Iridoids in Hydrangeaceae

Gousiadou, Chryssoula; Li, Hong-Qing; Gotfredsen, Charlotte Held; Jensen, Søren Rosendal

Published in:
Biochemical Systematics and Ecology

Link to article, DOI:
10.1016/j.bse.2015.12.002

Publication date:
2016

Document Version
Peer reviewed version

Citation (APA):

DTU Library
Technical Information Center of Denmark

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Iridoids in Hydrangeaceae

Chrysoula Gousiadou, Hong-Qing Li, Charlotte Gotfredsen, Søren Rosendal Jensen

Abstract
The distribution of the iridoid and secoiridoid glucosides as well as the known biosynthetic pathways to these compounds in the family Hydrangeaceae has been reviewed. Loganin and secologanin and derivatives of these are common in the few genera investigated. However, the genus Deutzia is characteristic in containing more simple iridoids in which C-10 has been lost during biosynthesis, such compounds are otherwise only reported from Mentzelia (Loasaceae). In the present work, also Kirengeshoma and Jamesia have been investigated. The former contains loganin and secoiridoids, including the alkaloid demethylalangiside. The latter contains no iridoids, but the known glucosides arbutin, picein and prunasin. The taxonomic relationships between Hydrangeaceae and the closely related Cornaceae and Loasaceae is discussed and found to agree very well with recent DNA sequence results.

* Corresponding author. Tel.: +45-45252103; fax: +45-45933968.
E-mail address: srj@kemi.dtu.dk (S.R. Jensen).
List of Supporting Information

Figure S1	1H NMR (CD$_3$OD, 500 MHz) of 6-OH-sweroside (37)	3
Figure S2	13C NMR (D$_2$O, 50 MHz) of 6-OH-sweroside (37)	4
Figure S3	1H NMR (CD$_3$OD, 500 MHz) of demethylalangiside (38)	5
Figure S4	13C NMR (CD$_3$OD, 100 MHz) of demethylalangiside (38)	6
Figure S5	1H NMR (D$_2$O, 500 MHz) of arbutin (40)	7
Figure S6	13C NMR (D$_2$O, 50 MHz) of arbutin (40)	8
Figure S7	1H NMR (D$_2$O, 500 MHz) of picein (41)	9
Figure S8	13C NMR (D$_2$O, 125 MHz) of picein (41)	10
Figure S9	1H NMR (CD$_3$OD, 500 MHz) of prunasin (42)	11
Figure S10	13C NMR (D$_2$O, 50 MHz) of prunasin (42)	12
Figure S1

1H NMR (CD$_3$OD, 500 MHz) of 6-OH-sweroside (37)
Figure S2

13C NMR (D$_2$O, 50 MHz) of 6-OH-sweroside (37)
Figure S3

1H NMR (CD$_3$OD, 500 MHz) of demethylalangiside (38)
Figure S4

13C NMR (CD_3OD, 125 MHz) of demethylalangiside (38)
Figure S5

1H NMR (D$_2$O, 500 MHz) of arbutin (40)
Figure S6

13C NMR (D$_2$O, 50 MHz) of arbutin (40)
Figure S7

1H NMR (D$_2$O, 500 MHz) of picein (41)
Figure S8
13C NMR (D$_2$O, 50 MHz) of picein (41)
Figure S9

1H NMR (D$_2$O, 500 MHz) of prunasin (42)
Figure S10
13C NMR (D$_2$O, 125 MHz) of prunasin (42)