OPVent projektrapport – 2015
Resultater af OP Vent projektet

Overgaard, Anders; Overgaard, Søren; Frich, Lars Henrik; Ravn, Christen; Olsen, Martin; Knudsen, Niels Bastholm; Nielsen, Johnny; Toftum, Jørn; Clausen, Geo; Nielsen, Linn; Rosenbeck, Katrine

Publication date:
2015

Document Version
Også kaldet Forlagets PDF

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
OPVent projektrapport – 2015.

RESULTATER AF OP VENT PROJEKTET, FINANSIERET AF ELFORSK

PROJEKT DELTAGERE:
OUH, PROFESSOR, OVERLÆGE, DR.MED., FORSKNINGSLEDER. DEN ORTOPÆDKIRURGISKE FORSKNINGSENHED SØREN OVERGAARD
OUH, OVERLÆGE LARS HENRIK FRICH
OUH, LÆGE OG PH.D.-STUDERENDE ORTOPÆDKIRURGISK FORSKNINGSENHED CHRISTEN RAVN
JRV A/S, DIREKTør MARTIN OLSEN
SYGEHUS SØNDERJYLLAND, SERVICECHEF POUL ERTZINGER
FOURNAIS ENERGI APS, MASKINMESTER NIELS BASTHOLM KNUDSEN
FOURNAIS ENERGI APS, PROJEKTCHEF JOHNNY NIELSEN

FORFATTERE:
RESERVELÆGE ANDERS OVERGAARD
OUH, PROFESSOR, OVERLÆGE, DR.MED., FORSKNINGSLEDER. DEN ORTOPÆDKIRURGISKE FORSKNINGSENHED SØREN OVERGAARD
OUH, OVERLÆGE LARS HENRIK FRICH
OUH, LÆGE OG PH.D.-STUDERENDE ORTOPÆDKIRURGISK FORSKNINGSENHED CHRISTEN RAVN
JRV A/S, DIREKTør MARTIN OLSEN
FOURNAIS ENERGI APS, MASKINMESTER NIELS BASTHOLM KNUDSEN
FOURNAIS ENERGI APS, PROJEKTCHEF, ENERGISYNKSULSENT E-36B JOHNNY NIELSEN
ASSOCIATE PROFESSOR HEAD OF STUDIES B.ENG. BUILDING DTU CIVIL ENGINEERING JØRN TOFTUM*
ASSOCIATE PROFESSOR HEAD OF STUDIES B.ENG. BUILDING DTU CIVIL ENGINEERING GEO CLAUSEN*
STUDERENDE LINN NIELSEN*
STUDENRENDE KATRINE ROSENBECK*
Indholdsfortegnelse

OPVENT PROJEKTRAPPORT .. 4
 Resume ... 4
 Idegrundlaget for dette projekt .. 4

Introduktion .. 5
 Energiforbrug og ventilationsanlæg på hospitaler ... 5
 Renhed af luft på operationsstuen .. 5

Baggrund og problemstillinger .. 6
 Operationsrelaterede infektioner ... 6
 Forekomst af proteseinfektion i kliniske undersøgelser .. 6
 Kimtal og partikelmålinger i simulations- og kliniske studier ... 7
 Krav til luftkvalitet i operationsstuer .. 8
 Definition of TAF og LAF .. 8
 Energi ... 9
 Sporgas-måling .. 9

Formål ... 9

Metode .. 9
 Design af forsøgene .. 9
 Valg af operationsstuer .. 10
 Styring af vent. anlæg .. 10
 Sporgasser .. 10
 Opstilling på operationsstuen .. 12
 Drejebog – for OP forsøg .. 12
 Mikrobiologisk kimtælling ... 13
 Partikelmåling .. 14
 Måling af energi .. 14
 Statistisk behandling af data ... 14

Resultater .. 15
OPVent projektrapport

RESUME

Dette projekt undersøger hvorvidt brugen af laminar indblæsning (laminar air flow, LAF) på operationsstuer nedsætter infektionsrisikoen i forhold til konventionel ventilation (turbulent air flow, TAF), og hvilke muligheder der foreligger for energioptimering med udgangspunkt i driftsforholdene på Gentofte Hospital.

Under mock-up operationer med en patient-dukked bejdyste vi betydningen af ventilationssystemet på operationsstuen. Således blev der i løbet af 11 forsøgsdage gennemført i alt 2x 16 simulerede hoftealloplastik operationer på stuer med hhv. LAF og TAF ventilation. Halvdelen af forsøgene er endvidere foretaget med reduceret (50 %) friskluftskifte således at hvert set-up er foretaget med 8 gentagelser. Hvert af de 32 forsøg blev udført med samme opsætning af rengøring, udstyrsplacering, forsøgsarbejder og bevægelsesstreg. Der blev under forsøgene foretaget måling af kimtal, partikler og sporgas, samt driftsmåling af energiforbrug.

På LAF stuen var alle målinger under anbefalede værdier uafhængig af om det blev kørt med 100 % eller 50 % friskluftmængde og uden øgning af CFU tal ved 50 % reduktion. På TAF stuer var der ved et væsentlig antal (4/16) operationer kritisk højt kimtal over anbefalet niveau. Dette er vigtigt, da omkostninger til om-operationer, som følge af infektion under og efter hofte- og knæoperationer, beløber sig ifølge Sundhedsstyrelsen til 34-57 mio. kr. om året.

Angående elforbruget til LAF stuerne var det muligt at reducere elforbruget med 41 % uden forøgelse af kim tallet, derudover skal det tilføjes at elforbrugets niveau ved 50 % friskluftmængde på LAF stuen var under det elforbrug, der blev anvendt ved 100 % friskluftmængde på TAF stuerne.

Dog skal det pointeres at alle forsøgede blev udført i november, december og januar måned. Varme- og kølebehovet var yderst minimalt.

I et afgangsprojekt fra DTU Byg, blev luftstrømmene på operationsstuerne undersøgt ved sporgas-måling. Analyserne viste en kontamineringsrisiko i de kritiske områder på TAF stuen, som var 48 % højere end på LAF.

IDEGRUNDLAGET FOR Dette PROJEKT

I dette projekt har vi gennemført en række mock-up forsøg på moderne operationsstuer, mhp. at dokumentere bakterieforekomst, partikeltransport og energiforbrug under simulerede hofte-proteseoperationer. Disse forsøg er udført ved to forskellige ventilationsprincipper (TAF og LAF) og halvdelen af forsøgene for hver ventilationstype er udført ved reduceret friskluftmængde.

Projektets resultater formidles på flere niveauer. Projektresultaterne vil dels blive formidlet til energiselskaberne og de rådgivende ingeniørvirksomheder, som projektører opførelsen af de nye supersygehuse og dels gennem videnskabelige publikationer og ved conferenceindlæg, som forventes at danne grundlag for yderligere forskningsaktiviteter, der i større omfang sammentænker hygiejnehensyn, energieffektivitet og komfort for sygehuspersonalet. Projektets forskningsmæssige sigte er at danne grundlag for udvikling af et totalkoncept for udvikling af fremtidens intelligente operationsstue.
INTRODUKTION

Energiforbrug og ventilationsanlæg på hospitaler

Det vurderes at der i alt er ca. 700 OP-stuer i DK. De ca. 700 stk. dækker både private og offentlige stuer.

Fremme af effektiv energianvendelse i større offentlige bygningsenheder i almindelighed og sygehuse i særlighed synes centralt placeret energiselskabernes energisparerforpligtelser. Regeringens strategi for effektiv energianvendelse er centralt placeret i bestræbelserne på at frigøre Danmark for anvendelse af fossile brændsler i 2050, hvilket dette projekt bidrager til gennem demonstration af energieffektivisering i operationsstuedrift. Projektet adresserer endvidere Energistyrelsens F&U-strategi 2005-2015 indenfor energieffektive teknologier, hvoraf projektet i særlig grad understøtter forskning, udvikling og demonstration inden for følgende to indsatsområder:

1. Ventilation og
2. Effekt- og styringselektronik

Fremme af effektiv energianvendelse i større offentlige bygningsenheder i almindelighed og sygehuse i særlighed synes centralt placeret energiselskabernes energisparerforpligtelser. Regeringens strategi for effektiv energianvendelse er centralt placeret i bestræbelserne på at frigøre Danmark for anvendelse af fossile brændsler i 2050, hvilket dette projekt bidrager til gennem demonstration af energieffektivisering i operationsstuedrift. Projektet adresserer endvidere Energistyrelsens F&U-strategi 2005-2015 indenfor energieffektive teknologier, hvoraf projektet i særlig grad understøtter forskning, udvikling og demonstration inden for følgende to indsatsområder:

1. Ventilation og
2. Effekt- og styringselektronik

Der findes en række forskellige typer af ventilationsanlæg på sygehuse til operationsstuer, som hver især tjener forskellige formål. Fælles for dem er at opretholde et atmosfærisk indeklima, som primært har til formål at forhindre bakterie- og partikeltransport, som forøger risikoen for forekomsten af infektioner og sekundært sikrer arbejdseffektivitet for sygehusets personale og patientkomfort. Ventilation på operationsstuer er særlig interessant, idet der heri forefindes de mest strikte krav til ventilation, hvor luften i døgndrift skiftes 20-400 gange i timen uafhængig af operationsstuens brugstid. Dette gøres ud fra et uforholdsmæssigt forsigtighedsprincip, som ikke står til mål med driftsomkostningerne til el, køling og varme, hvorfor der skønsmæssigt er et betydelig energibesparelsespotential svarende til 50-60 % eller op til 7,5 mio. kr. om året ved udvikling af styringsstrategier til optimeret drift af ventilation på operationer. Reference grundlaget er Region Hovedstaden.

Renhed af luft på operationsstuen

Rumluftens renhed er af afgørende betydning på sygehuse i almindelighed og på operationsstuer i særlighed – og med god grund. Høje bakterieforekomster kan forøge risikoen for patientinfektioner efter en operation. Dette er proble-

For at undgå operationsrelaterede infektioner ventileres operationsstuen med rent luft via turbulent (TAF) eller laminær (LAF) lufttilførsel. Ventilation på operationsstuer er energikostelig, og ifølge Sundhedsstyrelsen beløber driftsomkostninger til el, køling og varme til ventilation sig til 10-25.000 kr. pr. operationsstue pr. år. En operationstue ventileres op til 17-24 timer i døgnet uagtet brugstiden af operationsstuen. Dette betyder at ventilationssystemet drives i tomgang i størstedelen af dets benyttelses tid.

BAGGRUND OG PROBLEMSTILLINGER

Operationsrelaterede infektioner

Forekomst af protesefinfektion i kliniske undersøgelser

Når man vil undersøge effekten af LAF ift. TAF overfor klinisk udvikling af dyb infektion ifm. hofte- og knæprotesekirurgi, må man forholde sig til flere væsentlige aspekter:

- En lav infektionshyppighed (ca. 1 %) betyder at et stort antal patienter skal inkluderes for at finde en signifikant forskel mellem de to interventioner (LAF vs. TAF).
- Sundhedsmyndighedernes anbefaling af LAF-ventilation til stuer med protesekirurgi giver etiske udfordringer ift. at lade patienter randomisere til kontrolgruppen, som opereres på stuer med TAF-ventilation
- Både LAF og TAF anlæg har varierende udformning og driftsmønster, der er således ikke nødvendigvis sammenlignelige ventilationsforhold på operationsstuerne på samme hospital, region eller land.
- Mange patientrelaterede risikofaktorer (alder, rygning, BMI, immunforsvar og andre sygdomme), påvirker også udviklingen af dyb infektion efter hofte- og knæprotesekirurgi, hvorfor endnu flere patienter må undersøges for at kunne kontrollere disse confounders.
- Varierende forhold på operationsdagen, som kan påvirke infektionsrisikoen inkluderer afdækning, operationsteknologiske og -varighed, samt antal og adfærd blandt operationspersonalet.

Side 6 af 42
- Udvikling af dybe, operationsrelaterede infektioner varer typisk fra 5 dage til op imod to år, hvorfor man må planlægge en lang opfølgingsperiode, hvor mange postoperative risikofaktorer kan påvirke forløbet.

Det er med andre ord ikke let at foretage den kontrollerede, randomiserede undersøgelse, som kan påvise en evt. effekt af LAF ift. TAF overfor det kliniske end-point, som infektionsudvikling udgør.

I bilag 1 finds søgestrengen, samt et resume af en række studier der illustrerer problematikken.

Kimtal og partikelmålinger i simulations- og kliniske studier

Hvis man kigger på problemstillingen LAF vs. TAF overfor forebyggelse af operationsrelaterede infektioner, kan man også vælge at undersøge ventilationssystemernes evne til at optimere rumluftens renhed ift. infektionsfremkaldende bakterier. Dette surrogatmål for infektionsrisiko er validt, hvis man antager at det primært er de luftbårne bakterier og støvpartikler, som påvirkes af de ændrede luftsrumninger (Dharan and Pittet 2002, Chow and Yang 2005, Chauveaux 2015). Herved tages der dog ikke højde for den indvirkning en forebyggende antibiotikabehandling har på de luftbårne bakteriers evne til at danne infektion i operationsfeltet.

Forud for nærværende studie foretog vi endvidere en systematisk litteratursøgning over problemstillingen ‘Hvilke metoder belyser bedst luftforureningen i sammenligningen mellem LAF og TAF ventilation på operationsstuer’.

Kriv til luftkvalitet i operationsstuer

<table>
<thead>
<tr>
<th>Tom operationsstue</th>
<th>Størrelse i µm</th>
<th>Partikler pr. m³ rumluft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 0.3</td>
<td>10.200</td>
</tr>
<tr>
<td></td>
<td>≥ 0.5</td>
<td>3.520</td>
</tr>
<tr>
<td></td>
<td>≥ 1</td>
<td>832</td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>29</td>
</tr>
</tbody>
</table>

Foreningen af Sygehusmaskinmestre i Danmark (FSD) og Forum for Sygehus Teknik og Arkitektur (FSTA) angiver i høringsudgaven af ‘Ventilation i rum med invasive indgreb herunder OP-stuer’ følgende vejledende retningslinjer for partikelkonzentrationen på ultra-rene stuer under operation (FSTA 2014):

<table>
<thead>
<tr>
<th>Under operation</th>
<th>Størrelse i µm</th>
<th>Partikler pr. m³ rumluft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 0,5</td>
<td>352.000</td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>2.900</td>
</tr>
</tbody>
</table>

Definition af TAF og LAF

TAF (turbulent air flow) karakteriseres ved at filtreret luft tilføres gennem loftet med en hastighed svarende til 10-20 gange luftskifte pr. time. Dette luftskifte er højt nok til at den eksisterende rumluft drives med, og derved sker der en opblanding, samtidig med at en vis del luft suges ud. På den måde renses luften, og mængden af kimbærende partikler

LAF (laminar air flow) betegner en ventilationstype, hvor den filterede luft blæses lineært, retningsbestemt ned over operationsfeltet med 20-400 udskiftninger i timen. Principippet er at lufttrykket af den indblæste, rene luft hindrer indstrømnings af den omgivende urene luft fra resten af lokalet. Den rene luft fremkommer ved at de anvendte filtre har meget høj tilbageholdelsesgrad af partikler over en vis størrelse.

For både TAF og LAF ventilation gælder, at luftmængderne i forhold til de omkringliggende rum skal dimensioneres, så der altid er et overtryk på stuen på minimum 10 Pa. Overtrykket skal sikre, at kontamineret luft fra omkringliggende rum ikke trænger ind på operationsstuen.

Energi
Der blev ikke fundet relevante resultater igennem det energitekniske litteraturstudie.

Sporgas-måling
I forbindelse med et afgangsprojekt fra DTU Byg, blev forskellen i kontamineringrisiko under simulerede hoftealloplastiske operationer undersøgt ved sporgasforsøg.

FORMÅL
Projektets hovedformål er at belyse forskelle mellem LAF og TAF ventilation, hvorfor de primære mikrobiologiske outcomes er antal CFU pr. m3 (aktiv luftsampling) og antal CFU/m2/time (passiv sedimentation) ved 100 % og 50 % friskluftmængde under forøg på operationsstuer med hhv. LAF og TAF ventilation.

På energidelen var projektets hovedformål at undersøge hvor meget friskluftmængden kunne reduceres for stadigvæk at kunne overholde de lægemaessige krav omkring de primære mikrobiologiske outcomes er antal CFU pr. m3 (aktiv luftsampling) og antal CFU/m2/time (passiv sedimentation). Desuden var projektets formål også at undersøge forskellen i energiforbrug mellem LAF og TAF ventilation.

Formålet med sporgas-målingerne var at undersøge forskellen i kontamineringrisiko ved de to ventilationsprincipper, TAF og LAF. Sporgas-målingerne blev anvendt til at fastlægge luftens strømnings og derved simulere spredningen af bakterier gennem luften. Ved måling af sporgas-koncentrationen kan kontamineringrisikoen i de forskelle punkter vurderes.

METODE
Igennem det faglige netværk fik gruppen kontakt til Gentofte Hospital og sikret sig adgang til operationsstuer, klinisk og teknisk personale.

Design af forsøgene
Der blev gennemført 3 forsøg pr. forsøgsdag efter et forudbestemt skema, som sikrede et jævnt mønster i de skiftende ventilationsforhold, således at man vekslede mellem hhv. LAF og TAF ventilation, samt mellem 100 % og 50 % friskluftmængde i forsøgene (se bilag 1). På operationsstuen befandt sig hele tiden 5 personer med faste roller; en operatør med en operationssygeplejerske, en operationssygeplejerske, en sygeplejerske ‘på gulvet’ og en anæstesisygeplejerske. Døre til stuen var lukkede under hele forsøget og adfærdenden på stuen var i øvrigt afstemt med Sundhedsstyrelsens National Infektionhygiejniske Retningslinjer om operativ-infektionsprofylakse (NIR Operativ CEI 1. udgave 2014).

Valg af operationsstuer

Operationsstue 21 og 22 blev valgt efter grundig research se bilag 1, da stuerne er fysisk identiske i størrelse, udformning og indretning på nær ventilationstypen. Stue 21 er bygget med et TAF anlæg og stue 22 er bygget med et LAF anlæg og begge anlæg er idriftsat i november 2009, stuerne er til dagligt reserveret til isolation og backup akutstue.

Styring af vent. anlæg

Via hospitaliets CTS system blev anlægsfunktionen verificeret inden hvert forsøg. Til de forsøg, som blev udført med reduceret friskluftmængde, blev CTS anlægget brugt til at sænke den indblæste friskluftmængde til 50 %. På LAF anlægget blev recirkulationsmængden ikke ændret, da dette ville bevirke at anlægget ikke længere ville opfylde kravene til et LAF anlæg. Se i øvrigt bilag 5.

Sporgasser

Sporgas-målingerne blev anvendt til at fastlægge luftens strømninger og derved simulere spredningen af bakterier gennem luften. Ved måling af sporgas-koncentrationen kan kontamineringssrisikoen i de forskellige punkter vurderes.

Forud for simuleringerne blev der foretaget luftskifte- og referencemålinger til kortlægning af stueres ventilationsforhold. Luftskiftemålingen viste et udeluftskifte på hhv. 24.4 h⁻¹ og 25 h⁻¹ for TAF og LAF stuen. Referencemålingen blev foretaget for at undersøge, om luftmængderne var lige fordelt på stuens udsugningsarmaturer. Resultaterne viste en lidt ulige fordeling, men i en størrelsesorden der ikke forventes at påvirke de efterfølgende målinger.

Operationssimuleringer

Der blev udført to typer simuleringer; simulering A, hvor 6 personer opholdt sig på stuen, inkl. patienten, med dosering udelukkende fra kirurgen og simulering B med 3 personer på stuen, inkl. patienten, hvor der blev udført forsøg med forskellig placering af doseringspunktet. Simulering A havde til formål at simulere en så virkeligstiro operation som muligt og hvor kirurgen er kilde til smitte. Simulering B bidrog med supplerende målinger, hvor smittespredningen ønskedes undersøgt i situationer, hvor smittekilden havde andre placeringer. Operationssimuleringerne blev udført som dynamiske forsøg for at opnå de mest virkeligstnære resultater, da det forventes at luftens strømninger i høj grad påvirkes af personalets bevægelser på stuen. Forsøgene udførtes i første omgang under de ventilationsforhold, som gør sig gældende på Gentoftes Hospital i dag, og efterfølgende ved et udeluft-skifte reduceret med 50 %. Den recirkulerede luftmængde på LAF stuen ændredes ikke ved reduktion af udeluft-skiftet.

Forsøgsopstillingen var ikke helt den samme i simulering A og simulering B, da der var forskellig placering af instrumentbordene. Dog var instrumentbordene under alle simuleringer placeret inden forfeltet på LAF stuen.

Figur 3 illustrerer forsøgsopstillingen under type A simuleringerne, hvor to instrumentborde var placeret ved lejets fodende og fem personer opholdt sig på stuen ud over patienten. ’D' markerer placering af dosering og 1-6 markerer opsamling af sporgas.
Figur 3: Opstilling med opsamlingspunkter (1-6) og doseringspunkt (D) under OP-Vent operationssimulering. Tv: TAF, Th: LAF.

Figur 2 illustrerer forsøgsopstillingen under type B simuleringerne, hvor tre instrumentborde var placeret ved lejets fødeende, og to personer stod på hver side af lejet hvorpå patienten lå.
D1-D3 markerer placering af sporgas-dosering og 1-6 markerer punkter med opsamling, hvor sporgas-koncentrationen blev målt. Præcisering og begrundelse for placering af opsamling og dosering uddybes i forsøgsproceduren.

Procedure under simuleringerne
Under simuleringerne ventileredes stuerne som under en rigtig operation, dvs. på LAF stuen med recirkulering over LAF feltet, med en volumenstrøm på 7075 m³/h, svarende til 70 % af den samlede volumenstrøm. Patienten blev under samtlige forsøg simulert ved en dukke med en varmeafgivende effekt på ca. 90 W.

Sporgas blev i alle forsøg som udgangspunkt doseret fra kirurgen ved skulderhøjde for at simulere, at kirurgen er kilden til kontaminering. Opsamling blev foretaget i to udsugninger ved gulv, én i indblæsningen i loft, to på hver sit instrumentbord og én ved såret omkring patientens hofte. Opsamlingspunkterne på instrumentbordene blev placeret ud fra antagelsen, at bakterier der overføres gennem luften til dette område, kan blive overført via instrumenterne til såret, hvorfor kontaminering her kan være næsten lige så kritisk som ved såret. Placeringen af opsamlingspunkter i udsugningen benyttes som reference og til vurdering af sporgas-fordelingen på de to armaturer.
Ved B simuleringerne undersøgtes yderligere scenarier af smittekildens placering på begge stuer. Foruden dosering fra kirurgen blev der doseret fra instrumentbordet tættest på kirurgen (D2 Figur 2), for at undersøge spredningen af smitte ved en smittekilde lidt længere fra lejet. På LAF stuen blev doseringen yderligere flyttet ud fra LAF feltet (D3, Figur 2 Th.), for at undersøge i hvor høj grad den vertikale luftstrøm i feltet forhinder kontamineret luft fra den usterile zone omkring feltet, i at trænge ind i den sterile zone.

To personer opholdt sig på stuen under simuleringerne og agerede kirurg og assisterende kirurg på hver sin side af patienten. Bevægelsesmønsteret var tidligere observeret ved en indledende operationssimulering i forbindelse med OP-Vent projektet og forsøgte efterlignet. Bevægelserne var primært armbevægelser hen over lejet, omkring såret og bevægelser mellem instrumentborde og patient.

Simuleringer med samme forsøgsbetingelser blev gentaget flere gange for med større sikkerhed at kunne fastlægge kontamineringsrisikoen på de to stuer.

Måleudstyr

Sporgassen som blev benyttet under operationssimuleringerne var Freon 134a, da denne sporgas er hensigtsmæssig at benytte under forsøg, hvor der opholder sig personer i rummet. Gennem samtlige simuleringer stod måleudstyret og gasflaskan på gangen uden for operationsstuen, så eventuel lækkage ikke påvirkede resultaterne. Slangerne til dosering og opsamling var ført under en tætsluttende membran under døren ind til stuen og fæstet ved opsamlings- og doseringspunkterne.

Opstilling på operationsstuen

Placering af personale og udstyr kan ses i bilag 3, denne opstilling blev brugt ved hvert forsøg. Til forsøgene blev der brugt en patient-dukke leveret af DTU, dukken var konstrueret så den gav mulighed for at bevæge og håndtere underskinnede under en tætsluttende membran under døren ind til stuen og fæstet ved opsamlings- og doseringspunkterne.

Drejebog – for OP forsøg

Forsøgene varede præcis 50 minutter, som var inddelt i faste tidsintervaller og styret af narkosesygeplejersken med drejebog og stopur (se bilag 2).

Luftforureningen blev dokumenteret ved partikelmåling og kimtælling standardiseret opsætning (se bilag 4).
Mikrobiologisk kimtælling

Bakterieforekomsten i luften omkring operationsfeltet og instrumentbordet blev undersøgt med validerede metoder i form af både aktiv og passiv bestemmelse af antal bakteriekim (colony forming units, CFU). Hvert forsøg inkluderede således 4 eksponerede agar-plader (5 % blodagar-plader, Ø = 9 cm, Statens Serum Institut, København), hvis opsætning kan ses af bilag 4. Agar-pladerne blev håndteret i henhold til DS 2451-5:2014 om krav til måle- og observationsmetoder i perioperativ infektionsprofylakse.

En ueksponeret agar-plade for hver forsøgsdag gennemgik samme håndteringsmønster og tjente således som negativ kontrol til verificering af evt. forurenning i forbindelse med opbevaring, transport og håndtering af prøvematerialerne. Alle plader var afmærket med labels, beskrivende dato, forsøgsnummer, målemetode og placering. Aktiv kimsampling blev foretaget med en kalibreret Microbiological Active Sampler (MAS-100 NT, Merck KGaA, Darmstadt, Tyskland), som opfylder ISO norm 14698-1. De aktive samplinger blev udført i ti minutters intervaller med en flow rate på 100 liter/minut (± 2,5 %). På forsøgsdagens morgen blev der inden anden adgang til stuen foretaget ti minutters aktiv baseline-sampling midt i ventilationszonen mhp. at dokumentere luftens renhed på stuen inden forsøgene. Under selve forsøgene var samleren var placeret i ca. 30 cm fra operationsfeltet. Første sampling blev foretaget ved operationens indledning (0-10 minutter fra første snit med skalpellen). Den anden sampling blev foretaget i tidsintervallet fra 11-21 minutter, hvor der var højintens bevægelsesaktivitet i forbindelse med brug af oscillerede sav, roterende knoglerasp og hammer. De to agar-plader fra de aktive samplinger blev efter ti minutters eksponering opbevaret under låg og transporteret i køleboks til Klinisk Mikrobiologisk Afdeling (KMA) på Odense Universitetshospital (OUH).

Passiv kimsampling blev udført ved at lade to agar-plader være eksponeret for sedimentation under hele forsøgsperioden (50 minutter). Den ene agar-plade var placeret på afdækningen umiddelbart ved siden af operationsfeltet, mens den anden plade var placeret på instrumentbordet i udkanten af ventilationszonen. Disse agar-plader blev efter endt eksponering ligeledes opbevaret under låg og håndteret efter samme metode som pladerne fra aktiv-samleren.

På KMA i Odense foregik inkubationen ved 35 °C i ca. 2 døgn jf. Vejledende retningslinjer for hygiejnisk luftkvalitet på operationsstuer (SSI 1997). Herefter blev kim-tallet bestemt ved tælling af antal bakteriekolonier (CFU) på hver agarplade og indtastet i et elektronisk resultatsskema (Excel, Microsoft). Bakteriearterne blev bestemt ved rutinemæssig massespektrometri (Matrix-assisted laser desorption-ionization, Bruker Biotyper). De mikrobiologiske data kan således beskrives ved både:

- Antal CFU/plade (aktiv hhv. passiv måling)
- Antal CFU pr. m³ luftgennemstrømning ved aktiv sampling
- Antal CFU pr. m² agar-plade pr. time ved passiv sedimentation (agar-pladeareal: πr² = 6,36E-03 m²)
- Antal forskellige bakteriearter (aktiv hhv. passiv måling)
Partikelmåling
Luftens partikelindhold blev undersøgt med en Portable Airborne Particle Counter (MET one, model 3413, Beckman Coulter, CA, USA), som opfylder kravene iht. ISO 21501-4. Apparatet måler vha. laser-teknologi antal luftbårne partikler ved standard størrelserne 0.3, 0.5, 1.0, 3.0, 5.0 og 10.0 mikrometer (μm). Partiklerne er i vores forsøgsopstilling blev indsamlet ved aktiv indsugning (flow rate 28,3 liter/minut ±5 %) gennem en tragt-probe i umiddelbar nærhed af operationsfeltet, og ført via et ca. 2 meter langt plastikrør til laser-partikeltælleren i apparatet. Partikelsamlinger blev foretaget i tre forskellige situationer:

- **Morgenmåling** (en 5-minutters måling pr. forsøgsdag) før anden adgang til stuen mhp. at dokumentere luftens renhed på stuen inden forsøgene.
- **Før operationsstart** (en 5-minutters baseline-måling pr. forsøg, 3 målinger pr. forsøgsdag) efter fuldstændig klargøring af forsøgsopstillingen, alle på stuen forholder sig i ro under målingen.
- **Under operation** (en kontinuierlig 50-minutters måling pr. forsøg, 3 målinger pr. forsøgsdag) mhp. at dokumentere den samlede partikel-fremløb i operationsfeltet under den simulerede hofte-proteseremobilisering.

Det totale indsamplingsvolumen under forsøgene var (50 minutter * 28,3 liter/minut = 1,42 m³), mens partikelmålingen i før-målingerne er baseret på 0,142 m³ luftindsamling. Partikelmålingerne udgør således på det totale antal partikler, i den indsamlede luftmængde i løbet af måleperioden. Apparatet giver data-output som papirprint med dokumentation af hhv. dato, tidspunkt, flow rate, sample volume, sample time og antal målte partikler for størrelserne 0.3, 0.5, 1.0, 3.0, 5.0 og 10.0 μm. Data er efterfølgende indtastet i et elektronisk resultatskema (Excel, Microsoft).

Flere videnskabelige studier, der anvender tilsvarende partikelmålinger til at beskrive luftforurening på ventilerede operationssstuer, grupperer partikelstørrelserne som hhv. små partikler (<0.5-10.0 μm) og store partikler (≥5.0 μm), hvor de store partikelstørrelser er fundet at korrelere med mikrobiologisk kimtælling (Seal and Clark 1990, Friberg, Friberg et al. 1999, Scaltriti, Cencetti et al. 2007, Nilsson, Lundholm et al. 2010, Stocks, Self et al. 2010, Cristina, Spagnolo et al. 2012). Vi anvender samme inddeling og beskriver således partikldata ved antal partikler pr. m³ rumluft

- Udspecifiseret ved størrelserne 0.3, 0.5, 1.0, 3.0, 5.0 og 10.0 μm, samt
- Grupperet i hhv. samlet antal (0.5-10.0 μm) og store partikler (≥5 μm)

Måling af energi
Måling af elforbruget blev udført ved montage af et stk. Bender PEM735 Power Analyser, der overholder EN 61000-4-30 og EN 50160 med en præcision på 0,2 S i henhold til IEC 62053-22.

Måleren blev monteret på forsynings- og kwh visning blev noteret ved start og slut af hvert enkelt forsøg.

Måling af energiforbrug til køle/varmeflader i ventilationssystemet blev udført via Gentofte Hospitals CTS system. Alle relevante setpunkter og ventilstillinge blev ligeledes logget fra start til slut af hvert forsøg.

Statistisk behandling af data
Statistiske beregninger er angivet som middelværdi og spredning (± standard deviation, SD), samt i relevante situationer range (min-max).
RESULTATER

I projektet er der gennemført i alt 32 simulerede hofteprotese-operationer med vekslende ventilationsforhold (LAF og TAF) hhv. friskluftmængde (100 % og 50 %). Med andre ord er de fire forsøgsopstilinger gennemført med 8 gentagelser. I resultat opgørelsen vil disse fire variable blive benævnt hhv. LAF 100 %, TAF100 %, LAF 50 % og TAF 50 %.

Mikrobiologisk kimtælling

Kimtallet beskriver antal levedygtige bakterier (CFU) efter to døgnsoinkubation af agar-pladerne, som har været eksponeret i fire forskellige samlinger pr. simuleret operation (se bilag 3):
- Aktiv luftsampling, hvor der blev indsamlet 1,0 m³ luft i to 10-minutters intervaller ved forsøgsstart (0-10 min) hhv. undervejs (11-21 min). Data angives som antal CFU/m³.
- Passiv sedimentation, hvor åbne agar-plader under hele det 50 minutter operationsforløb opsamlede luftens nedfaldbakterier i to positioner, i operationsfeltet hhv. på instrumentbordet. Data angives som CFU/m²/time.

Hver forsøgsdag startede endvidere med en aktiv morgenmåling (10 min), ligesom en ledsagende, uexponeret plade udgjorde negativ kontrol.

Tabel 1 viser det gennemsnitlige antal CFU pr. simuleret operation ved hhv. aktiv og passiv måling, samt resultatet af morgensampling og negativ kontrol under de fire forsøgsopstilinger. Bemærk at aktiv sampling i 10 minutter gennemsnitligt gav anledning til 5-10 gange så mange CFU/operation, som passiv sampling i 50 minutter. De uexponerede kontrolplader gav negative dyrkningsresultater på samtlige forsøgsdage, hvilket indikerer at blodagar-pladerne var sterile forud for hvert forsøg.

Range angiver intervallet af måleværdier fra min-max, og det fremgår heraf at samtlige kimtællinger på LAF-stuen og 7/8 målinger på TAF-stuen ligger under grænseværdien for en ultra-ren operationsstue (10 CFU/m³). Middelværdien af CFU/m³ i de aktive luftsamlinger er ca. 15 gange højere ved TAF ventilation med 100 % friskluftmængde end ved tilsvarende LAF ventilation, hvilket sammenholdt med spredningen viser en signifikant forskel.

<table>
<thead>
<tr>
<th>Gennemsnit antal CFU/operation (n=8)</th>
<th>Eksponeringstid</th>
<th>LAF 100%</th>
<th>TAF 100%</th>
<th>LAF 50%</th>
<th>TAF 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forsøgsstart (0-10 min), aktiv</td>
<td>10 min</td>
<td>0,3</td>
<td>6,6</td>
<td>0,1</td>
<td>9,4</td>
</tr>
<tr>
<td>Midtvejs (11-21 min), aktiv</td>
<td>10 min</td>
<td>0,6</td>
<td>8,6</td>
<td>0,6</td>
<td>11,3</td>
</tr>
<tr>
<td>Operationsfelt, passiv</td>
<td>50 min</td>
<td>0,0</td>
<td>0,9</td>
<td>0,0</td>
<td>2,4</td>
</tr>
<tr>
<td>Instrumentbord, passiv</td>
<td>50 min</td>
<td>0,1</td>
<td>0,6</td>
<td>0,4</td>
<td>1,6</td>
</tr>
<tr>
<td>Morgensampling, aktiv</td>
<td>10 min</td>
<td>0,0</td>
<td>6,8</td>
<td>1,7</td>
<td>13,0</td>
</tr>
<tr>
<td>Negative kontrolplader</td>
<td>-</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Tabel 1: Gennemsnitlige antal bakterier bestemt ved aktiv hhv. passiv sampling under fire forskellige forsøgsopstilinger
Mikrobiologisk sampling

<table>
<thead>
<tr>
<th></th>
<th>LAF 100%</th>
<th>TAF 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktiv sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFU/m³</td>
<td>0,4 (±0,8)</td>
<td>7,6 (±2,0)</td>
</tr>
<tr>
<td>Passiv, hoofen</td>
<td>0 (-)</td>
<td>5-11</td>
</tr>
<tr>
<td>CFU/m²/hr</td>
<td>0-0</td>
<td>0-566</td>
</tr>
<tr>
<td>Range (min-max)</td>
<td>0-2</td>
<td>10-15</td>
</tr>
</tbody>
</table>

Tabel 2: Gennemsnitlige antal bakterier pr. m³ rumluft (gennemsnit af de 2 aktive samplinger) og m² agar-plade/eksponeringstid (passiv sampling ved hoofen) ved LAF hhv. TAF. Der ses signifikant højere kim-tal ved TAF ift. LAF ventilation i begge sammenligninger.

Data i tabel 3 svarer til gennemsnittet af kimtællingerne i de to aktive luftsamplinger, angivet som antal CFU pr. m³. I alle forsøgene på LAF-stuen var det målte kimtal under grænseværdien på 10 CFU/m³ for ultra-ren luft uanset friskluftmængdegraden. Ligeledes lå kimtallet på TAF-stuen under grænseværdien i flertallet af forsøgene med fuldt (7/8) hhv. reduceret (5/8) friskluftmængde. Bedømt ved aktiv sampling ses ikke signifikant ændrede kimtællinger ved reduceret ift. fuld friskluftmængde på hverken LAF- eller TAF-stuen. Det samme gælder resultater af passiv sampling (data ikke vist).

Bemærk at der var bakterievækst på alle agar-pladerne efter aktiv luftsampling på TAF-stuen uanset graden af friskluftmængde.

<table>
<thead>
<tr>
<th>Aktiv sampling, CFU/m³</th>
<th>LAF 100%</th>
<th>LAF 50%</th>
<th>TAF 100%</th>
<th>TAF 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middelværdi (±st.dev.)</td>
<td>0,4 (±0,8)</td>
<td>0,4 (±0,4)</td>
<td>7,6 (±2,0)</td>
<td>10,3 (±8,1)</td>
</tr>
<tr>
<td>Range (min-max)</td>
<td>0-2</td>
<td>0-1</td>
<td>5-11</td>
<td>3-22</td>
</tr>
</tbody>
</table>

Tabel 3: Gennemsnitlige antal CFU/m³ rumluft (gennemsnit af de 2 aktive samplinger) ved fuldt ift. reduceret friskluftmængde med hhv. LAF og TAF. Grænseværdien for ultra-ren luft er <10 CFU/m³.

Figur 1a+b herunder gengiver det gennemsnitlige antal bakterier målt ved aktiv (CFU/m³) hhv. passiv (CFU/m²/hr) metode og visualiserer således data fra tabel 2 og 3.

Figur 2: Antal CFU af forskellige bakteriearter ved aktiv sampling under forskellige ventilationsforhold (n=8).

Partikelmåling

Luftens samlede partikelindhold blev målt med laserteknologi, som detekterer antal luftbære partikler ved standard størrelserne 0.3, 0.5, 1.0, 3.0, 5.0 og 10.0 μm. Partikelsamplings blev foretaget som morgenmåling (5 min måling, tom stue), før-operationsstart (5 min; 0,142 m³) og under operation (50 min; 1,42 m³). På grænseværdierne for renrumsventilation er det kutyme at gruppere partikelstørrelserne i hhv. ≥ 0.5 μm og ≥ 5.0 μm (International-Standards-Organization 1999). Vi anvender samme inddeling og beskriver således partikeldata ved antal partikler pr. m³ rumluft:

- Udspecifiseret ved størrelserne 0.3, 0.5, 1.0, 3.0, 5.0 og 10.0 μm, samt
- Grupperet i hhv. store partikler (≥ 5 μm) og summen af alle partikelstørrelser (0.5-10.0 μm)

Resultatet af hver enkelt morgenmåling er dokumenteret i tabellen herunder, hvoraf det fremgår, at der i løbet af de 5 minutters måleperiode ikke blev målt partikler i spektret 0.5-10,0 μm på den tomme LAF-stue. Derimod lå morgenmålingerne på TAF-stuen i mange tilfælde væsentligt over grænseværdierne på 29 og 3.520 partikler/m³ for hhv. store partikler (≥5 μm) og alle partikelstørrelser (≥0.5 μm). Målinger, der overskrider grænseværdierne for renrumsventilation på inaktiv (tom) operationsstue, er markeret med rødt. Bemærk at de store og potentielt kimbærende partikler måles i antal, der gennemsnitligt ligger 10 gange over grænseværdien.

<table>
<thead>
<tr>
<th>Morgenmåling</th>
<th>Store partikler (5-10 μm)</th>
<th>Alle størrelser (0.5-10 μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAF 100 %</td>
<td>TAF 100 %</td>
</tr>
<tr>
<td>Forsøgsdag 1</td>
<td>0</td>
<td>556</td>
</tr>
<tr>
<td>Forsøgsdag 2</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>Forsøgsdag 3</td>
<td>0</td>
<td>282</td>
</tr>
<tr>
<td>Gennemsnit</td>
<td>0</td>
<td>312</td>
</tr>
</tbody>
</table>

Tabel 4: Antal partikler/m³ i rumluften på den tomme operationstue om morgenen. Med rødt angives overskridelse af grænseværdierne på 29 og 3.520 partikler/m³ for hhv. store partikler (≥5 μm) og alle partikelstørrelser (≥0.5 μm).
Nedenstående figur viser den totale distribution af det gennemsnitlige partikelantal i operationsmålingerne udspecifikeret ved de respektive størrelser og ventilationstyper. Visuelt bemærkes god korrelation mellem kurverne for forsøg under LAF hhv. TAF ventilation med forskellige friskluftmængde.

Figur 3: Gennemsnitlige antal partikler/m³ rumluft under operationsforsøg med forskellige ventilationsforhold

Det primære outcome i partikelmålingerne er sammenligningen af de grupperede partikelstørrelser ved LAF og TAF ventilation med fuldt (100 %) friskluftmængde under de simulerede operationer, mens de sekundære outcomes er sammenligningen mellem resultaterne af hhv. LAF 100% vs. 50% og TAF 100% vs. 50%. Tabel 6 viser middelværdi og standard deviation af hhv. store partikler (5-10 µm) og det samlede antal partikler (0.5-10 µm) ved forskellige ventilationstyper relateret til både primære og sekundære outcomes.

Grænseværdier for ultra-ren luft på operationsstuer med aktivitet er på 2.900 og 352.000 partikler/m³ for hhv. store partikler (≥5 µm) og alle partikelstørrelser (≥0.5 µm). Målingerne i LAF-forsøgene overholder begge disse grænseværdier, mens andelen af store (og potentielt kimberende partikler) på TAF-stuen overstiger grænseværdien med mere end 100 %.

Gennemsnitligt blev der på TAF-stuen under de simulerede operationer målt ca. fem gange så mange partikler i begge kategorier som på LAF-stuen ved både fuldt og reduceret friskluftmængde. For kategorien ‘Alle størrelser’ er middelværdien af partikelantal/m³ ved TAF 100 % signifikant højere end ved LAF 100 %, mens der ikke ses signifikant forskel inden for de to ventilationskategorier ved hhv. fuld og reduceret friskluftmængde. Værdierne for primær outcome er visualiseret med søjlediagram på logaritmisk værdiakse i nedenstående figur 5.

<table>
<thead>
<tr>
<th>Partikler/m³ (middelværdi ±SD)</th>
<th>LAF 100 %</th>
<th>TAF 100 %</th>
<th>LAF 50 %</th>
<th>TAF 50 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store partikler (5-10 µm)</td>
<td>1.581 (+2.841)</td>
<td>7.923 (+5.151)</td>
<td>1.018 (+1.084)</td>
<td>6.157 (+2.439)</td>
</tr>
<tr>
<td>Alle størrelser (0.5-10 µm)</td>
<td>29.210 (+27.825)*</td>
<td>156.570 (+94.815)*</td>
<td>30.162 (+29.731)</td>
<td>138.382 (+53.990)</td>
</tr>
</tbody>
</table>

Tabel 5: Middelværdi og standard deviation (SD) af hhv. store partikler/m³ og alle partikelstørrelser/m³. *Signifikant højere middelværdi af partikler i kategorien ‘Alle størrelser’ ved TAF 100 % sammenlignet med LAF 100 %.
Energi

Angående elforbruget til LAF stuerne var det muligt at reducere elforbruget med 41 % uden forøgelse af kim tallet, derudover skal det tilføjes at elforbrugsniveaet ved 50 % friskluftmængde på LAF stuen var under det elforbrug, der blev anvendt ved TAF stuerne og 100 % friskluftluftmængde.

Dog skal det pointeres at alle forsøgende blev udført i november, december og januar måned, hvor varme- og kølebehovet var yderst minimalt. Under forsøgende blev der foretaget logninger på såvel varme som kølerug, men der var ikke forbrug.

Energiforbruget efter forsøgsrækken er herunder vist for hver forsøgsopstilling.

<table>
<thead>
<tr>
<th>TAF 100 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato</td>
</tr>
<tr>
<td>07-11-2014</td>
</tr>
<tr>
<td>07-11-2014</td>
</tr>
<tr>
<td>07-11-2014</td>
</tr>
<tr>
<td>05-12-2014</td>
</tr>
<tr>
<td>05-12-2014</td>
</tr>
<tr>
<td>05-12-2014</td>
</tr>
<tr>
<td>16-01-2015</td>
</tr>
<tr>
<td>23-01-2015</td>
</tr>
<tr>
<td>Gennemsnit</td>
</tr>
</tbody>
</table>

Forbruget på TAF stuen ved 100 % friskluftmængde ligger stabilt med et gennemsnit på 1,58 kWh pr forsøg.

<table>
<thead>
<tr>
<th>TAF 50 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato</td>
</tr>
<tr>
<td>21-11-2014</td>
</tr>
<tr>
<td>21-11-2014</td>
</tr>
<tr>
<td>21-11-2014</td>
</tr>
<tr>
<td>09-01-2015</td>
</tr>
<tr>
<td>09-01-2015</td>
</tr>
<tr>
<td>09-01-2015</td>
</tr>
<tr>
<td>23-01-2015</td>
</tr>
<tr>
<td>23-01-2015</td>
</tr>
<tr>
<td>Gennemsnit</td>
</tr>
</tbody>
</table>

Når friskluftmængden sænkes til 50 % falder energiforbruget med 51 % i gennemsnit. Dette stemmer overens med vores forventninger, da energiforbruget ved TAF anlægget er direkte proportionalt med den indblæste friskluftmængde.
Forbruget på LAF stuen ved 100 % friskluftmængde ligger stabilt med et gennemsnit på 1,87 kWh pr. forsøg.

Når friskluftmængden sænkes til 50 % falder energiforbruget med 40,5 % i gennemsnit. Dette skyldes at energiforbruget ved LAF anlægget er en funktion af den indblæste friskluftmængde og recirkulationen, som giver den laminære luftstrøm.

Recirkulationen kan ikke begrænses, da dette ville betyde at anlægget ophørte med at fungere, som et LAF anlæg. Denne recirkulation er den primære årsag til at TAF anlægget bruger mindre energi end LAF anlægget.

Sporgasser

Kontamineringssrisikoen ved såret og de to instrumentborde på TAF og LAF stuen sammenholdes i Figur 4 for fuldt og reduceret luftskifte. De målte koncentrationer er korrigerede efter den doserede mængde sporgas under hver simulering, så koncentrationerne kan sammenholdes direkte. Koncentrationerne målt under simuleringer med reduceret udeluftskifte er korrigerede ved at halvere koncentrationerne, da udeluft-skiftet tilsvarende er halveret.
Af Figur 4 ses det, at gennemsnittet af koncentrationerne målt i såret ved operationer på TAF stuen er dobbelt så høje som på LAF stuen. Derudover er summen af koncentrationerne ved såret og de to borde 48 % højere på TAF end på LAF stuen. Dette indikerer, at kontamineringsrisikoen er en halv gang højere på operationstuen med TAF i forhold til LAF. Resultaterne indikerer således, at de vertikale luftstrømninger i LAF feltet kan presse bakterier ned langs kirurgen og mod udsugningsarmaturerne uden for feltet. Resultaterne på TAF stuen antyder, at de turbulente strømninger skaber stor lokal opblanding omkring kirurgen, hvorved høje koncentrationer måles omkring såret.

Koncentrationerne ved instrumentbordene viser gennemsnitligt 18 % højere kontamineringsrisiko på TAF i forhold til LAF stuen. På LAF stuen kan bakterier ved instrumentbordene skyldes horisontale strømninger inden for feltet eller indtrængning af kontamineret luft fra den usterile zone. Det vurderes mest sandsynligt, at kontamineringsrisikoen ved bords skyldes utilstrækkelig zoneopdeling af luften i yderkanten af LAF feltet, muligvis forårsaget af, at udsugningen til recirkulering er placeret i loftet lige ved siden af LAF feltets indblæsning. Dette er i overensstemmelse med, at de højeste koncentrationer blev målt ved instrumentbordet placeret i yderkanten af feltet. Denne risiko kan muligvis nedbringes ved at flytte bordene længere ind i feltet.
Figur 5 viser, at ved reduktion af udeluftskiftet med 50 % stiger koncentrationerne i de kritiske områder (såret og instrumentbordene) på TAF stuen til over det dobbelte i forhold til fuldt luftskifte, mens koncentrationerne på LAF samtidig reduceres med 75 % ved instrumentbordene og forsvinder helt i såret. Dog skal det tages med i betragtning, at den totale indblæste volumenstrøm er reduceret med 50 % på TAF og kun 15 % på LAF grundet recirkulering.

Målingerne på TAF stuen indikerer en lavere grad af opblanding ved reduceret luftskifte, da koncentrationerne ved hvert enkelt målepunkt er mere varierende, og forholdet mellem koncentrationerne omkring såret og instrumentbordene er større end ved fuldt luftskifte.

At en reduktion af luftskiftet på LAF stuen medfører, at kontaminéringsrisikoen samlet falder med 84 % var overraskende. Det var forventet, at en reduktion af luftmængderne ville medføre mere dominerende horisontale luftstrømninger og indtrængning af kontamineret luft til LAF feltet. Et muligt strømningsscenario for denne udvikling kan være, at en reduktion af volumenstrømmen skaber lavere grad af turbulens i områderne uden for LAF feltet, hvorved en mindre mængde kontamineret luft tilbageføres til operationsfeltet. Dette underbygges af resultaterne fra type B simuleringerne med dosering uden for LAF feltet (Figur 6), hvor koncentrationerne i feltet faldt med 75 % ved en reduktion af luftskiftet. At kontaminéringsrisikoen i såret falder, forventes derudover at skyldes, at reduktion af luftskiftet medfører lavere lufthastigheder, hvorved luftens inerti i LAF feltet ændres og mindre sporgas føres direkte til såret. Denne reduktion kan derfor med fordel foretages på LAF stuen ud fra et strømningsmæssigt perspektiv. Det vides dog ikke, om antallet af luftbårne partikler og bakterier generelt vil stige ved reduktion af luftskiftet.

På TAF stuen indikerer målingerne derimod, at en reduktion af udeluftskiftet med 50 % øger kontaminéringsrisikoen markant. Forskellen på de to stuer vurderes at skyldes differencen mellem reduktionen af den totale volumenstrøm, som på TAF stuen er over tre gange større end på LAF. Var simuleringerne på LAF blevet udført med en tilsvarende reduktion i den totale volumenstrøm som på TAF, forventes strømningsbilledet at ændres og kontaminéringsrisikoen at stige. Denne forskel skal derfor tages i betragtning ved en vurdering af kontaminéringsrisikoen på de to stuer.

Figur 6: Kontaminéringsrisiko på LAF stuen under simulering B ved dosering uden for LAF feltet.
DISKUSSION

Formålet med projektet var at udvikle og demonstrere et nyt energieffektivt ventilationsprincip uden at gå på kompromis med rumluftens renhed på operationsstuen. Konkret ville vi afprøve nye styringsstrategier for ventilationssystemer i en række simulerede hoftealloplastik operationer. Under mock-up studiet blev ventilationssystemerne LAf og TAF sammenlignet i relation til rumluftens renhed målt ved bakterielle kimtal, og antal partikler, samt sporgas-simulering.

Vi fandt generelt en højere grad af luftrenhed på operationsstuen med LAf- ift. TAF-ventilation. De mikrobiologiske resultater af de aktive luftsamplings viste at grænseværdierne (jf. DS 2451-5) for kimtal i ultra-ren luft blev overholdt på LAF-stuen ved både fuldt (100 %) og reduceret (50 %) friskluftmængde. På TAF-stuen var gennemsnittet af CFU/m³ 15-20 gange højere end tilsvarende målinger på LAF-stuen og overskriver dermed grænseværdien.

Statistisk sammenligning af kim-tællingerne fra de simulerede operationer under forskellige ventilationsformer viste signifikant lavere bakteriekoncentration i både luft- og sedimentationssampling på LAF-stuen ift. TAF-stuen ved fuldt friskluftmængde. Ved sammenligning af kim-værdierne ifm. luftskiftereduktion (50-100 %) under hhv. LAF og TAF ventilation kunne der dog ikke detekteres signifikant forskel i kimværdier.

Sampling af partikler i forskellige størrelser blev sammenlignet med grænseværdierne for ren-rumsventilation, som er formuleret i ISO 14644-1 og anbefales af FSTA. På LAF-stuen blev partikel-grænseværdierne overholdt i både morgenmålingerne (tom stue) og operationsmålingerne (aktivitet). Antallet af store og potentielt kimbærende partikler (>=5 µm) målt på TAF-stuen om morgenen hhv. under operation lå gennemsnitligt ca. 10 gange over grænseværdien for ‘tom stue’ og 100 % over de vejledende retningslinjer for operationsmålinger. Sammenligning af partikeldata fra de to operationsstuer viste ca. fem gange højere middelværdi for TAF sammenlignet med LAF ved både fuldt og reduceret friskluftmængde. Denne forskel var endvidere signifikant for kategorien ’alle størrelser’ (>=0.5 µm). Der var ikke signifikant forskel i partikelmålingerne mellem fuld og reduceret friskluftmængde inden for de to ventilationskategorier.

Kimtal og partikelmålinger på operationsstuer under implantatkirurgi er i princippet surrogatmål for udvikling af operationsrelaterede infektioner. Således er den kliniske relevans af de signifikante forskelle, vi har påvist mellem luftkvaliteten på hhv. LAf- og TAF-ventilerede operationsstuer, ukendt. Indførelsen af ren-rumsprincipper og grænseværdier for luftbårne bakterier og partikler har dog til hensigt at forbedre infektionsforebyggelsen, hvorför de markante grænseværdioverskridelser på TAF-stuen ikke er til at overse. Fra det sundhedsøkonomiske perspektiv er det endvidere interessant at en 50 % reduktion af friskluftmængden på LAF-stuen ikke resulterede i øgede kimtal og partikelmålinger.

Der blev i dette mock-up studie foretaget simulert hofteprotesekirurgi i en standardiseret opsætning på to moderne, ortopædkirurgiske operationsstuer, som bortset fra ventilationssystemerne var identisk dimensioneret. Der er i litteraturen ingen tilsvarende kontrollerede simulationsstudier, som sammenligner betydningen af LAf vs. TAF ift. at opretholde et ulært operationsmiljø.

Ud fra sporgas-målingerne, som viste en kontamineringsrisiko i de kritiske områder på TAF stuen, som var 48 % højere end på LAF, anbefales det at infektionsfølsomme operationer udføres på stuer med LAF. Det vurderes at udeluft-skiftet på LAF stuen med fordel kan reducieres, da dette ikke medfører en højere kontamineringsrisiko i de kritiske områder på operationsstuen. Samme reduktion kan ikke foretages på TAF da kontaminéringsrisikoen herved stiger betragteligt. Disse anbefalinger baseres på et lille antal sporgasmålinger og yderligere gentagelser bør udføres for med større sikkerhed at bekræfte de observerede tendenser. Dog antages det, at luftens strømnings under samme ventilationsforhold vil være ens, og forskelligheder i resultater derfor skyldes forskel i bevægelsesmønstret for personalet på stuen under operation.
Konklusion
På LAF stuer var alle målinger under anbefalede værdier uafhængig af om det blev kørt med 100% eller 50 % friskluftmængde, og uden øgning af CFU tal ved 50 % reduktion i friskluftmængden. På TAF stuer var der under et væsentligt antal (4/16) operationer kritisk høje kimtal over anbefalet niveau.
Elforbruget ved 50% friskluftmængde på LAF stuerne var under det elforbrug der blev anvendt ved 100% friskluftmængde på TAF-stuerne.

Perspektivering.
Infektioner har store konsekvenser for den enkelte patient og er ganske dyre for samfundet. Derfor, og set i lyset af at der i fremtiden vil blive opereret flere ældre og kronisk syge patienter, anbefaler vi at man nøje overvejer fortsat at anlægge sikre operationsstuer, frem for en mere risikabel løsning, der på sigt kan give flere infektioner.

De nye supersygehuse
De udførte forsøg viste at der er store besparelses muligheder ved korrekt dimensionering og betjening af ventilationsanlæg og at en rationel anvendelse af ventilationsanlæg på operationsstuer bør indgå i planlægningen af de nye Sygehuse.
TAK TIL

Klinisk Mikrobiologisk Afdeling, Odense Universitetshospital: Elisa Knudsen (forskningsbioanalytiker) og Michael Kemp (professor, overlæge, dr.med.).

Gentofte Hospital:
Ledende Overlæge Claus Munk Jensen
Operationssygeplejerske Helle Skovgaard
Afdelingssygeplejerske Pia Lynge Madsen
Service tekniker Brian Kristensen

MicLev AB:
Product Specialist Tor Hjelmér
Studerende Linn Nielsen
Studerende Katrine Rosenbeck
REFERENCES

Hansen, D., C. Krabs, D. Benner, A. Brauksiiepe and W. Popp (2005). "Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion." Int J Hyg Environ Health 208(6): 455-460.

Bilag 1:

Der blev gennemført 3 forsøg pr. forsøgsdag efter nedenstående skemaer, hvilket sikrede et jævnt mønster i ventilationsforholdene vekslende mellem hhv. LAF og TAF ventilation, samt mellem 100 % og 50 % friskluftmængde i forsøgene.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Forsøgsnummer</th>
<th>Ventilationstype</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014.10.31</td>
<td>1-3</td>
<td>LAF 100 %</td>
</tr>
<tr>
<td>2014.11.07</td>
<td>4-6</td>
<td>TAF 100 %</td>
</tr>
<tr>
<td>2014.11.14</td>
<td>7-9</td>
<td>LAF 50 %</td>
</tr>
<tr>
<td>2014.11.21</td>
<td>10-12</td>
<td>TAF 50 %</td>
</tr>
<tr>
<td>2014.11.28</td>
<td>13-15</td>
<td>LAF 100 %</td>
</tr>
<tr>
<td>2014.12.05</td>
<td>16-18</td>
<td>TAF 100 %</td>
</tr>
<tr>
<td>2014.12.19</td>
<td>19-21</td>
<td>LAF 50 %</td>
</tr>
<tr>
<td>2015.01.09</td>
<td>22-24</td>
<td>TAF 50 %</td>
</tr>
<tr>
<td>2015.01.16</td>
<td>25-27</td>
<td>LAF 100% / TAF 100%</td>
</tr>
<tr>
<td>2015.01.23</td>
<td>28-30</td>
<td>TAF 100% / TAF 50%</td>
</tr>
<tr>
<td>2015.01.30</td>
<td>31-32</td>
<td>LAF 50 %</td>
</tr>
</tbody>
</table>

Oversigt over ventilationsforhold under de 32 forsøg

<table>
<thead>
<tr>
<th>Tidspunkt</th>
<th>Aktivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:00</td>
<td>Opstilling og kontrol af måleudstyr</td>
</tr>
<tr>
<td></td>
<td>Morgenmåling med aktiv luftsampler og partikelmåler 5min. (tom stue)</td>
</tr>
<tr>
<td>08:00</td>
<td>Klargøring af operationsopsætning</td>
</tr>
<tr>
<td>08:30</td>
<td>1. forsøg</td>
</tr>
<tr>
<td>10:00</td>
<td>Pause/Rengøring af operationsstuen</td>
</tr>
<tr>
<td>10:30</td>
<td>2. forsøg</td>
</tr>
<tr>
<td>12:00</td>
<td>Pause/Rengøring af operationsstuen</td>
</tr>
<tr>
<td>13:00</td>
<td>3. forsøg</td>
</tr>
<tr>
<td>14:30</td>
<td>Afslutning og rengøring af operationsstuen</td>
</tr>
</tbody>
</table>

Oversigt over forløbet af en forsøgsdag
Bilag 2:

Tidsplan for operationsproceduren:

00-08 min: Hudincision, bløddelsdissektion, sug og hæmostase, holdesutur, kapsulotomi, luksation af hofteledet
09-11 min: Lårbenschaljen afsaves og fjernes
12-22 min: Ledskål fræses, ledkapsel dissekeres, osteofytter afmejsles, acetabulum-komponent udmåles
 - Gulvsygeplejerske træder ind i LAF-feltet med acetabulum-komponent og liner
 - Kirurgen skifter handsker
 - Acetabulum-komponenten indsættes, vinklerne udmåles, liner indbankes med hammer
23-33 min: Lårbenet åbnes og raspes i marvkanalen, prøvekomponenter testes med indbunker
 - Hofteleddet reponeres, ROM-testes og lukseres igen
 - Gulvsygeplejerske træder ind i LAF-feltet med femur-komponent
 - Kirurgen skifter handsker
34-37 min: Femurkomponenten indsættes med indbunker, prøve-hoved monteres med indbunker
 - Hofteleddet reponeres, ROM-testes og lukseres igen
 - Gulvsygeplejerske træder ind i LAF-feltet med caput-komponent
38-50 min: Lagvis lukning med sutur i muskulationen, fascien og underhuden, samt klips i huden
 - Barrierefilmen fjernes, huden afvaskes og tørres
 - Gulvsygeplejerske træder ind i LAF-feltet med plaster, som påsættes
Bilag 3:
Bilag 4:
Hvert forsøg inkluderede 4 eksponerede agar-plader, som var placeret jf. nedenstående skitse med to aktive samplingssteder indenfor en meter af operationsfeltet, samt to passive opsamlingssteder på hhv. afdækningen ved siden af operationsfeltet og på instrumentbordet i udkanten af ventilationszonen.
Diagram af en kirurgisk følge med indikationer til \(\text{TAF} \) (Tjenestefølge).

- **1.** Kirurg
- **2.** Operationssygeplejerske
- **3.** Assistent
- **4.** Usteril sygeplejerske
- **5.** Betjener parikelmåler = Anæstesi

Symboler:
- **●** Airsampler
- **●** Agarplade
- **P1** Parikelmåler
- **P2** Parikel og kimmåler
- **全套** Partikelopsamler
- **камера** Kamera
Bilag 5:

| Nummer | Beskrivelse | Beskrivelse
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operationsstue - anvendelse (fx kan operationsstuen kun anvendes til specielle operationer eller alle typer.) – billeder af operationsstue før forsøg</td>
<td>Tekst: Endoskopi + Akut Billeder nr: DSCN0566, DSCN0567, DSCN0568, DSCN0569, DSCN0570, DSCN0572, DSCN0573, DSCN0574</td>
</tr>
<tr>
<td>2</td>
<td>Beskriv fysisk placering af operationsstuen (fx Etagenr. osv.)</td>
<td>Bygning XB2 1. sal cob20 Mod nord øst</td>
</tr>
<tr>
<td>3</td>
<td>Påfør rummets fysiske dimension (fx H=1900mm, B=1000mm, D=600mm)</td>
<td>44 m² Lofthøjde 2,7mtr. 119 m³</td>
</tr>
<tr>
<td>4</td>
<td>Påfør hvor mange adgangs muligheder, som er til operationsstuen (lukker dørene indad eller udad)</td>
<td>1 stk.</td>
</tr>
<tr>
<td>5</td>
<td>Er der sluse for at komme ind på operationsstuen?</td>
<td>Nej, dog er der kun adgang for personale på gangen ind til stuen</td>
</tr>
<tr>
<td>6</td>
<td>Tag foto af operationsstue med lukkede døre – påfør foto nr.</td>
<td>DSCN0558</td>
</tr>
<tr>
<td>7</td>
<td>Er der mulighed for at skabe overtryk i operationsrummet? (Måling i Pa)</td>
<td>Ja, setpunktet er 15 pa</td>
</tr>
<tr>
<td>8</td>
<td>Er der mulighed for dagslys indfald? (foto nr:)?</td>
<td>Ja, men aldrig under operation. Persienerne, som er monteret imellem glaslagene, altid er lukkede under drift.</td>
</tr>
<tr>
<td>9</td>
<td>Klimaskærmens varmetab?</td>
<td>Brian undersøger</td>
</tr>
<tr>
<td>10</td>
<td>Effektbelastning i Watt (fra personer, it-udstyr, belysning, processer m.m.) Op-belysning.</td>
<td>Normal belastning: 7 personer – 420W, IT – 1000W, OP lys – 50W, belysning ~30W. I alt ~1500W.</td>
</tr>
<tr>
<td>11</td>
<td>Bortledning af operationsgasser – beskriv bortledningen (Her tænkes der også på særlege krav til ventilationsanlægget)</td>
<td>Separate sug med direkte udblæsning</td>
</tr>
<tr>
<td>12</td>
<td>Findes der gældende/opdaterede tegninger over operationsstuen?</td>
<td>Ja</td>
</tr>
<tr>
<td>13</td>
<td>Findes der gældende/opdaterede tegninger over ventilationsanlægget?</td>
<td>MO undersøger</td>
</tr>
<tr>
<td>14</td>
<td>Påfør hvor nærværende operationsstue ventileres fra (fx fra ventilationsanlæg nr. xxx - placeret i kølér)</td>
<td>Fra taghuset XB2 – anlæg VE23</td>
</tr>
<tr>
<td>15</td>
<td>Hvornår er sidste eftersyn fundet sted? (kopi af servicerapport ønskes)</td>
<td>Der er kontinuerlig overvågning af driftsafdelingen via CTS'en</td>
</tr>
<tr>
<td>16</td>
<td>Hvorfra indtages friskluft til ventilationsfilteret</td>
<td>Indtag mod nordøst i teknikbygningen</td>
</tr>
<tr>
<td>17</td>
<td>Filter-type - noteres (Herunder også hvis der er problemer med tæthedsgrad – ved tvivl måles og noteres)</td>
<td>Brian undersøger</td>
</tr>
<tr>
<td>18</td>
<td>Hvor mange filter skal luften igennem inden den indblæses på operationsstuen med TAF?</td>
<td>2 stk. F7 + HEPA type undersøges</td>
</tr>
<tr>
<td>19</td>
<td>Trykfald over for filter noteres (Trykfulds måling – Δp i mbar eller Pa.)</td>
<td>Alarmgrænser ligger ved 200 – 220 Pa</td>
</tr>
<tr>
<td>20</td>
<td>Dato for sidste udskiftning af ventilationsfilter</td>
<td>Filterelementer + remme skiftes hvert halve år</td>
</tr>
</tbody>
</table>

Dato for registrering: 19/6 2014

Operationsstue nr.: 21

Hvilket år er operationsstuen etableret: 1/11-2009
21	Forefindes der alarmgivning på ventilationsfil-	Ja
22	teret? (f.eks., ved stort trykfald eller for lille trykfald)	DIS
23	Effekt i kW størrelse på installeret ventilati-	2,2 kW fra Klimodan
24	onsmotor.	Der reguleres vha. frekvensomformer
25	Beregning af ventilationsanlæggets virknings-	Brian undersøger
26	grad	Projekteret 2.700 m³/h Målt 2.533 m³/h
27	Hvor mange m³ friskluft indblæses på operati-	I loft
28	onsstuen? (Der skal foretages måling af indblæst	I loft og i væg ved gulv
29	Forefindes der recirkulation af ventilationslu-	Nej
30	tef? (Der spørges indtil opbygningen af ventilati-	~21 x luftskifte i timen
31	Er der monteret varmegenindvinding på venti-	Krydsveksler
32	lationsanlægget? (Evt. genvindingsprincip)	TAF
33	Kan reguleringen af luftmængden foretages i	Nej, kun driftspersonale har adgang til at ændre styre-
34	operationslokalet? (forklar hvordan styringen er etableret)	parametre
35	Finder der procesudsug på operationsstuen? (Her tænkes konkret på punktudsug)	Ja

Dato for registrering: 19/6 2014

Operationsstue nr.: 22

Hvilket år er operationsstuen etableret: 1/11-2009

<p>| 1 | Operationsstue - anvendelse (fx kan operationsstuen kun anvendes til spe- | Tekst: Isolation + Akut |
| 2 | cielle operationer eller alle typer.) – billeder af operationsstue før forseg | Billede nr: DSCN0561, DSCN0562, DSCN0563, DSCN0564, DSCN0565, DSCN057, DSCN0575, DSCN0576, DSCN0577, DSCN0578, DSCN0579, DSCN0580, DSCN0581 |
| 2 | Beskriv fysisk placering af operationsstuen (fx Etagenr. osv.) | Bygning XB2 1. sal cob20 Mod nord øst |
| 3 | Påfør rummets fysiske dimension (fx H=1900mm, B=1000mm, D=600mm) | 44 m² Lofthøjde 2,7mtr. 119 m³ |
| 4 | Påfør hvor mange adgangs muligheder, som er til operationsstuen (lukker dørene indad eller udad) | 1 stk. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Spørgsmål</th>
<th>Svar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Er der sluse for at komme ind på operationsstuen?</td>
<td>Nej, dog er der kun adgang for personale på gangen ind til stuen</td>
</tr>
<tr>
<td>6</td>
<td>Tag foto af operationsstue med lukkede døre – påfør foto nr.</td>
<td>DSCN0560</td>
</tr>
<tr>
<td>7</td>
<td>Er der mulighed for at skabe overtryk i operationsrummet? (Måling i Pa)</td>
<td>Ja, setpunktet er 15 Pa</td>
</tr>
<tr>
<td>8</td>
<td>Er der mulighed for dagslys indfald? (foto nr:)?</td>
<td>Ja, men aldrig under operation. Persiennerne, som er monteret imellem glaslagene, altid er lukkede under drift.</td>
</tr>
<tr>
<td>9</td>
<td>Klimaskærmens varmetab?</td>
<td>Brian undersøger</td>
</tr>
<tr>
<td>11</td>
<td>Bortledning af operationsgasser – beskriv bortledningen (Her tænkes der også på særlige krav til ventilationsanlægget)</td>
<td>Separate sug med direkte udblæsning</td>
</tr>
<tr>
<td>12</td>
<td>Findes der gældende/opdaterede tegninger over operationsstuen?</td>
<td>Ja</td>
</tr>
<tr>
<td>13</td>
<td>Findes der gældende/opdaterede tegninger over ventilationsanlægget?</td>
<td>MO undersøger</td>
</tr>
<tr>
<td>14</td>
<td>Påfør hvor nærværende operationsstue ventileres fra (fx fra ventilationsanlæg nr. xxx - placeret i kælder)</td>
<td>Fra taghuset XB2 – anlæg VE24</td>
</tr>
<tr>
<td>15</td>
<td>Hvornår er sidste eftersyn fundet sted? (kopi af serviceraapport ønskes)</td>
<td>Der er kontinuerlig overvågning af driftsafdelingen via CTS'en</td>
</tr>
<tr>
<td>16</td>
<td>Hvorfra indtages friskluft til ventilationsfilteret</td>
<td>Indtag mod nordøst i teknikbygningen</td>
</tr>
<tr>
<td>17</td>
<td>Filtertype - noteres (Herunder også hvis der er problemer med tæthedssgrad – ved tvivl måles og noteres)</td>
<td>Brian undersøger</td>
</tr>
<tr>
<td>18</td>
<td>Hvor mange filtre skal luften igenmenn inden den indblæses på operationsstuen med LAF?</td>
<td>3 stk. F7 + 2 stk. HEPA type undersøges</td>
</tr>
<tr>
<td>19</td>
<td>Trykfald over for filter noteres (Trykfaldsmåling - Δ p i mbar eller Pa.)</td>
<td>Alarmgrænsen ligger ved 200 – 220 Pa</td>
</tr>
<tr>
<td>20</td>
<td>Dato for sidste udskiftning af ventilationsfilter</td>
<td>Filterelementer + remme skiftes hvert halv år</td>
</tr>
<tr>
<td>21</td>
<td>Forefindes der alarmgivning på ventilationsfilteret? (f.eks., ved stort trykfald eller for lille trykfald)</td>
<td>Ja</td>
</tr>
<tr>
<td>22</td>
<td>Vedligeholdelse Logbog for registrering af vedligeholdelse</td>
<td>DIS</td>
</tr>
<tr>
<td>23</td>
<td>Effekt i kW størrelse på installeret ventilationsmotor.</td>
<td>3 kW i indtag 2,2 kW fra Klimodan</td>
</tr>
<tr>
<td>24</td>
<td>Kan effektoptaget på motoren regulareres? (reguleringsform – spjæld, frekvensomformer eller andet)</td>
<td>Der reguleres vha. frekvensomformer</td>
</tr>
<tr>
<td>25</td>
<td>Beregning af ventilationsanlæggets virkningsgrad</td>
<td>Brian undersøger</td>
</tr>
<tr>
<td>26</td>
<td>Hvor mange m³ friskluft indblæses på operationsstuen? (Der skal foretages måling af indblæst friskluftmængde)</td>
<td>Projekteret 2.700 m³/h Målt 2.760 m³/h</td>
</tr>
<tr>
<td>27</td>
<td>Hvor er indblæsningsaggregaterne placeret? (i loft eller?)</td>
<td>I LAF bro</td>
</tr>
<tr>
<td>28</td>
<td>Hvor er udsugningsaggregaterne placeret? (i gulvet eller?)</td>
<td>I loft og i væg ved gulv</td>
</tr>
<tr>
<td>No.</td>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>29</td>
<td>Forefindes der recirculation af ventilationsluften? (Der spørges indtil opbygningen af ventilationsanlægget – foto tages gerne)</td>
<td>Ja, i LAF'en</td>
</tr>
<tr>
<td>30</td>
<td>Antal luftskifte i timen? (Beregninger skal udføres) Her vil det være rigtigt godt hvis der er mulighed for at udarbejde noget grafik med luftskif tet som funktion af bakterie dannelsen – hvis det er muligt.</td>
<td>~23 x luftskifte i timen</td>
</tr>
<tr>
<td>31</td>
<td>Er der monteret varmegenindvinding på ventilationsanlægget? (Evt. genvindingsprincipp)</td>
<td>Krydsveksler</td>
</tr>
<tr>
<td>32</td>
<td>Operationsstuens ventilationsprincip (TAF eller LAF) – HUSK billeder</td>
<td>LAF</td>
</tr>
<tr>
<td>33</td>
<td>Kan reguleringen af luftmængden foretages i operationslokalet? (forklar hvordan styringen er etableret)</td>
<td>Nej, kun driftspersonale har adgang til at ændre styreparametre</td>
</tr>
<tr>
<td>34</td>
<td>Er ventilationsanlægget koblet til køleanlæg?</td>
<td>Ja, både hovedanlægget og zonerne er koblet på</td>
</tr>
<tr>
<td>35</td>
<td>Finder der procesudsg på operationsstuen? (Her tænkes konkret på punktudsg)</td>
<td>Ja</td>
</tr>
</tbody>
</table>
Bilag 6:
Ventilationssystemer på operationsstuer

Litteraturliste 2008-2013

Søgestreng: (((laminar airflow) OR laminar air flow) OR ((turbulent airflow) OR turbulent air flow) OR ((mixed airflow) OR mixed air flow)) OR (((ventilation) OR airconditioning) OR air conditioning) OR air condition) OR (((clean air) OR ultraclean air) OR ultra clean air)) OR (((HEPA air filtration) OR high efficiency particulate arresting) AND (((operating room) OR operating theatre) OR operating suite) OR surgical room) OR surgical theatre) AND (((infection control) OR bacterial infections) OR postoperative infection) OR (((surgical wound infection) OR surgical site infection) OR deep infection) OR (((prosthetic joint infection) OR peri-prosthetic joint infection) OR periprosthetic joint infection) OR (((air microbiology) OR aerobiology) OR colony forming units)

Filter: English + Abstract available + 5 years

Resultat:
2013: (Ahn, Park et al. 2013, Bosanquet, Jones et al. 2013)
2010: (Nilsson, Lundholm et al. 2010)
2008: (Da Costa, Kothari et al. 2008, Olmsted 2008)

Review studies: (Evans 2011, Gastmeier, Breier et al. 2012)

Full text missing, bestilt via Videncentret: (Bartley and Olmsted 2009, Gniadek and Macura 2011, Bosanquet, Jones et al. 2013)

2013:
Laminar flow reduces cases of surgical site infections in vascular patients (Bosanquet, Jones et al. 2013):
Cohort study (SSI), vascular patients, single consultant, retrospective, one-year period, random allocation, 170 procedures
The degree of bacterial contamination while performing spine surgery (Ahn, Park et al. 2013):
Bacterial sampling (CFU), spinal surgery, conventional OR, 15 cases, culture agar plates

2012:
Microbial air monitoring in operating theatres (Pasquarella, Vitali et al. 2012):
Bacterial sampling (CFU), 29 conventional OR, 3 years, empty and working theatres, active and passive sampling
Air sampling methods to evaluate microbial contamination in operating theatres (Napoli, Tafuri et al. 2012)
Bacterial sampling (CFU), 60 THA, turbulent airflow, one year period, active and passive sampling systems
Air sampling procedures to evaluate microbial contamination (Napoli, Marco trigiano et al. 2012)
Bacterial sampling (CFU), 32 turbulent air flow OR, active and a passive sampling method
Applied *patent RFID systems* for building reacting *HEPA air ventilation* system in hospital *operation rooms* (Lin, Pai et al. 2012)
Non-relevant.
Bacterial burden in the *operating room*: impact of *airflow systems* (Hirsch, Hubert et al. 2012)
Bacterial sampling (CFU), 4 ventilation systems (window, TAF, and LAF w/o flow stabilizer), 277 operations, 6 OR, 5 hospitals
Safety by design: effects of *operating room floor marking* on the position of surgical devices to promote clean *air flow* compliance and minimise infection risks (de Korne, van Wijngaarden et al. 2012)
Non-relevant.
Effect of *forced-air warming* on the performance of *operating theatre laminar flow* ventilation (Dasari, Albrecht et al. 2012)
Non-relevant
Can *particulate air sampling* predict microbial load in *operating theatres* for arthroplasty? (Cristina, Spagnolo et al. 2012)
Bacterial (CFU) vs. particle sampling, 95 THA/TKA, TAF, 3 months, active sampling
Comparison of three distinct *surgical clothing systems* for protection from *air-borne bacteria* (Tammelin, Ljungqvist et al. 2012)
Non-relevant
Traffic flow in the *operating room*: an explorative and descriptive study on *air quality* during orthopedic trauma implant surgery (Andersson, Bergh et al. 2012)
Bacterial sampling (CFU), 30 orthopedic trauma operations, TAF, traffic flow and OR-personnel

2011:
Directed *air flow* to reduce airborne particulate and *bacterial contamination* in the surgical field during total hip arthroplasty (Stocks, O’Connor et al. 2011)
Non-relevant
Mobile *laminar air flow* screen for additional *operating room ventilation*: reduction of intraoperative bacterial contamination during total knee arthroplasty (Sossai, Dagnino et al. 2011)
Bacterial sampling (CFU), 34 TKA, +/- mobile LAF
Forced-air warming does not worsen air quality in *laminar flow operating rooms* (Sessler, Olmsted et al. 2011)
Non-relevant
Forced-air warming and *ultra-clean ventilation* do not mix: an investigation of theatre ventilation, patient warming and *joint replacement infection* in orthopaedics (McGovern, Albrecht et al. 2011)
Non-relevant
Air-conditioning vs. presence of *pathogenic fungi* in hospital *operating theatre* environment (Gniadek and Macura 2011)
Non-relevant
Impact of different-sized *laminar air flow* versus no laminar air flow on *bacterial counts* in the operating room during orthopedic surgery (Diab-Elschahawi, Berger et al. 2011)
Bacterial sampling (CFU), 80 orthopedic surgeries +/- LAF
Forced-air warming blowers: An evaluation of filtration adequacy and *airborne contamination emissions* in the *operating room* (Albrecht, Gauthier et al. 2011)
Non-relevant
Review studies

Influence of laminar airflow on prosthetic joint infections (Gastmeier, Breier et al. 2012)

Systematic review of cohort studies investigating the influence of LAF on SSIs following THA/TKA published during the last 10 years: Miner 2007; Kakwani 2007; Brandt 2008; Hooper 2011; Breier 2011.

Current concepts for clean air and total joint arthroplasty: laminar airflow and ultraviolet radiation (Evans 2011)

Systematic literature reviewed (until June 2010), lack of high-level studies

Register studies

Increasing risk of prosthetic joint infection after total hip arthroplasty (Dale, Fenstad et al. 2012)

Nordic Arthroplasty Register Association (1995-2009): 432.168 pTHA / 0.6% PJI-revision

No data on operating room ventilation

Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement? (Hooper, Rothwell et al. 2011)

New Zealand Joint Registry (1999-2008), early PJI (revision < 6 months), LAF in 35.5%

Retrospective study (10 years): 51.485 THA (0,089% e-PJI) and 36.826 TKA (0,136% e-PJI)

Conclusion: early PJI revision-rate not reduced with LAF

Infection after primary hip arthroplasty: a comparison of 3 Norwegian health registers (Dale, Skramm et al. 2011)

Norwegian Arthroplasty Register (2005-2009), one-year incidence: 3,0% SSI and 0,7% PJI

No data on operating room ventilation

Laminar airflow ceiling size: no impact on infection rates following hip and knee prosthesis. Infection control and hospital epidemiology (Breier, Brandt et al. 2011)

German KISS-register, (2004-2009): 33.463 THA/TKA (48 hospitals +/- LAF), severe SSI in 0.74%

Conclusion: LAF was not associated with lower infection risk

Risk factors for revision due to infection after primary total hip arthroplasty. A population-based study of 80,756 primary procedures in the Danish Hip Arthroplasty Registry (Pedersen, Svendsson et al. 2010)

Danish Hip Arthroplasty Registry (1995-2008): 80.756 pTHA, PJI-revision rate 0,7%

Conclusion: No difference between LAF and conventional airflow

Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases (Jamsen, Huhtala et al. 2009)

Finish Arthroplasty Register (1997-2004): 97.344 pTKA, PJI-revision rate 0,9%

No data on operating room ventilation

Increasing risk of revision due to deep infection after hip arthroplasty (Dale, Hallan et al. 2009)

Norwegian Arthroplasty Register (1987-2007): 97.344 pTHA, PJI-revision rate 0,6%

Conclusion: Laminar airflow was associated with a higher risk of revision

Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery (Brandt, Hott et al. 2008)

German KISS-register, (2000-2004): 99.230 orthopedic and abdominal surgeries (63 departments +/- LAF), severe SSI in 1,2% THA and 0,8% TKA.

Conclusion: Significantly higher SSI rates using LAF (1,4%) than TAF (0,9%) for THA, but not TKA.
Litteraturliste:

Hansen, D., C. Krabs, D. Benner, A. Brauksiepe and W. Popp (2005). "Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion." Int J Hyg Environ Health 208(6): 455-460.

