In situ ETEM Study on the Growth Termination of Single-Wall Carbon Nanotubes

Zhang, Lili; Hansen, Thomas Willum; He, Maoshuai; Kling, Jens; Jiang, Hua; Kauppinen, Esko I.; Wagner, Jakob Birkedal

Published in:
Book of Abstracts. DTU's Sustain Conference 2015

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In situ ETEM Study on the Growth Termination of Single-Wall Carbon Nanotubes

Lili Zhang1, Thomas W. Hansen1, Maoshuai He2, Jens Kling1, Hua Jiang3, Esko I. Kauppinen3, Jakob B. Wagner*1

1: Technical University of Denmark, Center for Electron Nanoscopy, Fysikvej 307, 2800 Kgs. Lyngby, Denmark
2: Laboratoire d’Étude des Microstructures, ONERA-CNRS, BP 72, 92322 Châtillon CEDEX, France
3: Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland

*Corresponding author email: jakob.wagner@cen.dtu.dk

Single-wall carbon nanotubes (SWCNTs) with specific structures are ideal materials in nano-electronics. Taking thin film field effect transistors as an example, semiconducting SWCNTs show more promising performances than traditional indium-containing semiconductors as channel materials. Besides, the latter is a kind of critical materials derived from limited natural resources. Therefore, in a long run, the study on indium replacement by SWCNT thin film with improved performance and reliability is important for both fundamental research and industrial applications. The first step for that is to synthesize SWCNTs with high yield and specific structure. Understanding the growth termination mechanism of SWCNTs is of great importance for maximizing the quality and yield, and for controlling their structure. Generally, it involves the deactivation of catalysts by carbon encapsulation or morphology evolution (Ostwald ripening), and the diffusion-limited supply of carbon feedstock to the catalyst. However, the detailed microscopic causes of tube growth cessation are still lacking. Here we show the direct experimental evidence on the growth and termination of SWCNTs from Co/MgO catalysts using CO as carbon source inside the environmental transmission electron microscope (ETEM) (see [1, 2]). The dissociation of SWCNTs from the catalysts was widely observed. Interestingly, new tubes are able to nucleate and grow from the same particle that is abruptly deactivated for the initial SWCNT, suggesting a high activity of catalysts and a different nucleation and termination process of SWCNTs.

Reference