Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate

Buron, Jonas Christian Due; Mackenzie, David; Petersen, Dirch Hjorth; Pesquera, Amaia; Centeno, Alba; Bøggild, Peter; Zurutuza, Amaia; Jepsen, Peter Uhd

Published in:
Optics Express

Link to article, DOI:
10.1364/oe.23.030721

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate

Jonas D. Buron,1,4 David M. A. Mackenzie,1,4 Dirch. H. Petersen,1,4 Amaia Pesquera,2 Alba Centeno,2 Peter Bøggild,1,4 Amaia Zurutuza,2 and Peter U. Jepsen3,*

1DTU Nanotech - Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
2Graphenea S.A., Avenida de Tolosa, 76, 20018 - Donostia/San Sebastián, Spain
3DTU Fotonik - Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
4DTU Center for Nanostructured Graphene (CNG), DTU Nanotech - Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark

*puje@fotonik.dtu.dk

Abstract: We demonstrate wafer-scale, non-contact mapping of essential carrier transport parameters, carrier mobility (μ_{drift}), carrier density (N_s), DC sheet conductance (σ_{dc}), and carrier scattering time (τ_{sc}) in CVD graphene, using spatially resolved terahertz time-domain conductance spectroscopy. σ_{dc} and τ_{sc} are directly extracted from Drude model fits to terahertz conductance spectra obtained in each pixel of 10 × 10 cm2 maps with a 400 µm step size. σ_{dc}- and τ_{sc}-maps are translated into μ_{drift} and N_s maps through Boltzmann transport theory for graphene charge carriers and these parameters are directly compared to van der Pauw device measurements on the same wafer. The technique is compatible with all substrate materials that exhibit a reasonably low absorption coefficient for terahertz radiation. This includes many materials used for transferring CVD graphene in production facilities as well as in envisioned products, such as polymer films, glass substrates, cloth, or paper substrates.

©2015 Optical Society of America

OCIS codes: (120.4290) Nondestructive testing; (160.4236) Nanomaterials; (300.6250) Spectroscopy, condensed matter; (300.6495) Spectroscopy, terahertz; (310.3840) Materials and process characterization; (310.6870) Thin films, other properties.

References and links

9. Aixtron, Personal communication.

Graphene synthesis technology is rapidly approaching a commercially viable level, where continuous graphene films of high structural integrity are routinely produced on wafer-scale [1–6] or even m² scale [7,8], with projected throughput of order 10^5 m²/year for CVD production tools [9]. Even so, no viable means for assessing consistency in electronic properties across these length scales or area production rates are currently offered by the prevailing electronic characterization methods, typically based on field-effect or Hall mobility measurements in lithographically defined devices. Over the past five years, several demonstrations of non-contact techniques for characterization of graphene electrical properties have been reported [10–15]. Most techniques, however, gauge the graphene conductance rather than the other primary parameters of interest, which are the carrier mobility, μ, and sheet carrier density, N_s. Recently we presented spatial mapping of field-effect mobility and carrier density of large-area chemical vapor deposition (CVD) graphene by non-contact, back-gated terahertz time-domain conductance spectroscopy (THz-TDS) [16]. While potentially very useful in the development and optimization phase of 2D material synthesis and transfer, the approach requires deposition of the graphene film on a gate-stack substrate, and is thus not directly applicable to the many applications and production scenarios involving graphene films on insulating and flexible substrates. These include some of the most lucrative technologies such as graphene photovoltaics, displays, and flexible electronics, where in-line characterization and quality-control require the THz-TDS analysis to be carried out on the native substrate. The present work is a step in that direction, presenting a novel non-contact approach for rapid spatial mapping of carrier drift mobility (μ_{drift}) and carrier density of four inch graphene wafers. The technique, which is based on direct measurement of the terahertz carrier dynamics by time domain spectroscopy [13,17,18], does not require the use of carrier density control by a back gate, and is compatible with a broad range of common graphene substrates, including various polymers, glasses, and insulating metal oxides. In addition to providing a means of non-destructive and rapid measurement of graphene drift mobility and carrier density in scenarios without a gate or external magnetic field, the method is significantly faster than previously demonstrated methods [16], and provides additional information on transport dynamics such as carrier scattering rate and mean free path.

2. Experimental setup & methods

2.1 Terahertz time-domain spectroscopy

We employ a THz time-domain spectrometer based on photoconductive antennas [13], to map the electromagnetic response from 0.25 to 1.2 THz of charge carriers in an approximately 95 mm wide CVD graphene film residing on a 4-inch wafer substrate. As shown in Fig. 1(a), the substrate consists of 525 µm high resistivity silicon, 50 nm p + doped polycrystalline silicon, and 165 nm low pressure chemical vapor deposited stoichiometric silicon nitride (Si_3N_4). The THz-transparent back gate, consisting of the p + doped poly-silicon layer [16], was not needed in this study, however, and was left at floating potential. An approximately 10 mm wide area near one edge of the silicon wafer is kept free from graphene in the transfer process. As indicated in Fig. 1(a), the sample is raster scanned in the focal plane of the THz beam, which is focused to a diffraction limited spot with a frequency-
dependent full-width-at-half-maximum (FWHM) ranging from approximately 1.0 mm at 0.25 THz to 0.3 mm above 1.0 THz. The entire 4-inch wafer is raster-mapped in steps of 400 µm, where the transmitted THz transient is recorded in each pixel of the map. Figure 1(b) shows an example of such a transmitted THz transient as well as a comparison to a THz transient transmitted through the non-graphene-covered area of the 4-inch sample. As described elsewhere [13,17], THz-TDS is particularly sensitive to free carrier absorption, and thus the fast Fourier transforms (FFT) of THz time-domain transients, \(\tilde{E}_{\text{ref}}(\nu) = \mathfrak{f}[E_{\text{ref}}(t)] \) and \(\tilde{E}_{\text{graphene}}(\nu) = \mathfrak{f}[E_{\text{graphene}}(t)] \), transmitted through silicon substrate and silicon substrate covered with graphene, respectively, can be related directly to the complex sheet conductance, \(\sigma_s(\nu) \), of the graphene film at THz frequencies as:

\[
\tilde{\sigma}_s(\nu) = \frac{\tilde{E}_{\text{graphene}}(\nu)}{\tilde{E}_{\text{ref}}(\nu)} \frac{1 + n_{\text{sub}}}{1 + n_{\text{sub}} + Z_0 \sigma_s(\nu)}. \tag{1}
\]

Sheet conductance spectra, such as the ones shown in Fig. 1(c), are extracted in each pixel of the mapped area using Eq. (1).

2.2 Van der Pauw device fabrication & Hall measurements

As shown in Fig. 1(d), Ti/Au contacts were deposited onto the graphene film subsequent to THz-TDS analysis, by electron beam evaporation through an aluminum shadow mask. The graphene film was patterned by picosecond laser ablation into 5 mm wide square van der Pauw (vdP) devices, suitable for dual-configuration sheet conductance and Hall effect measurements to extract carrier mobility and carrier density [19]. Dual configuration measurements suppress geometrical errors in both sheet conductance [20] and Hall effect measurements [21] and allow the electrical continuity to be determined [13,18,22,23]. With a constant applied external magnetic field of \(B_{\text{ext}} = 255 \) mT, the resistances \(R_A, R_B \) and \(R_C \) were measured in the three electrode configurations, defined from Fig. 1(e) as

\[
R_A = \frac{I_{21}}{V_{34}}, R'_A = \frac{I_{24}}{V_{31}}, R_B = \frac{I_{42}}{V_{13}}, R'_B = \frac{I_{23}}{V_{41}}, R_C = \frac{I_{32}}{V_{14}}. \tag{2}
\]

Sheet conductance \(\sigma_s = 1/R_s \), Hall mobility \(\mu_{\text{Hall}} \), and Hall carrier density \(N_{s,\text{Hall}} \), were obtained according to

\[
\exp[-\pi R_A/R_s] + \exp[-\pi R_C/R_s] = 1, \tag{3}
\]

\[
R_{\text{Hall}} = (R_A - R_B)/2, \tag{4}
\]

\[
N_{s,\text{Hall}} = B_{\text{ext}}/(qR_{\text{Hall}}), \tag{5}
\]

\[
\mu_{\text{Hall}} = 1/(eN_{s,\text{Hall}}R_s), \tag{6}
\]

where \(q \) is the electronic charge.
Fig. 1. (a) The sample is a 100 mm wide CVD graphene film on a 4-inch layered wafer substrate, consisting of 525 µm high resistivity silicon, 50 nm p⁺-doped poly-Si, and 165 nm LPCVD Si₃N₄. An approximately 10 mm wide area near one edge of the silicon wafer is kept free from graphene in the transfer process. The sample is raster scanned in the focal plane of the THz beam to form spatially resolved maps. (b) Examples of THz time-domain transients recorded after transmission through the sample (c) σᵣ spectra (real part) extracted from time-domain measurements at two different graphene locations, showing different τ_sc. (d) vdP devices are formed after THz-TDS mapping by shadow mask deposition of Ti/Au contacts, and patterning of the graphene film by picosecond laser to form (e) 5 mm wide, square devices. μ_Hall and N_Hall is determined from measurements of resistances in the A-, B-, and C-configurations in a constantly applied externally magnetic field of 255 mT.

Crucially, the chosen method allows for definition of vdP devices, without affecting the electronic properties of the active area of the graphene film by introduction of photolithographic or electron beam lithographic resist, solvents, or other chemicals.

3. Results and discussion

Consistent with previous observations in THz-TDS [18,24,25] and FTIR [10,15,26–28] studies of graphene, we find the conductance dynamics to be well described by the Drude model, given by

$$\sigma_\omega = \sigma_{DC} \cdot \frac{1}{1 - i\omega\tau_c},$$

where σ_DC is the sheet conductance at DC, τ_c is the carrier momentum relaxation time, and ω is the angular frequency. By fitting the Drude model to the real part of the conductance spectrum in each pixel of the recorded map, σ_DC and τ_c can be mapped, as shown in Fig. 2. The imaginary part of the measured sheet conductance was not used in the fitting routine, because of large systematic errors due to variations across the sample in the substrate thickness. In principle, inclusion of the imaginary part of the extracted conductance could increase the reliability of the fit. However, even the slightest variations of substrate thickness across the wafer results in a significant systematic error in the extraction of the imaginary part of the conductance, which is not the case for the real part. While this systematic error can to
some extent be quantified and corrected [16], in the present case, a fit to the real part of the conductance alone results in robust estimates of the DC conductance and scattering time.

In the limit of $k_B T \ll E_F$, the DC conductance can be expressed as [10,24,29–32]

$$\sigma_{s,dc} = \frac{q^2 v_F \tau_{sc}}{\pi} \sqrt{N_s} \left(\frac{\hbar}{\pi} \right),$$

(8)

where v_F is the Fermi velocity taken to be 10^6 m/s [29]. Thus, carrier drift mobility and carrier density can be evaluated across the 4-inch wafer, as shown in Fig. 3(a), from measurements of $\sigma_{s,dc}$ and τ_{sc}, by using the relations

$$N_s = \frac{\pi \hbar^2}{q^4 v_F^2} \left(\frac{\sigma_{s,dc}}{\tau_{sc}} \right)^2,$$

$$\mu_{\text{drift}} = \frac{\sigma_{s,dc}}{eN_s} = \frac{q^2 v_F^2 \tau_{sc}^2}{\pi \hbar^2 \sigma_{s,dc}} = \frac{q v_F^2}{\pi \hbar} \frac{\tau_{sc}}{\sqrt{\pi N_s}},$$

(9)

It should be noted that this analysis does not provide any information on the dependence of τ_{sc} and thus μ_{drift} on N_s, because the THz-TDS measurements are carried out at constant N_s. For transport in graphene films limited by long-range carrier scattering on charged impurities, however, the scattering rate is expected to scale as $\tau_{sc} \propto \sqrt{N_s}$, yielding a drift mobility that is independent of carrier density.

Figure 3(b) shows histograms of drift mobilities and carrier densities normalized to their average values, constructed from measured values within the dashed rectangles in Fig. 2(a). The measured drift mobility follows a Gaussian distribution with an average value of 845 cm2/V·s, and a standard deviation of 244 cm2/V·s, corresponding to a relative standard deviation of 0.28. Meanwhile, the carrier density displays a distribution skewed towards higher concentration, which is more accurately described by an extreme value distribution. The graphene film exhibits a high unintentional doping level, with an average carrier density of 2.25×10^{13} cm$^{-2}$. The standard deviation of measured carrier densities is 0.56×10^{13} cm$^{-2}$, resulting in a relative standard deviation of 0.25. This is slightly lower, but of the order of the standard deviation found for μ_{drift}.

While the determination from THz-TDS carrier dynamics provides the drift carrier mobility and carrier density, as defined in the Drude model, conventional device measurements of carrier mobility and density typically provide either the Hall or field-effect mobility and density. These may differ from the parameters as defined in Drude theory, due to several effects. Firstly, it is known from theory [33,34] and analysis [35] of 3D...
semiconductor materials that Hall mobility and drift mobility can in some cases differ fundamentally by a factor known as the Hall scattering factor. Secondly, geometrical effects, related to e.g. inhomogeneities of the graphene film can strongly affect the measured device transport properties measurements, so that the inferred material properties deviate significantly from the intrinsic properties [13,18].

To investigate how conventional device measurements of carrier mobility and carrier density relate to the THz-TDS measurements of μ_{drift} and N_s, van der Pauw structures (shown in Fig. 1(c)) suitable for dual-configuration Hall measurements were fabricated in the same graphene film shown in Figs. 2 and 3. Measurements of σ_{dc}, μ_{Hall}, and N_s_{Hall} in 47 individual 5 x 5 mm2 devices are compared to the average values of σ_{dc}, μ_{drift}, and N_s, obtained by THz-TDS inside the active device regions, in Figs. 4(a), 4(b), and 4(c), respectively. As can be observed in Fig. 4, the spread in σ_{dc}, μ_{Hall}, and N_s_{Hall} measured in vP structures is quite large compared to the significantly smaller spread in σ_{dc}, μ_{drift}, and N_s measured by THz-TDS. As we have shown in previous correlation studies [13,18], however, defects on the scale of the device dimensions can greatly affect the electronic parameters determined by vP device measurements [22,23,36], while the THz-TDS outcome is much less affected, due to its much smaller characteristic carrier transport length (tens to hundreds of nm). The ratio of resistances R_a/R_C, measured in two different electrode configurations provides a unique signature of the presence of such extended defects in the devices, where a device with a continuous active region, free from such extended defects will fulfill the criterion of electrical continuity [18], which in this case is $R_a/R_C = 1$.

Fig. 3. (a) Maps of N_s and μ_{drift} derived from σ_{dc} and t_{sc}-maps in Fig. 2. Distributions of N_s and μ_{drift} within the dashed squares marked on the maps. (b) Distribution of N_s and μ_{drift} relative to their average values.
Fig. 4. Comparison of transport properties measured by THz-TDS and dual-configuration Hall effect method (a) $\sigma_{\text{THz}} \text{ vs } \sigma_{\text{vdP}}$ (b) $\mu_{\text{drift}} \text{ vs } \mu_{\text{Hall}}$ (c) N_s. The full diagonal lines represent 1:1 correlation, while shaded areas represent 2:1 correlation or better. Error bars represent the standard deviation of the 36 THz-TDS pixels per device. Colored markers correspond to areas where the vdP dual configuration measurements indicate highly homogeneous / continuous conductance.

When only including dual configuration vdP device measurements with a relatively narrow acceptance window in terms of electrical continuity, i.e. $0.91 \leq R_i / R_C \leq 1.1$ (colored markers), the spread is significantly decreased, and the correlation between vdP measurements and THz-TDS measurements dramatically improved. We thus observe a strong 1:1 correlation of sheet conductance measurements between vdP and THz-TDS, and a correlation of μ_{Hall} to μ_{drift}, and $N_{s,\text{Hall}}$ to N_s, which except for two outliers, are within a factor two. The presented THz-TDS based mapping technique thus accurately provides the intrinsic sheet conductance of CVD graphene films, as well as carrier drift mobility and carrier density to within at least a factor of 2. It should be noted that the observed discrepancy between μ_{drift} and μ_{Hall}, as well as $N_{s,\text{THz}}$ and $N_{s,\text{Hall}}$ may arise from fundamental differences in the intrinsic material parameters, as reflected by a non-unity Hall scattering factor $[35,37,38]$. The observed correlation is however not strong enough to conclude on the significance of this effect.

The presented technique is compatible with all substrate materials that exhibit a reasonably low absorption coefficient for terahertz radiation. This includes many materials used for transferring CVD graphene in production facilities as well as in envisioned products, such as polymer films, glass substrates, cloth, or paper substrates. Such wide tolerances in terms of substrate properties is a consequence of μ_{drift}, τ_{sc}, and σ_{dc} being directly determined from the terahertz conductance dynamics, eliminating the need for application of gate- or magnetic fields or even patterning of devices. We note that this opens up the prospect of quantitative, non-invasive mapping of the essential graphene performance indicators, σ_{dc}, μ_{drift}, and N_s during the polymer-assisted transfer step, which is integral to most production line scenarios. This type of integrated, in-line quality management will be increasingly important, as graphene production and applications leaves its present embryonic state to compete with existing material technologies. We anticipate that this capability can prove disruptive for the extent as well as nature of industrial CVD graphene characterization and standardization.

7. Conclusion

We address the challenge of rapid, non-contact, electronic characterization of carrier mobility and density of large-area graphene without the need for a back-gate, externally applied magnetic fields, patterning of devices, or contact deposition. Using mapped terahertz time-domain spectroscopy, we were able to extract the carrier mobility, carrier density, scattering time and DC sheet conductance across a 4-inch wafer sized CVD graphene film with 400 µm resolution. Direct comparison to measurements of sheet conductance, Hall mobility and Hall carrier density in mm-sized devices carved from the same CVD graphene film by laser-
ablation, show similar values, where \(\frac{\sigma_{s,THz}}{\sigma_{s,THz}} = 1.02 \pm 0.09 \), \(\frac{\mu_{drift,THz}}{\mu_{Hall}} = 1.33 \pm 0.50 \), and \(\frac{N_s,THz}{N_s,Hall} = 0.63 \pm 0.62 \). We anticipate that our findings will pave the way for new standards pertaining electronic characterization of graphene in production scenarios, as our presented technique facilitates quantitative, non-invasive mapping of the essential graphene performance indicators, \(\mu_{drift} \) and \(N_s \), during the polymer-assisted transfer step which is integral to most production line scenarios.

Acknowledgments

We acknowledge financial support from the EC Graphene FET Flagship, contract no 604391, Center for Nanostructured Graphene (CNG), sponsored by the Danish National Research Foundation, Project DNRF58, and the Villum Foundation, project no. VKR023117.