meget større end de andre affaldsfractioner, vil besparelserne ved at forebygge disse være fordelagtige, hvis det antages at en procentdel af det producerede affald af hver fraktion kan forebygges. Aluminium og plast er dog stadig højt placeret i rangordningen i Tabel 11 og det betyder, at disse altid vil være fordelagtige at forebygge. Mængden af papir er større end de andre emballagetyper og papir rangeres højt når mængden inddrages i vurderingen. Rangordningen for alle materialer og alle miljøpåvirkningskategorier ved vægtning med de totale mængder produceret affald er vist i Bilag 2.
TABEL 10
MÆNGDE AF AFFALD FORDELT PÅ FRACHTIONER. DATA TIL BRUG I DENNE RAPPORT ER AGGREGERET. *: 50% AF ”PAPIR OG PAP”, **: HALVDELEN AF ”METAL” OG ”ANDET METAL”, ***: UDEN KRAFTVÆRGIPS.

<table>
<thead>
<tr>
<th>Fraktion fra Petersen et al., 2014</th>
<th>Ton per år i DK</th>
<th>Reference</th>
<th>Fraktion i dette studie</th>
<th>Ton i DK per år</th>
<th>1000 tons per år i DK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glas</td>
<td>21956</td>
<td>Petersen et al., 2014</td>
<td>Glas</td>
<td>21956</td>
<td>22</td>
</tr>
<tr>
<td>Papir og pap</td>
<td>87607</td>
<td>Petersen et al., 2014</td>
<td>Papir</td>
<td>182014</td>
<td>182</td>
</tr>
<tr>
<td>Genanvendeligt papir</td>
<td>73093</td>
<td>Petersen et al., 2014</td>
<td>Pap*</td>
<td>43804</td>
<td>44</td>
</tr>
<tr>
<td>Andet papir</td>
<td>65117</td>
<td>Petersen et al., 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>21546</td>
<td>Petersen et al., 2014</td>
<td>Jern**</td>
<td>15352</td>
<td>15</td>
</tr>
<tr>
<td>Andet metal</td>
<td>9158</td>
<td>Petersen et al., 2014</td>
<td>Aluminium**</td>
<td>15352</td>
<td>15</td>
</tr>
<tr>
<td>Plast</td>
<td>55982</td>
<td>Petersen et al., 2014</td>
<td>Plast</td>
<td>123995</td>
<td>124</td>
</tr>
<tr>
<td>Andet plast</td>
<td>68013</td>
<td>Petersen et al., 2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beton</td>
<td>1362264</td>
<td>ISAG 2009 fra MST, 2014</td>
<td>Beton</td>
<td>1362</td>
<td></td>
</tr>
<tr>
<td>Gips</td>
<td>54000</td>
<td>Møller et al., 2012</td>
<td>Gips***</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Mursten/tegl</td>
<td>230445</td>
<td>ISAG 2009</td>
<td>Mursten</td>
<td>230</td>
<td></td>
</tr>
</tbody>
</table>

TABEL 11
RANGORDNING FRA 1-9 AF SAMLET MILJØPÅVIRKNING PÅ DRIVHUSEFFEKT FOR FOREBYGGELSE AF HVER AFFALDSFRACHTION.

<table>
<thead>
<tr>
<th>Rangordning for Drivhuseffekt</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference flow</td>
<td>Aluminium</td>
<td>Glas</td>
</tr>
<tr>
<td>1 ton affald</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total mængde affald produceret</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
5. Konklusion

Under forudsætning af, at en vis andel af en affaldsfraktion reelt kan forebygges, da kan de affaldsfraktioner som produceres i store mængder prioriteres. For denne screening var disse fraktioner beton, plast og papir.

For nogle få miljøpåvirkningskategorier ses der ikke besparelser ved forebyggelse. Dette kan blandt andet skyldes, at der i denne LCA-screening ikke er vurderet usikkerhed på data. En anden grund kan være, at der kun er anvendt data fra tilgængelige databaser og litteratur og altså ikke indsamlet data specifikt for danske forhold. Kvaliteten af data er ikke efterprovet og fælsmheden overfor resultaterne er ikke vurderet. Denne screening giver et overordnet indblik i miljøpåvirkningerne ved at forebygge fremfor at genanvende. Ved vurdering af konkrete initiativer til forebyggelse er det nødvendigt med en specifik vurdering af datakvalitet og datausikkerheder, for at opnå robuste konklusioner.
Referencer

EASETECH database (2015) Database i livscyklusmodelleringssoftware EASETECH som er udviklet af Danmarks Tekniske Universitet, Kongens Lyngby, Danmark

Livscyklusvurdering og samfundsøkonomisk vurdering af forskellige alternativer for håndtering og behandling af gipsaffald, Miljøprojekt nr. 1410, Miljøstyrelsen, Strandgade 29, 1401 København K, www.mst.dk

Bilag 1: Normaliserede resultater

FIGUR 5
NORMALISERDE VÆRDER FOR FOREBYGGELSE AF 1 TON ALUMINIUMSEMBALLAGE. VÆRDER FOR AFFALDSBEHANDLING OG SUBSTITUERET MATERIALE ER AGGREGEREDE.
FIGUR 6
NORMALISERede VÆRDIer FOR FOREBYGELSE AF 1 TON BETON. VÆRDIer FOR AFFALDSBEHANDLING OG SUBSTITUERET MATERIALE ER AGGREGEREDE.
FIGUR 7
NORMALERede VÆRdier FOR ForBEYGGELSE AF 1 TON GLASEMBALLAGE. VÆRDiER FOR AFFALDSBEHANDLING OG SUBSTITUERET MATERIALE ER AGGEREREDE.
Livscyklus - screening af affaldsforebyggelse

FIGUR 8
NORMALISERede VÆrdier FOR FOREBYGGELSE AF 1 TON GIPS. VÆrdier FOR AFFALDSBEHANDLING OG SUBSTITUERET MATERIALE ER AGGEREREDE.
FIGUR 9
NORMALISERede værdier for forebyggelse af 1 ton metalballage. Værdier for affaldsbehandling og substitueret materiale er aggregereDe.
FIGUR 10
NORMALISERede VÆRDIER FOR FOREBYGGELSE AF 1 TON MURSTEN. VÆRDIER FOR AFFALDSBEHANDLING OG SUBSTITUERET MATERIALE ER AGREGEREDE.
FIGUR 11
NORMALISERede værdier for forebyggelse af 1 ton papemballage. Værdier for affaldsbehandling og substitueret materiale er aggregerede.
FIGUR 12
NORMALISERede VÆRDIER FOR FOREBYGELSE AF 1 TON PAPIREMBALLAGE. VÆRDIER FOR AFGALDSBEHANDLING OG SUBSTITUERET MATERIALE ER AGGREGEREDE.
FIGUR 13
NORMALISERede værdier for Forebyggelse af 1 ton plastemballage. Værdier for affaldsbehandling og substitueret materiale er aggregerede.
Bilag 2: Rangordning

TABEL 12
RANGORDNING FRA 1-9 AF SAMLET MILJÆRPÅVIRKNING FOR DEN TOTALE MÆNGDE AF AFFALD PRODUKERET AF HVER AFFALDSFRAKTION. GRØN/1: AFFALDSFRAKTION MED LAVEST MILJÆRPÅVIRKNING OG RØD/9: AFFALDSFRAKTION MED HØJEST/STØRST MILJÆRPÅVIRKNING.

<table>
<thead>
<tr>
<th>Miljøpåvirkningskategori</th>
<th>Emballageaffald</th>
<th>Bygge- og anlægsaffald</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminium</td>
<td>Glas</td>
</tr>
<tr>
<td>Drivhuseffekt</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Stratosfærisk ozon nedbrydning</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Fotokemisk ozon dannelse</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Ioniserende stråling, human sundhed</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Partikler</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Forsuring</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Ferskvands-eutrofiering</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Marin-eutrofiering</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Terrestrisk eutrofiering</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Humantoksicitet, cancereffekter</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Humantoksicitet, ikke-cancereffekter</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Økotoksicitet</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer, fossile brændsler</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Forbrug af abiotiske ressourcer, grundstoffer</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>
Livscyklus-screening af affaldsforebyggelse
Projektet har vurderet miljøkonsekvenserne ved at forebygge emballageaffald samt bygge- og anlægsaffald fremfor at genanvende det. Der er gennemførøn tag inventering af udvalgte affaldsfraktioner (aluminium, glas, metal, pap, papir, plast, beton, gips og mursten).

Forebyggelse af aluminium og plast giver de største besparelser af miljøpåvirkninger for næsten alle miljøpåvirkningskategorier. Sammenlignet med emballageaffald giver bygge- og anlægsaffald lavere besparelser.