Vibrio galatheae sp. nov., a novel member of the Vibrionaceae family isolated from the Solomon Sea.

Giubergia, Sonia; Machado, Henrique; Mateiu, Ramona Valentina; Gram, Lone

Published in:
International Journal of Systematic and Evolutionary Microbiology

Link to article, DOI:
10.1099/ijsem.0.000723

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract:

Based on genetic, chemotaxonomic and phenotypic characteristics, a novel species belonging to the genus *Vibrio* is described. The facultative anaerobic strain S2757T was isolated from a mussel collected in the Solomon Sea (Solomon Islands). Phylogenetic analyses based on sequences of 16S rRNA and fur genes indicated the affiliation of the strain to a new species. This observation was supported by a multilocus sequence analysis (MLSA) including sequences of the housekeeping genes 16S rRNA, gyrB, pyrH, recA and topA. In silico DNA-DNA hybridization (DDH) and Average Nucleotide Identity (ANI) values comparing the genomic sequence of strain S2757T with those of closely related type strains were lower than 23 and 82 %, respectively. The DNA G+C content of the strain was 45.3 mol%. Phenotypic and chemotaxonomic analyses clearly differentiated the strain from other *Vibrio* species. Hence, strain S2757T should be considered a novel species in the genus *Vibrio*. The name *Vibrio galatheae* sp. nov. is proposed, with S2757T (= DSM 100497T = LMG 28895T) as the type strain.
Vibrio galatheae sp. nov., a novel member of the Vibrionaceae family isolated from the Solomon Sea.

Sonia Giubergia¹,², Henrique Machado¹,², Ramona Valentina Mateiu³ and Lone Gram¹*

¹NovoNordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm
²Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg. 301, DK-2800 Kgs. Lyngby.
³Center for Electron Nanoscopy, Technical University of Denmark, Fisikvej bldg. 307, DK-2800 Kgs. Lyngby.

*corresponding author: email: gram@bio.dtu.dk

Running title: Vibrio galatheae sp. nov.

Subject Category: New taxa (Proteobacteria)

Word count abstract: 166

Word count main text: 1898

The GenBank accession number for the fur gene sequence of Vibrio sinaloensis DSM 21326T is KT380049.

GenBank accession numbers for the whole genome sequences of Vibrio hepatarius DSM 19134T, Vibrio xuii DSM 17185T, and Vibrio nereis DSM 19584T are LHPI01, LHPK01, LHPJ01, respectively. Accession numbers of all nucleotide sequences used in this work, including those previously publicly available, are listed in Table S1.
Based on genetic, chemotaxonomic and phenotypic characteristics, a novel species belonging to the genus *Vibrio* is described. The facultative anaerobic strain S2757\(^T\) was isolated from a mussel collected in the Solomon Sea (Solomon Islands). Phylogenetic analyses based on sequences of 16S rRNA and *fur* genes indicated the affiliation of the strain to a new species. This observation was supported by a multilocus sequence analysis (MLSA) including sequences of the housekeeping genes 16S rRNA, *gyrB*, *pyrH*, *recA* and *topA*. In silico DNA-DNA hybridization (DDH) and Average Nucleotide Identity (ANI) values comparing the genomic sequence of strain S2757\(^T\) with those of closely related type strains were lower than 23 and 82 %, respectively. The DNA G+C content of the strain was 45.3 mol%. Phenotypic and chemotaxonomic analyses clearly differentiated the strain from other *Vibrio* species. Hence, strain S2757\(^T\) should be considered a novel species in the genus *Vibrio*. The name *Vibrio galatheae* sp. nov. is proposed, with S2757\(^T\) (= DSM 100497\(^T\) = LMG 28895\(^T\)) as the type strain.

Members of the *Vibrionaceae* family are Gram-negative bacteria widespread in aquatic environments (Thompson *et al.*, 2004). Vibrios have been isolated as both planktonic and surface-associated organisms from several ecosystems, including seawater, marine sediments and animals (Thompson *et al.*, 2004). The number of vibrios colonizing different environmental niches can vary over orders of magnitude, depending on factors such as availability of nutrients, temperature and salinity (Takemura *et al.*, 2014). For instance, *Vibrio* species were shown to account for more than 50% of the total microbiota during a bacterial bloom that was possibly due to an increase in the concentration of available nutrients (Gilbert *et al.*, 2012).

A number of vibrios have been intensively studied because of their role as pathogens (Ben-Haim *et al.*, 2003; Faruque *et al.*, 1998; Jones & Oliver, 2009; Ramamurthy *et al.*, 2014) and symbionts (Nyholm *et al.*, 2000). In recent years, *Vibrionaceae* have also emerged as a reservoir of secondary metabolites with therapeutic applications, including antibacterial, anticancer and antifungal activities (Månsson *et al.*, 2011). Here, we report the taxonomic characterization of a strain belonging to the genus *Vibrio*. Strain S2757\(^T\) was isolated in 2007.
from a mussel collected in the Solomon Sea (Solomon Islands) during the Galathea 3 global research expedition (http://www.galathea3.dk/uk) and was affiliated to the Vibrionaceae family based on its 16S rRNA gene sequence, as previously described (Gram et al., 2010).

The type strains included in this study V. brasiliensis DSM 17184T (Thompson et al., 2003a), V. orientalis DSM 19136T (Yang et al., 1983), V. hepatarius DSM 19134T (Thompson et al., 2003b), V. tubiashii DSM 19142T (Hada et al., 1984), V. sinaloensis DSM 21326T (Gomez-Gil et al., 2008), V. xuii DSM 17185T (Thompson et al., 2003a) and V. nereis DSM 19584T (Baumann et al., 1980) were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). All strains were routinely cultivated on Marine Agar (MA) (212185, Difco) or in Marine Broth (MB) (279110, Difco) at 25 °C.

Strain S2757T grew as small (2-4 mm), round, beige colonies after 48 hours on MA at 25 °C. Cell morphology of strain S2757T was observed by means of phase-contrast microscopy (x 1,000 magnification in Olympus BX51) and Scanning Electron Microscopy (FEI Quanta 200 FEG ESEM) after growth in filtered MB for 24 hours at 25 °C. Gram testing and catalase activity were assessed with the 3 % KOH (Gregersen, 1978) and the 3 % H2O2 (Cowan, 1974) methods, respectively. Oxidase activity was determined on a BBL™ DrySlide™ Oxidase (231746, BD Diagnostics) following manufacturers’ instructions. Test of susceptibility to the vibriostatic agent O/129 (2,4-diamino-6,7-diisopropyl pteridine, 10 and 150 μg/disc) was performed on Iso-sensitest agar (CM04741B, Oxoid) supplemented with 1.5 % NaCl and incubation at 25 °C for 48 hours. Salinity requirements of strain S2757T were determined in synthetic ZoBell medium (5 g/L Bacto peptone, 1 g/L yeast extract, 0.1 g/L ferric citrate) (ZoBell, 1941) with different NaCl concentrations (0 to 9 % w/v) at 28 °C. Growth was assessed using a microplate reader (Spectra Max i3, Molecular Devices). The temperature range for growth was determined on MA. The ability of strain S2757T to grow in anaerobic conditions was tested on MA at 25 °C using an anaerobic jar and anaerobic atmosphere generation bags (68061, Fluka).
Physiological and biochemical characterization using API 20 NE strips (20050, Biomerieux), API ZYM strips (25200, Biomerieux) and Biolog GN2 plates (Biolog Inc., USA) was done on strain S2757^T and on the closely related species V. tubiashii DSM 19142^T, V. brasiliensis DSM 17184^T, V. orientalis DSM 19136^T and V. hepatarius DSM 19134^T. Bacterial suspensions were prepared in 1.5 % w/v NaCl using biomass grown overnight on MA at 25 °C. Inoculation of strips and plates was done in agreement with the manufacturers’ instructions. Cellular fatty acid of strain S2757^T and related species were analyzed as methyl esters (FAME) by gas chromatography. The analysis was performed in duplicates by the DSMZ using biomass grown for 24 hours on MA at 25 °C and according to the instructions of the Microbial Identification System (MIDI Inc., USA). Cell morphology of strain S2757^T and related species was observed on thiosulfate-citrate-bile-sucrose (TCBS, CM0333, Oxoid) agar plates. Detailed morphological, physiological and biochemical features distinguishing strain S2757^T from related species are summarized in Table 1 and in the species description. The complete list of the results of the performed tests and analyses is available in Table S2.

Cells of S2757^T were Gram negative, slightly curved rod shaped (1.5 ± 0.4 μm in length) and motile by means of one polar flagellum (0.7 ± 0.2 μm in length) (Figure S1). Strain S2757^T was catalase and oxidase positive, and sensitive to the vibriostatic agent O/129. NaCl was required for growth and tolerated up to a concentration of 8 % w/v. Strain S2757^T grew as green, small (2-3 mm) colonies on TCBS agar. Strain S2757^T produced α-glucosidase but not acid phosphatase, N-acetyl-β-glucosaminidase and lipase. The strain could utilize D-glucose-6-phosphate and D-alanine, but not L-threonine, L-proline and sucrose. The major cellular fatty acids of strain S2757^T were summed feature 3 (16:1 ω7c and/or 16:1ω6c and/or 15 iso 2OH), 16:0, and summed feature 8 (18:1 ω7c and/or 18:1 ω6c). These values were comparable to those of the closely related species; however, the fatty acid pattern of strain S2757^T was distinct due to the presence of a relatively high amount (9.8% in total) of the
fatty acids 15:0 iso, 16:0 iso and 17:0 iso compared to the patterns of the other analyzed species, for which values were lower than 1.2 %.

For strains *V. hepatarius* DSM 19134\(^T\), *V. xuii* DSM 17185\(^T\) and *V. nereis* DSM 19584\(^T\) no whole genome sequence was publicly available at the time this study was started. Therefore, high purity genomic DNA was obtained as described previously (Sambrook & Russel, 2001) by repeated phenol:chloroform:isoamyl alcohol purification steps followed by RNase treatment and DNA precipitation. Quantification was performed on a NanoDrop Spectrometer (Saveen Werner, Sweden) and a Qubit 2.0 Analyser (Invitrogen, United Kingdom).

Genome sequencing was carried out at the NovoNordisk Foundation Center for Biosustainability (Hørsholm, Denmark). Libraries of 300-400 bp were prepared and used for 151 bp paired-end sequencing by Illumina sequencing technology on a MiSeq sequencer. Data were assembled to contigs using the *de novo* assembly algorithm of CLC Genomic Workbench, version 7 (CLC Bio, Aarhus, Denmark). The list of the GenBank/EBI accession numbers of the nucleotide sequences used in this study, including those herein generated, is available in Table S1. For the *in silico* phylogenetic analysis, sequences of the single genes were obtained directly from the GenBank database or extracted from whole genome sequences based on their PGAP (NCBI Prokaryotic Genome Annotation Pipeline) annotation (Tatusova *et al.*, 2013) or by BLAST search using CLC Main Workbench Version 7.6.2 (CLC Bio, Aarhus, Denmark).

The comparison of the 1487 bp long 16S rRNA gene sequence obtained from the complete genome sequence of the new isolate with those from type strains available in the GenBank database using the BLASTN algorithm (https://blast.ncbi.nlm.nih.gov) and the Ez-Taxon-e service (http://www.ezbiocloud.net/eztaxon) confirmed that strain S2757\(^T\) belongs to the genus *Vibrio*, as previously established (Gram *et al.*, 2010). Pairwise alignment of the almost complete 16S rRNA gene sequences was carried out using CLC Main Workbench. A phylogenetic tree was constructed in MEGA6 (Tamura *et al.*, 2013) using the Neighbor-Joining method. The robustness of the tree topology was tested with 1000 bootstrap iterations (Fig.1). Based on the 16S rRNA gene sequences, strain
S2757T was phylogenetically closely related to *V. hepatarius* DSM 19134T, *V. brasiliensis* DSM 17184T, *V. maritimus* R 40493T and *V. tubiashii* DSM 19142T sharing 98.5%, 98.3%, 98.2% and 97.8% 16S rRNA gene sequence similarity, respectively. However, due to the low interspecies resolution which can be obtained in *Vibrionaceae* by using the 16S rRNA gene sequence (Sawabe *et al.*, 2007), two phylogenetic trees based on complete sequences of the recently proposed *Vibrionaceae* phylogenetic marker fur gene (Machado & Gram, 2015) (Fig. 2) and on the concatenated sequences of five housekeeping genes (Fig. 3) were constructed. These phylogenetic trees were obtained as described above and elsewhere (Machado & Gram, 2015; Sawabe *et al.*, 2013; Thompson *et al.*, 2005). For the fur gene phylogenetic tree, gene sequences were obtained either by PCR based gene amplification followed by sequencing as described previously (Machado & Gram, 2015), or from whole genome sequences as described above. For the multilocus sequence analysis (MLSA), sequences of the 16S rRNA, DNA gyrase subunit B (gyrB), uridylate kinase (pyrH), recombinant protein RecA (recA) and DNA topoisomerase I (topA) genes were retrieved from the GenBank database or from whole genome sequences, as described above. Sequences were trimmed to a common length and concatenated to a final length of 3800 bp. Both phylogenetic trees showed that strain S2757T was clearly separated from the other analyzed *Vibrio* species.

Whole genomes sequences of strain S2757T and closely related species were compared by DNA-DNA Hybridization (DDH) and Average Nucleotide Identity (ANI) values obtained in silico using the Genome-to-Genome Distance calculator 2.0 (GGDC) provided by the DSMZ (http://ggdc.dsmz.de/) (Meier-Kolthoff *et al.*, 2013) and the Average Nucleotide Identity calculator (http://enve-omics.ce.gatech.edu/ani/) developed by the Kostas Lab (Goris *et al.*, 2007). All DDH and ANI values were below the thresholds used for species definition (70 % for DDH and 95 % for ANI) and identified *V. tubiashii* ATCC 19109T as the closest relative of strain S2757T, with DDH = 22.50 % and ANI = 81.13% (Table 2). The G + C content of S2757T calculated in silico using CLC Main Workbench was 45.3 mol%, which is in agreement with values reported in literature for *Vibrio* species.
The presented results indicate that strain S2757T should be classified as a novel species in the genus *Vibrio*, for which the name *Vibrio galatheae* sp. nov. is proposed.

Description of *Vibrio galatheae* sp.nov.

Vibrio galatheae (ga.la.the'a. N.L. gen. n. galatheae, referring to the name of the Danish research expedition Galathea 3 during which the type strain was isolated).

Cells are slightly curved rods, Gram-negative and motile by means of one polar flagellum. Colonies are circular, beige in color and 2–4 mm in size after 48 hours at 25 °C on MA and round, green and 2–4 mm in size after 48 hours at 25 °C on TCBS. Growth occurs in presence of 0.5–8 % (w/v) NaCl in synthetic ZoBell medium, with optimal growth at 2–5 %. The strain grows at 15–40 °C, with optimal growth at 25–30 °C. Growth is observed under anaerobic conditions. The strain is positive for catalase and oxidase and sensitive to the vibriostatic agent O/129. Strain S2757T reduces nitrates to nitrites, produces indole and hydrolyzes esculin. Positive for alkaline phosphatase, esterase lipase, leucine arylamidase, valine arylamidase and cysteine arylamidase but not for lipase and acid phosphatase. Strain S2757T can utilize as sole carbon sources: N-acetyl-D-glucosamine, D-cellobiose, D-fructose, α-D-glucose, maltose, D-mannitol, D-mannose, D-trehalose, D-gluconic acid, D,L-lactic acid, D-alanine, L-alanine, L-alanyl-glycine, L-asparagine, L-aspartic acid, L-glutamic acid, glycil-L-glutamic acid, inosine, uridine thymidine, α-D-glucose-1-phosphate and D-glucose-6-phosphate. It cannot utilize: N-acetyl-D-galactosamine, sucrose, succinic acid, glycil-L-aspartic acid, L-proline, L-threonine and glycerol. The most abundant fatty acids of strain S2757T are summed feature 3 (comprising 16:1 ω7c and/or 16:1ω6c and/or 15 iso 2OH), 16:0, and summed feature 8 (comprising 18:1 ω7c and/or 18:1 ω6c).

The type strain, S2757T (= DSM 100497T = LMG 28895T), was isolated from a mussel collected in the Solomon Sea, Solomon Islands. The DNA G+C content of the type strain is 45.3 mol%.
Acknowledgements

SG and HM were supported by an Early Stage Researchers Grant from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7-People-2012-ITN, under grant agreement No. 317058, “BacTory”. This work was carried out as part of the Galathea 3 expedition under the auspices of the Danish Expedition Foundation. This is Galathea 3 contribution no. P114 (to be added if/when accepted).
REFERENCES

List of figures and tables

Figure 1. Phylogenetic tree based on partial 16S rRNA gene sequences, obtained using the Neighbor-Joining method. Numbers at nodes indicate the level of bootstrap based on 1000 replicates; only values >50% are shown. *Photobacterium aquae* was used as outgroup. Bar, 0.5% estimated sequence divergence.

Figure 2. Phylogenetic tree based on complete *fur* gene sequences, obtained using the Neighbor-Joining method. Numbers at nodes indicate the level of bootstrap based on 1000 replicates; only values >50% are shown. *Photobacterium aquae* was used as outgroup. Bar, 5% estimated sequence divergence.

Figure 3. Phylogenetic tree based on concatenated sequences of five genes (16S rRNA, *gyrB*, *pyrH*, *recA* and *topA*; approximately 3800 bp) obtained using the Neighbor-Joining method. The sizes of the gene sequences were: 16S RNA, 1439 bp; *gyrB*, 738 bp; *pyrH*, 530 bp; *recA*, 554 bp and *topA*, 552 bp. Numbers at nodes indicate the level of bootstrap based on 1000 replicates; only values >50% are shown. *Photobacterium aquae* was used as outgroup. Bar, 2% estimated sequence divergence.

Table 1. Features differentiating strain S2757T from closely related *Vibrio* species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Identification</th>
<th>G</th>
<th>Y</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Vibrio galatheae sp. nov.</td>
<td>(2) V. brasiliensis DSM 17184T</td>
<td>G</td>
<td>Y</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(3) V. orientalis DSM 19136T</td>
<td>(4) V. hepatarius DSM 19134T</td>
<td>G</td>
<td>Y</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(5) V. tubiashii DSM 19142T</td>
<td>G</td>
<td>Y</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

All data were generated in this work in biological duplicates.

Table 2. Comparison of the genomic sequences of S2757T and related species based on DNA-DNA Hybridization (DDH) and two-way Average Nucleotide Identity (ANI) values obtained with in silico methods.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>(1) V. galatheae</th>
<th>(2) V. hepatarius DSM 19134T</th>
<th>(3) V. xuii DSM 17185T</th>
<th>(4) V. nereis DSM 19584T</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. brasiliensis LMG 20546T = DSM 17184T; (6) V. orientalis DSM 19136T; (7) V. tubiashii ATCC 19109T = DSM 19142T.

265

266
Table 1. Features differentiating strain S2757T from closely related Vibrio species.

Species are identified as: (1) *Vibrio galatheae* sp. nov., (2) *V. brasiliensis* DSM 17184T, (3) *V. orientalis* DSM 19136T, (4) *V. hepatarius* DSM 19134T, and (5) *V. tubiashii* DSM 19142T. G, green; Y, yellow; +, positive; -, negative. All data were generated in this work in biological duplicates.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate‡</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malic acid‡</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Growth in/on:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 % NaCl</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TCBS (colour)</td>
<td>G</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Production of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase†</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-glucosidase†</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Acid phosphatase†</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-acetyl-β-glucosaminidase†</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-glucose-6-phosphate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L-threonine</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>L-proline</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-alanine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>FAME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:0</td>
<td>19.5 ± 0.2</td>
<td>24.8 ± 0.3</td>
<td>23.3 ± 0.4</td>
<td>22.6 ± 0.2</td>
<td>22.2 ± 0.2</td>
</tr>
<tr>
<td>15:0 iso</td>
<td>2.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>16:0 iso</td>
<td>3.7</td>
<td>0.5</td>
<td>0.6</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>17:0 iso</td>
<td>4.0</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Summed feature 3*</td>
<td>34.7 ± 0.4</td>
<td>35.9 ± 0.4</td>
<td>44.7 ± 0.4</td>
<td>39 ± 0.4</td>
<td>35.8 ± 0.3</td>
</tr>
<tr>
<td>Summed feature 8*</td>
<td>15.8 ± 0.2</td>
<td>19.5 ± 0.2</td>
<td>10.6 ± 0.2</td>
<td>18.3 ± 0.2</td>
<td>23.0 ± 0.2</td>
</tr>
</tbody>
</table>

* Summed feature 3: one or more of 16:1 \(\omega7c\), 16:1\(\omega6c\) and/or 15:0 \(\omega2OH\). Summed feature 8: 18:1 \(\omega7c\) and/or 18:1 \(\omega6c\).
Table 2. Comparison of the genomic sequences of S2757\(^T\) and related species based on DNA-DNA Hybridization (DDH) and two-way Average Nucleotide Identity (ANI) values obtained with *in silico* methods.

Taxa: (1) *V. galatheae*; (2) *V. hepatarius* DSM 19134\(^T\); (3) *V. xuii* DSM 17185\(^T\); (4) *V. nereis* DSM 19584\(^T\); (5) *V. brasiliensis* LMG 20546\(^T\) = DSM 17184\(^T\); (6) *V. orientalis* DSM 19136\(^T\); (7) *V. tubiashii* ATCC 19109\(^T\) = DSM 19142\(^T\).

<table>
<thead>
<tr>
<th>DDH ± SD (%)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80.22 ± 6.17</td>
<td>80.51 ± 5.90</td>
<td>79.81 ± 5.89</td>
<td>80.32 ± 5.73</td>
<td>80.56 ± 5.81</td>
<td>81.13 ± 5.48</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20.00 ± 2.31</td>
<td>80.35 ± 5.76</td>
<td>82.56 ± 6.48</td>
<td>80.45 ± 6.00</td>
<td>80.24 ± 5.79</td>
<td>80.53 ± 6.16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20.80 ± 2.33</td>
<td>20.90 ± 2.33</td>
<td>80.41 ± 6.06</td>
<td>81.29 ± 6.06</td>
<td>88.74 ± 4.55</td>
<td>81.61 ± 6.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19.70 ± 2.30</td>
<td>22.30 ± 2.48</td>
<td>35.50 ± 6.06</td>
<td>80.06 ± 5.91</td>
<td>80.06 ± 5.72</td>
<td>80.26 ± 5.90</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20.60 ± 2.32</td>
<td>20.30 ± 2.34</td>
<td>21.20 ± 2.34</td>
<td>19.90 ± 5.91</td>
<td>81.28 ± 6.01</td>
<td>81.14 ± 5.90</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20.70 ± 2.32</td>
<td>20.30 ± 2.34</td>
<td>38.00 ± 2.34</td>
<td>20.30 ± 2.34</td>
<td>21.40 ± 6.01</td>
<td>81.83 ± 6.99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22.50 ± 2.36</td>
<td>20.60 ± 2.32</td>
<td>21.80 ± 2.35</td>
<td>20.30 ± 2.31</td>
<td>21.60 ± 2.34</td>
<td>21.80 ± 2.35</td>
<td></td>
</tr>
</tbody>
</table>
Vibrio sinaloensis CAIM 797T = DSM 21333T (NR_0438)
- Vibrio sinaloensis CAIM 648 = DSM 21326 (EU043381)
- Vibrio parahaemolyticus NBRC 12711T = ATCC 17802T (NR_113604)
- Vibrio rotiferianus LMG 21460T = CAIM 577T (NR_118091)
- Vibrio harveyi NCIMB 1280T = NBRC 15634T = ATCC 14126T (NR_043165)
- Vibrio nereis DSM 19584T (LHPJ01)
- Vibrio xuii DSM 17185T (LHPK01)
- Vibrio hepatarius DSM 19134T (LHPJ01)
- Vibrio tubiashii ATCC 19109T = DSM 19142T (NR_118093)
- Vibrio brasiliensis LMG 20546T = DSM 17184T (AEVS01)
 - Vibrio galatheae S2757T = DSM 100497T = LMG 28895T (JXXV01)
 - Vibrio maritimus R40493T (GU929925)
 - Vibrio caribbeanicus ATCC BAA-2122T (AEIU01)
 - Vibrio orientalis CIP 102297T = ATCC 33934T = DSM 19136T (ACZV01)
 - Vibrio pacini LMG 19999T = DSM 19139T (NR_025479)
- Vibrio scophthalmi LMG 19158 (NR_117889)
- Photobacterium aquae CGMCC 1.12159T (LDOT01)
Vibrio harveyi NCIMB 1280T = NBRC 15634T = ATCC 14126T

Vibrio parahaemolyticus NBRC 12711T = ATCC 17802T

Vibrio rotiferianus LMG 21460T = CAIM 577T

Vibrio scophthalmi LMG 19158T

Vibrio sinaloensis CAIM 648 = DSM 21326

Vibrio sinaloensis CAIM 797T = DSM 21333T

Vibrio pacini LMG 19999T = DSM 19139T

Vibrio caribbeanicus ATCC BAA-2122T

Vibrio brasiliensis LMG 20546T = DSM 17184T

Vibrio tubiashii ATCC 19109T = DSM 19142T

\textbf{Vibrio galatheae 52757T = DSM 100497T = LMG 28895T}

Vibrio orientalis CIP 102297T = ATCC 33934T = DSM 19136T

Vibrio xuii DSM 17185T

Vibrio hepatarius DSM 19134T

Vibrio nereis DSM 19584T

Photobacterium aquae CGMCC 1.12159T
Vibrio rotiferianus LMG 21460T = CAIM 577T
Vibrio harveyi NCIMB 1280T = NBRC 15634T = ATCC 14126T
Vibrio parahaemolyticus NBRC 12711T = ATCC 17802T
Vibrio hepatarius DSM 19134T
Vibrio nereis DSM 19584T
Vibrio parahaemolyticus NBRC 12711T = ATCC 17802T
Vibrio hepatarius DSM 19134T
Vibrio nereis DSM 19584T
Vibrio parahaemolyticus NBRC 12711T = ATCC 17802T
Vibrio xuii DSM 17185T
Vibrio orientalis CIP 102297T = ATCC 33934T = DSM 19136T
Vibrio galatheae S2757T = DSM 100497T = LMG 28895T
Vibrio sinaloensis CAIM 648 = DSM 21326
Vibrio tubiashii ATCC 19109T = DSM 19142T
Vibrio maritimus R40493T
Vibrio caribbeanicus ATCC BAA-2122T
Vibrio pacini LMG 19999T = DSM 19139T
Vibrio scophthalmi LMG 19158
Photobacterium aquae CGMCC 1.12159T
Figure S1. Wet scanning transmission electron Micrograph in Scanning Electron Microscope (wet-STEM SEM) image of uranyl acetate stained strain S2757^T grown in MB for 24 hours at 25 °C.
Table S1. GenBank/EBI Accession numbers of the nucleotide sequences used in this study. For gene sequences that were extracted from whole genome sequences, the WGS accession number is listed.

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>GenBank/EBI accession number</th>
<th>WGS 16S rRNA</th>
<th>fur</th>
<th>gyrB</th>
<th>pyrH</th>
<th>recA</th>
<th>topA</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. galatheae</td>
<td>S2757(^T) = DSM 100497(^T) = LMG 28895(^T)</td>
<td>JXXV01 JXXV01</td>
<td>JXXV01 JXXV01 JXXV01 JXXV01 JXXV01 JXXV01 JXXV01 JXXV01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. brasiliensis</td>
<td>LMG 20546(^T) = DSM 17184(^T)</td>
<td>AEVS01 AEVS01</td>
<td>AEVS01 AEVS01 AEVS01 AEVS01 AEVS01 AEVS01 AEVS01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. orientalis</td>
<td>CIP 102297(^T) = ATCC 33934(^T) = DSM 19136(^T)</td>
<td>ACZV01 ACZV01</td>
<td>ACZV01 ACZV01 ACZV01 ACZV01 ACZV01 ACZV01 ACZV01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. hepatarius</td>
<td>DSM 19134(^T)</td>
<td>LHP101* LHP101*</td>
<td>LHP101* LHP101* LHP101* LHP101* LHP101* LHP101* LHP101*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. tubiashii</td>
<td>ATCC 19109(^T) = DSM 19142(^T)</td>
<td>AFWI01 NR_118093</td>
<td>AFWI01 AFWI01 AFWI01 AFWI01 AFWI01 AFWI01 AFWI01 AFWI01 AFWI01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. caribbeanicus</td>
<td>ATCC BAA-2122(^T)</td>
<td>AEIU01 AEIU01</td>
<td>AEIU01 AEIU01 AEIU01 AEIU01 AEIU01 AEIU01 AEIU01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. xuii</td>
<td>DSM 17185(^T)</td>
<td>LHPK01* LHPK01*</td>
<td>LHPK01* LHPK01* LHPK01* LHPK01* LHPK01* LHPK01* LHPK01*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. nereis</td>
<td>DSM 19584(^T)</td>
<td>LHPJ01* LHPJ01*</td>
<td>LHPJ01* LHPJ01* LHPJ01* LHPJ01* LHPJ01* LHPJ01* LHPJ01*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. harveyi</td>
<td>NCIMB 1280(^T) = NBRC 15634(^T) = ATCC 14126(^T)</td>
<td>BAOD01 NR_043165</td>
<td>BAOD01 BAOD01 BAOD01 BAOD01 BAOD01 BAOD01 BAOD01 BAOD01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. pacini</td>
<td>LMG 19999(^T) = DSM 19139(^T)</td>
<td>JONH01 NR_025479</td>
<td>JONH01 JONH01 JONH01 JONH01 JONH01 JONH01 JONH01 JONH01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. parahaemolyticus</td>
<td>NBRC 12711(^T) = ATCC 17802(^T)</td>
<td>LATW01 NR_113604</td>
<td>LATW01 LATW01 LATW01 LATW01 LATW01 LATW01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. rotiferianus</td>
<td>LMG 21460(^T) = CAIM 577(^T)</td>
<td>BAOI01 NR_118091</td>
<td>BAOI01 BAOI01 BAOI01 BAOI01 BAOI01 BAOI01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. scophthalmi</td>
<td>LMG 19158(^T)</td>
<td>AFWE01 NR_117889</td>
<td>AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. sinaloensis</td>
<td>CAIM 797(^T) = DSM 21333(^T)</td>
<td>NR_043858 KT380049*</td>
<td>AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01 AFWE01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. sinaloensis</td>
<td>CAIM 648 = DSM 21326</td>
<td>AET01 EU043381</td>
<td>AET01 AET01 AET01 AET01 AET01 AET01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. maritimus</td>
<td>R 40493(^T)</td>
<td>GU929925 GU929925</td>
<td>GU929925 GU929933 GU929935 GU929939</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aquare</td>
<td>CGMCC 1.12159(^T)</td>
<td>LDOT01 LDOT01</td>
<td>LDOT01 LDOT01 LDOT01 LDOT01 LDOT01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Sequences generated in this study.
Table S2: Results from the phenotypic and chemotaxonomic analyses. +, positive; -, negative, ND, not determined; w, weak reaction.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>V. galathea</th>
<th>V. brasiliensis</th>
<th>V. orientalis</th>
<th>V. hepatarius</th>
<th>V. tubiashii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biolog GN2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-cyclodextrin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dextrin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>glycogent</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tween 40</td>
<td>w</td>
<td>+</td>
<td>+</td>
<td>w</td>
<td>+</td>
</tr>
<tr>
<td>Tween 80</td>
<td>w</td>
<td>+</td>
<td>w</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N-acetyl-D-galactosamine</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-acetyl-D-glucosamine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>adonitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-arabinose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-arabitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-cellobiose</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>i-erythritol</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-fructose</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-fucose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-galactose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>w</td>
<td>-</td>
</tr>
<tr>
<td>Gentibiose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-D-glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>m-inositol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-D-lactose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lactulose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-mannitol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-mannose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-melibiose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b-methyl-D-glucoside</td>
<td>w</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-psicose</td>
<td>w</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-raffinose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-rhamnose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-sorbitol</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>sucrose</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-trehalose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>turanose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>xylitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pyruvic acid methyl ester</td>
<td>w</td>
<td>+</td>
<td>-</td>
<td>w</td>
<td>-</td>
</tr>
<tr>
<td>succinic acid mono-methyl ester</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>acetic acid</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>w</td>
</tr>
<tr>
<td>cis-aconitic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>citric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>formic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-galactonic acid lactone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-galacturonic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-gluconic acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-glucosaminic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-glucuronic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-hydroxybutyric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b-hydroxybutyric acid</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>w</td>
</tr>
<tr>
<td>g-hydroxybutyric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-hydroxyphosphorylactic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>itaconic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-ketobutyric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Characteristic</td>
<td>V. galathea</td>
<td>V. brasiliensis</td>
<td>V. orientalis</td>
<td>V. hepatarius</td>
<td>V. tubiashii</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>a-ketoglutaric acid</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-ketovaleric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D,L-lactic acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>malonic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>proprionic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>quinic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-saccharic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sebacic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>succinic acid</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>bromosuccinic acid</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>succinamic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>glucuronamide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>w</td>
</tr>
<tr>
<td>L-alaninamide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-alanine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-alanine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-alanyl-glycine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-asparagine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-aspartic acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-glutamic acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>glycil-L-aspartic acid</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>glycil-L-glutamic acid</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-histidine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hydroxy-L-proline</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-leucine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-ornithine</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-phenylalanine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-proline</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-pyroglutamic acid</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-serine</td>
<td>w</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-serine</td>
<td>w</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-threonine</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D,L-carnitine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g-amino butyric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>urocanic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>imosine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>uridine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>thymidine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>phenylethylamine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>putrescine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-aminoethanol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,3-butanediol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>glycerol</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D,L-a-glycerol phosphate</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-D-glucose-1-phosphate</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-glucose-6-phosphate</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>alkaline phosphatase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>esterase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>esterase lipase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>lipase</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>leucine arylamidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>valine arylamidase</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cystine arylamidase</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>trypsin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-chymotripsin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>acid phosphatase</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>naphtol-AS-BI phosphohydrolase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>a-galactosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

API ZYM

<table>
<thead>
<tr>
<th>Activity</th>
<th>V. galathea</th>
<th>V. brasiliensis</th>
<th>V. orientalis</th>
<th>V. hepatarius</th>
<th>V. tubiashii</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkaline phosphatase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>esterase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>esterase lipase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>lipase</td>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>leucine arylamidase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>valine arylamidase</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cystine arylamidase</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>trypsin</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-chymotripsin</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>acid phosphatase</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>naphtol-AS-BI phosphohydrolase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>a-galactosidase</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Characteristic</td>
<td>V. galathea</td>
<td>V. brasiliensis</td>
<td>V. orientalis</td>
<td>V. hepatarius</td>
<td>V. tubiashii</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>b-galactosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b-glucuronidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-glucosidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>b-glucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-acetyl-b-glucosaminidase</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>a-mannosidase</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a-fucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sum in Feature 2 12:0 aldehyde</td>
<td>10:0 3OH</td>
<td>0.06</td>
<td>0.06</td>
<td>11.799</td>
<td>12.484</td>
</tr>
<tr>
<td>unknown</td>
<td>1.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>12:0</td>
<td>3.4</td>
<td>3.2</td>
<td>3.6</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>unknown</td>
<td>0.4</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>13:0 ISO</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>13:1 at 12-13</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>13:0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>13:0 iso 3 OH</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>12:0 2OH</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>12:0 3OH</td>
<td>1.8</td>
<td>2.0</td>
<td>1.9</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>14:0 ISO</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>14:0</td>
<td>6.5</td>
<td>6.4</td>
<td>9.1</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td>unknown</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>14:1 w5c</td>
<td>2.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>15:0 ISO</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>15:0 ANTEISO</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>15:0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>15:1 w8c</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>15:0 iso 3 OH</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>14:0 ISO 3 OH</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Mass in feature 2 14:0 3OH/16:1 ISO I</td>
<td>3.7</td>
<td>0.5</td>
<td>0.6</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>16:0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>16:1 w9c</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>16:1 w7c alcohol</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Sum in feature 3 16:1 w7c/16:1w6c</td>
<td>15,9</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>16:1 w5c</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>16:0</td>
<td>19.5</td>
<td>24.8</td>
<td>23.3</td>
<td>22.6</td>
<td>22.2</td>
</tr>
<tr>
<td>17:0 ISO</td>
<td>4.0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>17:0 anteiso</td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>17:1 w8c</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>17:1 w9c</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>17:0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>16:0 3OH</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Sum in feature 8 18:1 w7c</td>
<td>15,9</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>18:1 w9c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>18:1 w7c 11-methyl</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>18:1 w7c</td>
<td>19.5</td>
<td>24.8</td>
<td>23.3</td>
<td>22.6</td>
<td>22.2</td>
</tr>
<tr>
<td>18:1 w5c</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>18:0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>18:0 iso</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>**Summ in feature 7 un 18.846/19:1 w6c</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>20:1 w7c</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Summed feature 2 *</td>
<td>2.1</td>
<td>2.6</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Summed feature 3 *</td>
<td>34.7</td>
<td>35.9</td>
<td>44.7</td>
<td>39.0</td>
<td>35.8</td>
</tr>
<tr>
<td>Characteristic</td>
<td>V. galathea</td>
<td>V. brasiliensis</td>
<td>V. orientalis</td>
<td>V. hepatarius</td>
<td>V. tubiashii</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Summed feature 7 *</td>
<td>0,4</td>
<td>0,4</td>
<td>15,8</td>
<td>10,6</td>
<td>18,3</td>
</tr>
<tr>
<td>Summed feature 8 *</td>
<td>0,4</td>
<td>10,6</td>
<td>18,3</td>
<td>23,0</td>
<td></td>
</tr>
<tr>
<td>Nitrates--→ nitrites</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L-tryptophane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-glucose</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>L-arginine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>urea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>esculin ferric citrate (b-glucosidase)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gelatin (protease)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>b-galactosidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>D-glucose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L-arabinose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-mannose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-mannitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-acetylglucosamine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-maltose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>potassium gluconatecapric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>capric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>adipic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>malic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>trisodium citrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>phenylacetic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>oxidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Summed feature 2: one or more among 12:0 aldehyde, 14:0 3OH and/or 16:1 iso; summed feature 3: one or more among 16:1 w7c, 16:1w6c and/or 15:0 iso 2OH; summed feature 7: one or more among unknown 18.846 and/or 19:1 w6c; summed feature 8: one or more among 18:1 w7c and/or 18:1 w6c.