Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking

Jurado, E.; Antonopoulou, G.; Lyberatos, G.; Gavala, Hariklia N.; Skiadas, Ioannis V

Published in:
Applied Energy

Link to article, DOI:
10.1016/j.apenergy.2016.03.072

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):
Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking (AAS)

E. Juradoa, G. Antonopouloub, G. Lyberatosb,c, H.N. Gavalad,* and I.V. Skiadasd

aAalborg University Copenhagen (AAU-Cph), Department of Chemistry and Bioscience, A.C. Meyer Vaenge 15, DK 2450 Copenhagen SV, Denmark

bInstitute of Chemical Engineering and High Temperature Chemical Processes, GR 26504 Patras, Greece

cSchool of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece

dcurrent address: Technical University of Denmark, Department of Chemical and Biochemical Engineering, Søltofts Plads Building 228, 2800 Kgs. Lyngby, Denmark

*corresponding author: e-mail: hngga@kt.dtu.dk, hari_gavala@yahoo.com; tel:+45 45256196

Abstract

Anaerobic digestion of manure fibers presents challenges due to their low biodegradability. Aqueous ammonia soaking (AAS) has been tested as a simple method to disrupt the lignocellulose and increase the methane yield of manure fibers. In the present study, mesophilic anaerobic digestion of AAS pretreated manure fibers was performed in CSTR-type digesters, fed with swine manure and/or a mixture of swine manure and AAS pretreated manure fibers (at a total solids based ratio of 0.52 manure per 0.48 fibers). Two different simulations were performed. In the first place, the Anaerobic Digestion Model 1 (ADM1) was fitted to a manure-fed, CSTR-type digester and validated by simulating the performance of a second reactor digesting manure. It was shown that disintegration and hydrolysis of the solid matter of manure was such a slow process that the organic particulate matter did not significantly contribute to the methane production. In the second place, ADM 1 was used to describe biogas production from the codigestion of manure and AAS pretreated manure fibers. The model predictions regarding biogas production and methane content were in good agreement with the experimental data. It was shown that, AAS treatment significantly increased the disintegration and hydrolysis rate of the carbohydrate compounds of the fibers. The effect of the addition of AAS treated fibers on the kinetics of the conversion of other key compounds such as volatile fatty acids was negligible.
1. Introduction

Biogas production based on animal wastes is a common practice, especially in Denmark where a whole biogas industry has been developed based on the co-digestion of manure and industrial waste. In 2011, 24 centralized biogas plants and 60 farm plants based on manure were in operation [1]. Danish biogas plants currently contribute with only 4 PJ in the Danish energy system while the actual energy potential is estimated to be as high as 40 PJ. [2]

This co-digestion is done to increase the methane efficiency and thus the process profitability [3] and the industrial wastes used are characterized by high methane potential, such as slaughterhouse wastes, glycerine, crops, animal fat, fish oil, etc. However, due to the increased demand for biomass feedstock in the bioenergy sector, the prices of these additional biomasses have increased significantly affecting negatively the economy of the biogas sector.

This development has triggered the evaluation of novel biomasses such as microalgae [4] or sewage sludge [5] for their potential to be co-digested with manure producing encouraging results but with significant lower methane potential compared to the so far used additional biomasses.

On the other hand, anaerobic digestion (AD) of swine manure alone presents certain challenges, mainly due to the relatively low organic content and the poor biodegradability of the contained solids (i.e. rigid lignocellulosic structured manure fibers), which render the process economically unfavourable [6] In the effort to increase the methane potential of the manure, many different strategies have been investigated so far. New separation technologies, to be applied before anaerobic digestion, have been tested during the last few years [7] in

Keywords: ADM1; anaerobic digestion; aqueous ammonia soaking; pretreatment; modelling; manure fibers; validation.
order to reduce the water content of slurries and, thus, facilitate the transport of lower
volumes with higher solids content, which can potentially lead to an increase of biogas
production per unit volume [8]. Additionally, several different pretreatment technologies have
been studied, in order to increase the methane yield of manure and manure fibers [9, 10].
These strategies have the ultimate objective of improving the efficiency of the hydrolysis step,
which is known to be the rate limiting step of the anaerobic digestion of lignocellulosic

A chemical pretreatment, which in the past has been studied mainly for biological production
of ethanol and also for organic acids production, is Aqueous Ammonia Soaking (AAS) [12,
13, 14]. Due to its high volatility, ammonia can be easily recovered and recycled avoiding
[15] thus the need for any further consumption of chemicals. In addition, ammonia is quite
safe to handle, non-polluting and non-corrosive [15]. Recently, Jurado et al. [16] reported an
increase of up to 178 % in methane yield from swine manure fibers, when AAS for 3 days at
20°C was applied before anaerobic digestion in batch methane potential tests. In the present
study, the effect of AAS on increasing methane production from swine manure fibers was
assessed in continuous digestion experiments.

As AD of different kind of biomasses (i.e. organic wastes, agricultural residues) is
increasingly applied for the production of biogas as a renewable energy resource [17], the
need for process optimization based on reliable mathematical models becomes necessary [18].
Mathematical models enable the simulation and the representation of the main aspects of a
biological system allowing the formulation and validation of some hypothesis and thus
improving the understanding of the system [19]. The development of dynamic models can
facilitate the automated digester control, eventually resulting to higher process efficiency. In
addition, these models may be used for the designing and scale-up of processes, predicting the
system’s behaviour under different conditions, reducing the requirements for time consuming
collection of experimental results [19] and helping to easier evaluate the economics of AD
applications [20].

AD process is characterized by high complexity and non-linearity and by a difficulty to
collect adequate amounts of experimental data required for modelling purposes [19].
Therefore, the creation of a model which can be adapted to different biomasses is a very
challenging task. Numerous anaerobic digestion models were developed during the last 40
years [21, 22]. The most recent one in the field is the Anaerobic Digestion Model No1
(ADM1), developed in 1998-2001 and made publicly available in 2002 [23].
ADM1 is a common platform, combining 19 biochemical and 2 physicochemical processes to
simulate the behaviour of various components in anaerobic digesters. The ADM1 model
includes the major processes that are involved in the bioconversion of complex organic
substrates into methane, carbon dioxide and inert byproducts, with the main metabolic
intermediates being hydrogen, acetic, propionic and butyric acids. Also, it includes the mass
transfer phenomena between liquid to gas phase [23]. The degradation of complex organic
material is assumed to pass through four stages: disintegration-hydrolysis, acidogenesis,
acetogenesis and methanogenesis [23].
Although the ADM1 was principally developed for anaerobic digestion of sewage sludge, its
structure allows modelling of anaerobic degradation for different feedstocks and a number of
such ADM1 applications have already been reported in the literature using different feedstock
such as lignocellulosic materials or olive pulp [18, 20, 24, 25, 26] including co-digestion
processes [27]. However, ADM1 applications on manure-based digesters are scarce in the
international literature, with only few studies such as Gali et al. [28], Astals et al. [29] and
Girault et al. [30] focusing on swine manure. In most of the cases found in the literature, the
ADM1 is calibrated to the specific substrate(s) composition and processes configuration and afterwards it is validated by predicting actual experimental data. The calibration is performed by selecting the optimal values of some of the kinetic parameters that minimise the differences between model predictions and experimental results (model fitting) and the validation follows by comparing the predictions of the calibrated model to different (than those used for the calibration) experimental results [18, 25, 26, 28, 30, 35, 37, 38].

In the current study, ADM1 was modified and used for the simulation of continuous digestion of liquid swine manure or liquid manure mixed with swine manure fibers. Initially, ADM1 was fitted to the data from a swine manure-fed, continuous anaerobic digester and it was validated by simulating the performance of a second continuous reactor also digesting manure. Subsequently, ADM1 was fitted to the data from a mesophilic continuous reactor fed with a mixture of manure and AAS pretreated swine manure fibers (at a total solids based ratio of 0.52 manure per 0.48 fibers) and it was validated by simulating the performance of a second and third reactor digesting different manure collections at different values of the Hydraulic Retention Time (HRT).

Materials and methods

2.1. Feedstock

The two different batches of swine manure (manure-I and manure-II) and the manure fibers used in the present study were collected at Morsø BioEnergi, Denmark (a mesophilic biogas plant) and stored at -20°C until used. Manure fibers were produced on pig-farms after separation of liquid manure using a decanter centrifuge.

2.2. Analytical methods
Determination of total (TS), volatile (VS), total suspended (TSS) and volatile suspended (VSS) solids was carried out according to Standard Methods [31]. Characterization of the liquid fraction of manure and manure fibers included the determination of the soluble components and was done after centrifugation of the samples at 10,000 rpm for 10 min and filtration of the supernatant through 0.2 μm membrane filters. Determination of the total concentration of different components of manure fibers was done after drying the fibers at 42°C overnight and powdering them.

Total and soluble Chemical Oxygen Demand (COD) were measured with Hach Lange kits LCK-914 and LCK-514, respectively.

For the determination of non-soluble and soluble organic phosphorus, persulphate digestion and subsequent ascorbic acid photometric determination was applied to the solid and liquid fractions according to APHA 2005 [31]. For the determination of non-soluble and soluble organic nitrogen, digestion with a micro-Kjeldahl apparatus (Büchi SpeedDigester K-436 and Büchi Scrubber B-414) was applied to the solid and liquid samples, followed by distillation (Büchi Distillation Unit K-350) and, finally, titration with 0.01 mole L\(^{-1}\) H\(_2\)SO\(_4\), for the determination of ammonium ions concentration [31]. The inorganic forms of phosphorus (PO\(_4^{3-}\)-P) and nitrogen (NH\(_4\)-N) were determined by applying ascorbic acid photometric determination [31] and by using a Hach Lange Kit LCK-305 (1-12 mg L\(^{-1}\) range), respectively.

Two groups of carbohydrates were determined in manure and manure fibers: the first group was the total carbohydrates (polymers, oligomers and monomers), including those bound in the lignocellulosic biomass and the second group was the simple sugars (only monomers). Analysis of the total carbohydrates was based on the NREL analytical procedure [32]. For the determination of total carbohydrates the samples were dried at 42°C overnight and powdered,
while for the determination of simple sugars the samples were centrifuged at 10000 rpm and the supernatant liquid was passed through 0.2 μm pore size membrane filters. Detection and quantification of sugar monomers (glucose, xylose and arabinose) was made with HPLC-RI (Dionex), equipped with an Aminex HPX-87H column (BioRad) at 60°C. A solution of 4 mmol L\(^{-1}\) H\(_2\)SO\(_4\) was used as eluent, at a flow rate of 0.6 mL min\(^{-1}\). Samples for HPLC analysis were acidified with 1 g L\(^{-1}\) H\(_2\)SO\(_4\) solution, centrifuged at 10000 rpm for 10 min and, finally, filtered through a 0.45μm membrane filter.

For the quantification of volatile fatty acids (VFA), samples were centrifuged at 10000 rpm for 10 min and the supernatant liquid was acidified (pH 2-3) with a H\(_3\)PO\(_4\) solution (17% w/v), centrifuged again at 10000 rpm for 10 min and filtered through minisart high flow filters (pore size 0.45 μm). VFAs were analysed with a gas chromatograph (PerkinElmer, Clarus 400) equipped with a flame ionization detector at 230°C and a capillary column (Agilent HP-FFAP, 30 m long, 0.53 mm inner diameter) with a gradient temperature program from 105°C to 230°C. Nitrogen was used as carrier gas.

The biogas production rate was measured by using a gas measuring system (with an estimated measuring uncertainty of ± 3%), based on displacement of parafin oil. Biogas methane content was determined with a gas chromatograph (SRI GC model 310), equipped with a thermal conductivity detector and a packed column (Porapak-Q, length 1.82 m and inner diameter 2.1 mm). The temperature for injector, column and detector was set to 80°C and nitrogen was used as carrier gas. Finally, pH using a WTW inoLab pH 720 pH-meter and alkalinity was determined according to Standard Methods [31].

2.3. **Experimental methods**

2.3.1. **Pretreatment**
Aqueous ammonia solution 32% w/w was used as ammonia reagent for the AAS pretreatment. Samples of manure fibers were soaked in ammonia reagent with a ratio of 10 ml reagent per 1 g TS. The pretreatment conditions were 3 days duration at 22°C in closed glass flasks to avoid ammonia evaporation. After the completion of the pretreatment, water was added, at a ratio of 10 ml per g TS, in order to facilitate the subsequent ammonia distillation step. Vacuum distillation was performed using a rotary evaporator (Buchi RII Rotavapor with a vertical condenser) under 320 mbar and gradually increased temperature of the water bath from 40 to, 60, 80 and finally 90°C. Distillation’s duration was 10 and 20 min at the first two and last two temperature levels, respectively.

2.3.2. Continuous experiments

Three mesophilic (38°C) CSTR-type digesters (of 3 L useful volume each) were operated during this study. Reactor-1 was fed with swine manure-I at a hydraulic retention time (HRT) of 25 days. Reactor-2 was initially started-up and reached steady state with manure-I at an HRT of 25 days (phase A). After 110 days, the manure feeding was replaced (phase B) with a mixture of swine manure-I and AAS-treated manure fibers (at a TS based ratio of 0.52 manure per 0.48 fibers). Subsequently and after the digester reached a new steady state (second for Reactor-2), the manure used for the feeding mixture was changed from manure-I to manure-II which was characterized by lower TS content (1.53 g TS per 100 g manure-II compared to 3.78 g TS per 100 g manure-I). Reactor-2 was allowed to reach a new steady state (third for Reactor-2) fed with manure-II mixed with AAS-treated manure fibers (always at a TS ratio of 0.52 manure per 0.48 fibers) (phase C) at a HRT of 25 days (Table 1).

The feeding of the digesters was intermittent and repeated once a day. The digesters’ performance was followed by a daily recording of biogas production and a weekly
measurement of biogas methane content and pH and concentrations of volatile fatty acids and soluble COD. When Reactor-1 and Reactor-2 reached steady state (in Reactor-2, at phase B) complete characterisation was made in terms of measurable components which are variables of ADM1 (see paragraph 2.4.2). Subsequently, the digesters were subjected to impulse disturbances of acetic, propionic and butyric acids and soluble fraction of the manure influent (obtained after centrifugation and filtration) in order to study the dynamics of the individual stages of the anaerobic digestion process (i.e. disintegration-hydrolysis, acidogenesis, acetogenesis and methanogenesis). The impulse disturbances were performed as described in the following: 50 ml of sodium acetate, sodium propionate and sodium butyrate (from Sigma-Aldrich) water solutions (at concentrations of 41, 20.6 and 22 g/L, respectively) and around 200 ml of the soluble fraction of the influent were consecutively injected into the digester in order to increase the concentration of the injected substrate in the reactor to around 1600, 1200 and 1600 mg COD L$^{-1}$ for the acetic, propionic and butyric acids, respectively, and to around 400 mg COD L$^{-1}$ for the soluble fraction [25]. The response of the bioreactors to each one of the above separate impulses was monitored through measurements of biogas production, biogas composition in methane, VFA concentration and soluble COD concentration until all components approach their levels before the impulse.

Finally, a third identical reactor (Reactor-3) was started up and was fed with manure-II (phase D) at 25 HRT and after 160 days the manure feeding was replaced (phase E) with a mixture of manure-II and AAS manure fibers (also at a TS ratio of 0.52 manure per 0.48 fibers) and the HRT was reduced to 17 days. Reactor-3 was allowed to reach a steady state at the operational phases D and E as well (table 1).

Table 1 here
2.4. Modelling

ADM1 was first fitted (manure-based model) to the experimental data obtained from Reactor-1 fed with manure-I in order to estimate the hydrolysis kinetic parameters of carbohydrates, proteins and lipids and the maximum uptake rates of the long chain fatty acids as well as butyric acid, propionic acid and acetic acid using non-linear parameter estimation. The values suggested by Batstone, 2002 [23] were used for the remaining kinetic parameters and all stoichiometric coefficients. The VFA and soluble COD impulses were simulated by a triangular pulse with a duration of 0.02 d. The software used was Aquasim 2.1 and the optimal values of the kinetic parameters were estimated using the secant method. The algorithm resulted in the optimal values of the kinetic parameters by minimizing the sum of the squares of the deviations between experimental measurements and model predicted values for all variables specified as fit targets (i.e. biogas production and methane content, pH, acetate, propionate and butyrate). The deviations were defined globally for all data points and the sum of squares extended over all data points of each variable. Due to the possible nonlinearity of the model equations and due to the numerical integration procedure, the sum of squares was minimized numerically. Subsequently, the model with the obtained values of the kinetic parameters was used to simulate the steady state of phase A (Reactor-2 with manure-I as influent) and phase D (Reactor-3 with manure-II as influent).

Afterwards the model was fitted to the experimental data collected throughout phase B (mixture-based model), where a mixture of manure-I and AAS manure fibers was fed to Reactor-2. The aim of the fitting was to recalculate the hydrolysis kinetic parameters of carbohydrates (khydr_ch), proteins (khydr_pr) and lipids (khydr_li). Finally, the experimental results obtained during phase C (Reactor-2 fed with a mixture of fibers and manure-II) as well as during phase E (Reactor-3 fed with a mixture of fibers and manure-II at a reduced HRT of
17 d) were used to validate the model after it was fitted to phase B (codigestion of liquid manure and AAS treated fibers).

2.4.1. Correction of the HRT in the kinetic model

A part of the effluent pipe of the digesters used in this study was vertical and, due to the intermittent feeding, the solids content of the liquid staying in this vertical part was settling back in the digester when the digesters were not fed. This configuration was equivalent with a CSTR equipped with a solids separator returning part of the solids back in the reactor and thus increasing the solids retention time (SRT) as described by [33]. As a result, there was a slight accumulation of solids, which was quantified by comparing the TSS concentration of the interior and of the effluent of the reactors (indicatively, 37.2 ± 1.1 g/L TSS inside the reactor and 27.3 ± 2.1 g/L TSS in the effluent).

For modelling purposes, it was assumed that solids and microbial biomass were recycled in the reactor and their concentration was corrected according to eq. 1 [26]

\[
x' = x \cdot \left(\frac{Q_{out}}{t_{res}} + \frac{V_{reactor}}{Q_{out}} \right)
\]

where \(x'\) is the solids and microbial biomass recirculation flow (kg COD d\(^{-1}\)), \(x\) is the solid and microbial biomass concentration (kg COD m\(^{-3}\)), \(V_{reactor}\) is the reactor active volume (in m\(^3\)) and \(Q_{out}\) is the effluent flow (m\(^3\) d\(^{-1}\)). The higher retention time of the solids was expressed by introducing a new variable into the model, called ‘\(t_{res}\)’. \(t_{res}\) was defined as the difference between HRT and SRT:
2.4.2. Organic and inorganic inputs in the kinetic model.

Swine manure and swine manure fibers were characterized in terms of pH, TS and VS, total and soluble COD, total carbohydrates and free sugars, total and soluble Kjeldahl nitrogen and NH$_3$-N, volatile fatty acids (valeric, butyric, propionic and acetic acids), inorganic phosphorus and alkalinity. Particulate and soluble inerts were determined as the residual COD after three months of batch anaerobic digestion. Other substances, that are included in ADM1 but were not directly measured, were estimated as follows:

Particulate carbohydrates and proteins were assumed to be the difference between total carbohydrates and free sugars and total and soluble Kjeldahl nitrogen, respectively. Aminoacids were assumed to be the difference between soluble Kjendahl nitrogen and NH$_3$-N. Particulate lipids were assumed to be the difference between non-soluble COD (total – soluble COD) and the sum of particulate carbohydrates, proteins and inerts, while long-chain fatty acids were assumed to be the difference between soluble COD and all measured soluble components (sugars, aminoacids, volatile fatty acids and soluble inerts). Total inorganic carbon was directly related to the alkalinity measurement, after correcting for the free ammonia content, at the respective pH. The difference of cations and anions concentration for ions other than the measured ones in the manure was calculated applying the charge balance equation as described by Batstone [23].

$$\sum S_{c^+} - \sum S_{a^-} = 0 \quad (3)$$

Where $\sum S_{c^+}$ represents the total cationic equivalents’ concentration and $\sum S_{a^-}$ the total...
anionic equivalents’ concentration.

As it has been done in previous studies [34, 35], the solid matrix was assumed to consist of carbohydrates, proteins, lipids and particulate inerts and the hydrolysis was considered as the first step towards methanogenesis. This approach has recently been suggested as most appropriate due to the uncertainty with composite analysis as well as with distinguishing disintegration from hydrolysis parameters [36]. It has to be noted however, that the disintegration parameter was assumed constant (with its value taken from Batstone 2002 [23]) and thus the hydrolysis kinetic parameters estimated in the present study incorporated disintegration parameters as well. Consequently, the estimated hydrolysis parameters were actually the apparent hydrolysis parameters and any differences in the apparent hydrolysis kinetic parameters (e.g. due to AAS pre-treatment of fibers) should be attributed also to the disintegration step rather than to only the hydrolysis step. As it has been shown by Jurado et al [16], AAS directly affects the disintegration step and thus releases carbohydrates, which can be further hydrolysed, from the lignocellulosic matrix.

2.4.3. Reactor input expressions

In the model, the influent concentration \((\text{influent}_\text{C}_x) \) of a component \((x)\) was expressed in kg COD\(\cdot\)(100 kg TS\(^{-1}\)) for organics or kmol\(\cdot\)(100 kg TS\(^{-1}\)) for inorganics. This was multiplied with the influent TS concentration \((\text{influent}_\text{C}_\text{TS}) \) in kg m\(^{-3}\) and thus, the influent concentration of each component \(x\), \((\text{influent}_\text{C}_x_\text{vol}) \) was calculated (in kg COD m\(^{-3}\) and kmol m\(^{-3}\) for organic and inorganic components, respectively), according to eq. 4:

\[
\text{influent}_\text{C}_x_\text{vol} = \text{influent}_\text{C}_x \cdot \text{influent}_\text{C}_\text{TS}
\] (4)

This formulation allows the model to take into account the variations of the TS concentration.
in the feeding. The reactor input rate, $input_{C_x}$ for each individual component x (in kg COD d$^{-1}$ and kmol d$^{-1}$ for organic and inorganic substances, respectively) was calculated as the product of the influent concentration in x with the influent volumetric flow rate, Q_{in} (in m3 d$^{-1}$) as follows:

$$input_{C_x} = influent_{C_x \text{ vol}} \cdot Q_{in}$$

(5)

3. Results and discussion

3.3. Influent characterization

The TS content of manure-I, manure-II and AAS pretreated fibers was 37, 15 and 129 kg m$^{-3}$, respectively. The TS to VS ratio in the manure-I, manure-II and AAS pretreated fibers was 1.8, 1.7 and 1.26, respectively. Detailed composition of manure and AAS-pretreated fibers is presented in table 2 where it can be seen that there are significant differences between manure-I and manure-II. All components in the soluble fraction had higher concentrations in manure-I than in manure-II. However higher concentrations of particulate matter was found on manure-II. As anticipated, the AAS-pretreated fibers consisted mainly of particulate organic matter, with carbohydrates being a substantial fraction. On the other hand, manure was rich also in soluble organic matter, mainly in long chain and volatile fatty acids.

Table 2 here

2.3. Continuous experiments

Figure 1 shows the volumetric and TS loading rate of the digesters. Operating conditions and different steady-state characteristics of the anaerobic digesters are shown in table 3. Although the operating conditions were very similar for both Reactor-1 and Reactor-2 and despite the
fact that manure fibers were characterised by a much lower content in soluble organic
material (table 2), the biogas productivity (table 3) of Reactor-2 at Phase B (when digestion of
the mixture of manure with AAS-treated raw fibers took place) was 22% higher than that of
Reactor-1 and Reactor-2 at phase A (with only manure as influent). The methane yield (table
3) was calculated as 0.27 L CH₄ (g TS added)⁻¹ for Reactor-2 at the steady state of Phase A
(fed only with manure). This result is in accordance with the methane yield reported in
previous studies [6]. For Reactor-2 during the steady state at Phase B, when the digester was
fed with mixture of manure and AAS-pretreated fibers, the methane yield presented a value of
0.25 L CH₄ (g TS added)⁻¹. Given that the TS ratio of manure to fibers in the influent of
Reactor-2 was 0.52:0.48 and assuming that the methane yield due to the manure fraction was
0.27 L CH₄ (g TS)⁻¹ also in Phase B of Reactor-2, the methane yield of AAS-pretreated fibers
was calculated to be 0.23 L CH₄ (g TS)⁻¹. This was confirmed in Reactor-2, phase C where
methane yield of AAS manure fibers was similarly calculated to be 0.25 L CH₄ (g TS)⁻¹.

In previous studies [16], the ultimate (after 50 days) methane yield from swine manure fibers
was measured to be in the range of 0.12-0.13 L CH₄ (g TS)⁻¹ in batch experiments.
Consequently, AAS pretreatment resulted to a 98% increase of the methane yield of manure
fibers in continuous anaerobic digestion and at a hydraulic retention time of 25 d. This lies
within the range of the results obtained from batch experiments [16] where an increase of
180% was observed for a loading of 0.16 g TS per 10 ml of inoculum, while the observed
increase was 54% at a higher loading of 0.25 g TS per 10 ml of inoculum [16].

Table 3 here

Figure 1 here
2.4. Modelling

At first place, the IWA anaerobic digestion model (ADM1) was fitted to the experimental data obtained from the manure fed Reactor-1 and the calculated kinetic parameters (manure-based model) are shown in Table 4. The parameters estimated were the maximum specific uptake rate for acetic, propionic, butyric and long-chain fatty acids \((km_{ac}, km_{pro}, km_{c4} \text{ and } km_{fa} \text{ respectively})\) and the hydrolysis kinetic parameters for carbohydrates, lipids and proteins \((khydr_{ch}, khydr_{li} \text{ and } khydr_{pr} \text{ respectively})\). The difference of cations and anions concentration in the manure was also estimated and found close to the calculated one, as described in section 2.4.2 (0.542 and 0.454 kmole m\(^{-3}\), respectively). The estimated values of the hydrolysis parameters (table 4) showed that hydrolysis of the particulate matter is very slow and thus the contribution of the particulate matter to the methane production could be assumed as very limited.

Table 4 here

The quality of the fitting was quite satisfactory as shown in table 5, where the experimental and model predicted characteristics of the steady state of Reactor-1 are shown. Also, the model was fitted quite well to the biogas production and methane content (figure 2) as well as to the acetic, propionic and butyric acid concentrations under impulse disturbances (figure 5a).

Table 5 here

Figure 2 here

Subsequently, the fitted manure-based model was used to simulate the performance of
Reactor-2 during the two different phases (phase A with only manure-I and phase B with the mixture of manure-I and AAS-treated fibers as influent). Experimental data and model predictions for both steady states are shown in table 6 and figure 3.

Table 6 here

It is obvious that the manure-based model generated from Reactor-1 predicted quite satisfactorily the steady state of Reactor-2 at phase A when it was fed only with manure (0-109 days). However, the model simulated poorly the steady state and biogas production and composition in methane during phase B, when AAS-treated fibers were added to the influent of Reactor-2. Specifically, significantly lower biogas production and higher methane percentage in the biogas was predicted.

Figure 3 here

This could be attributed to the different lipids and carbohydrates content in the manure and AAS pretreated fibers (table 2) in relation to the hardly biodegradable nature of carbohydrates found in manure, which is expected to differ when the solid part has undergone AAS treatment. Anaerobic degradation of lipids results in higher methane content compared to the anaerobic degradation of carbohydrates. The model was adapted to the higher lipids content and the lower (and hardly biodegradable) carbohydrates content of the manure and therefore it overestimated the methane content and underestimated the methane production when the reactor was fed with AAS pretreated fibers (containing less lipids and more biodegradable carbohydrates).

In order to account for the difference in carbohydrates biodegradability due to AAS treatment
the re-estimation of the hydrolysis kinetic parameters was the next step. In addition, whether the feeding change from manure to a mixture of manure and AAS-treated fibers affected or not the kinetics of consumption of volatile fatty acids was investigated. Therefore, a new fitting of the ADM1 hydrolysis parameters was performed using the data obtained from Reactor-2 in phase B (co-digestion of manure-I and AAS pretreated fibers). The kinetic parameters estimated during this new fitting were hydrolysis parameters for carbohydrates, lipids and proteins (\(K_{hyd_ch} \), \(K_{hyd_li} \) and \(K_{hyd_pr} \), respectively) and their values are shown in table 4 (mixture-based model). As it was expected, hydrolysis parameters (which incorporate hydrolysis and disintegrations step, section 2.4.2) of all lipids, proteins and carbohydrates changed. The change was substantial for carbohydrates which after AAS contributed extensively on methane production. This confirms the results presented by Jurado et al. [16], where the increase of methane yield in batch tests was attributed to the effect of AAS on the disintegration step. After fitting, the model simulated very well the biogas production and methane content, as shown in figure 4 and table 7. It has to be emphasized here, that the apparent hydrolysis kinetic parameters estimated in the present study incorporated disintegration parameters as well. Thus, a comparison with the estimated values of hydrolysis kinetic parameters from previous studies is not valid. While in the most recent studies the hydrolysis kinetic parameters range from 0.1 to 10 \(\text{d}^{-1} \) [30, 18, 37, 38, 23], in the present study the apparent hydrolysis kinetic parameters estimated are at least two orders of magnitude lower (table 4). Thus, the disintegration of particulate matter is the rate limiting step during the anaerobic digestion of swine manure and manure fibers and it is this step that is mostly affected by the application of AAS as a pretreatment for swine manure fibers. The maximum uptake rates of volatile fatty acids in the mixture based model were kept the same with them in the manure based model and the mixture based model was able to simulate
satisfactorily the acetic, propionic and butyric acid concentration profiles during steady state and under impulse disturbances (Reactor-2 in Phase B), as shown in figure 5b. This implies that the maximum uptake rates for the volatile fatty acids were not influenced by the addition of AAS-treated fibers to the influent, something that was anticipated as the reactor was not kinetically limited and the VFAs level was very low.

Figure 5 here

Conclusions

In the present study, the efficiency of AAS as a treatment method for increasing the methane yield of manure fibers has been verified in continuous digesters. The performance of mesophilic CSTR-type anaerobic digesters, fed with mixtures of swine manure and AAS-treated manure fibers (at a TS based ratio of 0.52 manure per 0.48 fibers) was assessed in comparison to a similar digester fed only with manure. Mixing of AAS-treated manure fibers with the influent manure resulted at an increase of 22% in biogas productivity and 98% in methane yield of the fibers (compared to manure fibers without treatment) in continuous anaerobic digestion at a hydraulic retention time of around 25 d.

The Anaerobic Digestion Model 1, ADM1, was fitted to a manure-fed, continuous anaerobic digester and validated by simulating the performance of a second also continuous anaerobic digester digesting manure. It was shown that disintegration and hydrolysis of the solid matrix of swine manure was an extremely slow process, in the degree that organic solids did not actually contribute to the methane production. In a second stage, ADM1 was fitted to a mesophilic continuous reactor running with a mixture of manure and AAS pretreated swine fibers (at a TS based ratio of 0.52 manure per 0.48 fibers). It was shown that, in this case, the
disintegration/hydrolysis of carbohydrates contributed substantially to the methane production proving that AAS treatment significantly increased the disintegration/hydrolysis rate of the carbohydrate compounds of the fibers. Furthermore, the addition of AAS-treated fibers to the influent did not significantly affect the kinetics of consumption of volatile fatty acids.

Acknowledgements

The authors wish to thank the EUDP-2008, Energistyrelsen, Copenhagen for the financial support of this work under RETROGAS project.

Reference

List of tables

Table 1. Characteristics of the different experimental phases in the three reactors.

Table 2. Characteristics of manure-I and manure-II and of AAS-pretreated manure fibers.

Table 3: Operating conditions and steady state characteristics for the different experimental phases.

Table 4. Estimated values of the kinetic parameters and difference of cations and anions concentration after fitting of the ADM1 to the experimental data from Reactor-1 (manure fed reactor) and Reactor-2 (fed with mixture of manure and AAS_fibers).

Table 5 Model predictions (using manure-based model) and experimental measurements for the steady state of Reactor-1 after the model fitting and the estimation of the kinetic parameters.

Table 6. Model predictions (using manure based model) and experimental measurements for the steady states of Reactor-2 fed with manure (phase A) and mixture of manure and AAS-treated fibers (phase B).

Table 7. Model predictions (using mixture-based model) and experimental measurements for the steady state of Phases C and E after the model fitting and the parameters estimation.
List of Figures

Figure 1. Volumetric and TS loading rate of digesters throughout continuous experiment: a) manure fed reactor, b) manure and AAS-fibers fed reactors.

Figure 2. Experimental (■) and model simulated (___) biogas production and methane content throughout the duration of the continuous experiment as well as during impulse disturbances in Reactor-1 (manure-fed reactor) using manure-based model.

Figure 3. Experimental (■) and model simulated (___) biogas production and methane content throughout the duration of the continuous experiment as well as during impulse disturbances in Reactor-2 (fed with mixture of manure and AAS pretreated fibers after day 110) using manure-based model.

Figure 4. Experimental (■) and model simulated (___) (mixture-based model) biogas production and methane content throughout the duration of the continuous experiment as well as during impulse disturbances in Reactor-2 and Reactor-3 during the different phases.

Figure 5. Experimental (■) and model simulated (___) acetate, propionate and butyrate concentration throughout the duration of the continuous experiment as well as during impulse disturbances in a) Reactor-1 (manure-fed reactor), using manure-based model and b) Reactor-2 and Reactor-3 during the different phases using mixture-based model.
Table 1. Characteristics of the different experimental phases in the three reactors

<table>
<thead>
<tr>
<th>Phase</th>
<th>Feedstock</th>
<th>Ratio (TS basis)</th>
<th>HRT</th>
<th>Uses in ADM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor-1</td>
<td>Manure-I</td>
<td></td>
<td>25</td>
<td>Fitting manure-based model</td>
</tr>
<tr>
<td>Reactor-2 A</td>
<td>Manure-I</td>
<td></td>
<td>25</td>
<td>Validation manure-based model</td>
</tr>
<tr>
<td>B</td>
<td>Manure-I + AAS fibers</td>
<td>0.52:0.48</td>
<td>25</td>
<td>Fitting mixture-based model</td>
</tr>
<tr>
<td>C</td>
<td>Manure-II + AAS fibers</td>
<td>0.52:0.48</td>
<td>25</td>
<td>Validation mixture-based model</td>
</tr>
<tr>
<td>Reactor-3 D</td>
<td>Manure-II</td>
<td></td>
<td>25</td>
<td>Validation manure-based model</td>
</tr>
<tr>
<td>E</td>
<td>Manure-II + AAS fibers</td>
<td>0.52:0.48</td>
<td>17</td>
<td>Validation mixture-based model</td>
</tr>
</tbody>
</table>
Table 2. Characteristics of manure-I and manure-II and of AAS-pretreated manure fibers

<table>
<thead>
<tr>
<th>Characteristics, particulate matter</th>
<th>Manure-I (Used in phases A and B)</th>
<th>AAS-pretreated raw fibers (Used in phases B, C and E)</th>
<th>Manure-II (Used in phases C, D and E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD, kg / 100 kg TS</td>
<td>79.11 ± 8.1</td>
<td>98.6 ± 9.4</td>
<td>124.19</td>
</tr>
<tr>
<td>Carbohydrates, kg COD/ 100 kg TS</td>
<td>6.10 ± 0.11</td>
<td>47.79 ± 1.09</td>
<td>9.57</td>
</tr>
<tr>
<td>Proteins, kg COD/ 100 kg TS</td>
<td>28.00 ± 1.40</td>
<td>20.12 ± 0.98</td>
<td>43.95</td>
</tr>
<tr>
<td>Lipids, kg COD/ 100 kg TS</td>
<td>32.65 ± 1.01</td>
<td>14.58 ± 0.52</td>
<td>51.25</td>
</tr>
<tr>
<td>Inerts, kg COD/ 100 kg TS</td>
<td>12.37 ± 0.82</td>
<td>16.08 ± 0.74</td>
<td>19.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics, soluble matter</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COD, kg / 100 kg TS</td>
<td>91.83 ± 9.90</td>
<td>8.10 ± 0.2</td>
<td>55.90</td>
</tr>
<tr>
<td>Sugars, kg COD/ 100 kg TS</td>
<td>0</td>
<td>0</td>
<td>0.0 a</td>
</tr>
<tr>
<td>Aminoacids, kg COD/ 100 kg TS</td>
<td>18.92 ± 0.57</td>
<td>0.21 ± 0.01</td>
<td>11.52 a</td>
</tr>
<tr>
<td>Long chain fatty acids, kg COD/ 100 kg TS</td>
<td>21.25 ± 0.32</td>
<td>3.89 ± 0.61</td>
<td>12.94 a</td>
</tr>
<tr>
<td>Valeric acid, kg COD/ 100 kg TS</td>
<td>0</td>
<td>0.11 ± 0.10</td>
<td>0.0 a</td>
</tr>
<tr>
<td>Butyric acid, kg COD/ 100 kg TS</td>
<td>3.98 ± 0.02</td>
<td>0.16 ± 0.80</td>
<td>2.42 a</td>
</tr>
<tr>
<td>Propionic acid, kg COD/ 100 kg TS</td>
<td>8.46 ± 0.03</td>
<td>0.34 ± 0.20</td>
<td>5.15 a</td>
</tr>
<tr>
<td>Acetic acid, kg COD/ 100 kg TS</td>
<td>34.75 ± 0.18</td>
<td>2.07 ± 0.15</td>
<td>21.15 a</td>
</tr>
<tr>
<td>Inerts, kg COD/ 100 kg TS</td>
<td>4.46 ± 0.10</td>
<td>1.34 ± 0.08</td>
<td>2.71 a</td>
</tr>
<tr>
<td>Inorganic carbon, kmole / 100 kg TS</td>
<td>0.53 ± 0.00</td>
<td>0.099 ± 0.002</td>
<td>0.78</td>
</tr>
<tr>
<td>Inorganic phosphorus, kmole / 100 kg TS</td>
<td>4.73x10^{-6}± 0.31x10^{-3}</td>
<td>4.77x10^{-3}± 0.30x10^{-3}</td>
<td>2.548x10^{-3}</td>
</tr>
<tr>
<td>Inorganic nitrogen (NH\textsubscript{3}-N), kmole / 100 kg TS</td>
<td>0.73 ± 0.02</td>
<td>8.63x10^{-3}± 0.25x10^{-3}</td>
<td>1.05</td>
</tr>
<tr>
<td>Difference of cations and anions concentration, kmole (100 kg TS)-1</td>
<td>0.454</td>
<td>0.14</td>
<td>0.128</td>
</tr>
</tbody>
</table>

a characteristics calculated based on the TS content, non-soluble (particulate) and soluble COD and the distribution of the particulate and soluble COD according to manure-I characteristics
<table>
<thead>
<tr>
<th>Operating Conditions</th>
<th>Reactor-1</th>
<th>Reactor-2</th>
<th>Reactor-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feeding</td>
<td>Phase A</td>
<td>Phase B</td>
</tr>
<tr>
<td></td>
<td>Manure-I</td>
<td>Manure-I</td>
<td>Manure-I + AAS fibers</td>
</tr>
<tr>
<td>Hydr. Retention Time (d)</td>
<td>26.0 ± 3.5</td>
<td>26.7 ± 1.9</td>
<td>23.0 ± 3.4</td>
</tr>
<tr>
<td>Influent total COD (g L⁻¹)</td>
<td>71.1 ± 13.1</td>
<td>72.1 ± 17.0</td>
<td>69.8 ± 4.9</td>
</tr>
<tr>
<td>Influent soluble COD (g L⁻¹)</td>
<td>33.4 ± 3.6</td>
<td>35.4 ± 1.0</td>
<td>27.9 ± 0.2</td>
</tr>
<tr>
<td>Characteristics at steady state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas productivity (L L⁻³ d⁻¹)</td>
<td>0.86 ± 0.15</td>
<td>0.86 ± 0.11</td>
<td>1.05 ± 0.09</td>
</tr>
<tr>
<td>Methane (%)</td>
<td>60.9 ± 3.0</td>
<td>61.7 ± 4.2</td>
<td>61.2 ± 2.6</td>
</tr>
<tr>
<td>Methane yield (L g⁻¹ COD added)</td>
<td>0.19 ± 0.05</td>
<td>0.20 ± 0.06</td>
<td>0.21 ± 0.04</td>
</tr>
<tr>
<td>Methane yield (L g⁻¹ TS added)</td>
<td>0.28 ± 0.08</td>
<td>0.27 ± 0.06</td>
<td>0.25 ± 0.05</td>
</tr>
<tr>
<td>Volatile Fatty Acids (mg L⁻¹)</td>
<td>160 ± 5</td>
<td>165 ± 6</td>
<td>170 ± 4</td>
</tr>
<tr>
<td>pH</td>
<td>8.3 ± 0.1</td>
<td>8.3 ± 0.1</td>
<td>8.3 ± 0.1</td>
</tr>
<tr>
<td>Effluent soluble COD (g L⁻¹)</td>
<td>5.4 ± 0.7</td>
<td>6.0 ± 0.4</td>
<td>4.8 ± 0.9</td>
</tr>
<tr>
<td>TS inside reactor (kg m⁻³)</td>
<td>46.7±1.5</td>
<td>49.8±7.8</td>
<td>46.9±1.8</td>
</tr>
<tr>
<td>VS inside reactor (kg m⁻³)</td>
<td>21.92±1.02</td>
<td>29.4±5.3</td>
<td>25.5±0.78</td>
</tr>
</tbody>
</table>
Table 4. Estimated values of the kinetic parameters and difference of cations and anions concentration after fitting of the ADM1 to the experimental data from Reactor-1 (manure fed reactor) and Reactor-2 (fed with mixture of manure and AAS_fibers).

<table>
<thead>
<tr>
<th>Kinetic parameter</th>
<th>Units</th>
<th>Manure-based model</th>
<th>Mixture-based model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates hydrolysis, k_{hydr_ch}</td>
<td>d^{-1}</td>
<td><<</td>
<td>7.3×10^{-2}</td>
</tr>
<tr>
<td>Proteins hydrolysis, k_{hydr_pr}</td>
<td>d^{-1}</td>
<td>3.0×10^{-3}</td>
<td>7.1×10^{-3}</td>
</tr>
<tr>
<td>Lipids hydrolysis, k_{hydr_li}</td>
<td>d^{-1}</td>
<td>2.8×10^{-4}</td>
<td>4.2×10^{-3}</td>
</tr>
<tr>
<td>Maximum uptake rate of long chain fatty acids, km_{fa}</td>
<td>kg COD fa/kg COD x_fa/d</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>Maximum uptake rate of butyric acid, km_{c4}</td>
<td>kg COD c4/kg COD x_c4/d</td>
<td>13.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Maximum uptake rate of propionic acid, km_{pro}</td>
<td>kg COD pro/kg COD x_pro/d</td>
<td>6.56</td>
<td>6.56</td>
</tr>
<tr>
<td>Maximum uptake rate of acetic acid, km_{ac}</td>
<td>kg COD ac/kg COD x_ac/d</td>
<td>45.02</td>
<td>45.02</td>
</tr>
<tr>
<td>Difference of cations and anions concentration</td>
<td>kmole (100 kg TS)$^{-1}$</td>
<td>0.54</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5 Model predictions (using manure-based model) and experimental measurements for the steady state of Reactor-1 after the model fitting and the estimation of the kinetic parameters.

<table>
<thead>
<tr>
<th>Steady state characteristics</th>
<th>Reactor-1 (Manure-based model)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>Methane, %</td>
<td>61.0 ± 0.6</td>
</tr>
<tr>
<td>Biogas production, m³ d⁻¹</td>
<td>2.2·10⁻³ ± 0.1·10⁻³</td>
</tr>
<tr>
<td>pH</td>
<td>8.2 ± 0.1</td>
</tr>
<tr>
<td>Acetic acid, kgCOD m⁻³</td>
<td>0.035 ± 0.014</td>
</tr>
<tr>
<td>Propionic acid, kgCOD m⁻³</td>
<td>0.005 ± 0.002</td>
</tr>
<tr>
<td>Butyric acid, kgCOD m⁻³</td>
<td>0.005 ± 0.003</td>
</tr>
</tbody>
</table>
Table 6. Model predictions (using manure based model) and experimental measurements for the steady states of Reactor-2 fed with manure (phase A) and mixture of manure and AAS-treated fibers (phase B).

<table>
<thead>
<tr>
<th>Steady state characteristics</th>
<th>Manure (phase A)</th>
<th>Mixture of manure and AAS-treated fibers (phase B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane, %</td>
<td>63.2 ± 1.2</td>
<td>64.3 ± 0.1</td>
</tr>
<tr>
<td>Biogas production, m³ d⁻¹</td>
<td>2.2·10⁻³ ± 0.2·10⁻³</td>
<td>2.3·10⁻³ ± 0.1·10⁻³</td>
</tr>
<tr>
<td>pH</td>
<td>8.30 ± 0.1</td>
<td>8.20 ± 0.01</td>
</tr>
<tr>
<td>Acetic acid, kgCOD m⁻³</td>
<td>0.028 ± 0.007</td>
<td>0.236 ± 0.031</td>
</tr>
<tr>
<td>Propionic acid, kgCOD m⁻³</td>
<td>0.003 ± 0.0004</td>
<td>0.021 ± 0.001</td>
</tr>
<tr>
<td>Butyric acid, kgCOD m⁻³</td>
<td>0.005 ± 0.004</td>
<td>0.014 ± 0.001</td>
</tr>
</tbody>
</table>
Table 7. Model predictions (using mixture-based model) and experimental measurements for the steady state of Phases C and E after the model fitting and the parameters estimation.

<table>
<thead>
<tr>
<th>Steady state characteristics</th>
<th>Mixture of manure and AAS-treated fibers (phase C)</th>
<th>Mixture of manure and AAS-treated fibers (phase E)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Model</td>
</tr>
<tr>
<td>Methane, %</td>
<td>62.6 ± 2.1</td>
<td>62.86 ± 0.6</td>
</tr>
<tr>
<td>Biogas production, m³ d⁻¹</td>
<td>1.0·10⁻³ ± 1.7·10⁻⁴</td>
<td>9.9·10⁻⁴ ± 1.8·10⁻⁴</td>
</tr>
<tr>
<td>pH</td>
<td>8.1 ± 0.2</td>
<td>7.8 ± 0.01</td>
</tr>
</tbody>
</table>