Catalytic oxidation of lignin and lignin model compounds

Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren; Riisager, Anders

Published in:
Book of Abstracts. DTU's Sustain Conference 2015

Publication date:
2015

Document Version:
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Catalytic oxidation of lignin and lignin model compounds

M. Melián-Rodríguez, S. Saravanamurugan, S. Kegnæs, and A. Riisager*

DTU chemistry, Center of catalysis and sustainable chemistry.

*ar@kemi.dtu.dk

Lignin represents the second most abundant component in lignocellulosic biomass, and it is well know that the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective bio refinery lignin conversion processes will play an important role increasing the economic feasibility and sustainability of biofuel production from renewable biomass. For this reason, research on upgrading lignin has become of recent interest, as many interesting products, mainly aromatics, can potentially be produced from lignin. [1-3]

In the present work we have prepared, characterized and examined the performance of heterogeneous catalysts with ruthenium and other transitions metals supported on different supports like γ-alumina or silica for the conversion of β-O-4 lignin model compounds (veratryl alcohol, guaiacyl glycerol-β-guaiacyl ether) and lignin by aerobic oxidation. [4]

Fig. 1. Schematic representation of lignin structure and its three monolignol monomers.

Acknowledgments

The authors appreciate financial support to the work from The Danish Agency for Science, Technology and Innovation (International Network Programme, 12-132649), Haldor Topsøe A/S and the Technical University of Denmark.

References