Impact of thermal annealing onto CO electroreduction at mesoporous Cu electrodeposits

Roy, Claudie; Garbarino, S.; Stephens, Ifan; Chorkendorff, Ib; Guay, D.

Published in:
Book of Abstracts. DTU's Sustain Conference 2015

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Impact of thermal annealing onto CO electroreduction at mesoporous Cu electrodeposits

C. Roy1,2*, S. Garbarino1, I. E. L. Stephens 2, I. Chorkendorff 2, and D. Guay1

1: INRS-EMT, Canada; 2: DTU Fysik
*Corresponding author email: claroy@dtu.dk

Kanan’s research group [1] recently discovered a catalyst that can produce significant amount of EtOH and AcO− (among other products) by electroreduction of carbon monoxide. Indeed, using copper derived from copper oxide, up to 57\% Faradic efficiency was reached for EtOH and AcO− at potential as low as -0.3 V vs RHE. The major reactions occurring during CO reduction are given by the following equations:

\[2\text{CO} + 3\text{H}_2\text{O} + 4\text{e}^- \rightarrow \text{CH}_3\text{CO}^-_2 + 3\text{OH}^-\quad E^0 = 0.50\text{V}\]

\[2\text{CO} + 7\text{H}_2\text{O} + 8\text{e}^- \rightarrow \text{CH}_3\text{CH}_2\text{OH} + 8\text{OH}^-\quad E^0 = 0.18\text{V}\]

Cu is the only catalyst making appreciable amounts of hydrocarbons[2,3]. So, based on Kanan’s work, mesoporous Cu structures were synthetized through electrodeposition followed by different annealing processes. The catalysts were then tested for CO reduction.

Figure. Comparison of partial current density performed in 0.1 M KOH saturated with CO at -0.25V vs RHE

