Process considerations for use of galactose oxidase as an industrial biocatalyst

Pedersen, Asbjørn Toftgaard; Rehn, Gustav; Woodley, John

Publication date: 2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Volatility of the product is a limiting factor. This may be avoided by using alternative aeration methods, such as dead membrane aeration. On the other hand the volatility could be utilized to selectively remove and concentration the product from the reaction mixture.

Kinetic modelling

\[
\frac{r}{V_{\text{max}}} = \frac{S (O + \frac{S}{K_{S}})}{(S + K_{m}S + K_{M}O)(1 + \frac{S}{K_{S}})}
\]

Table 1. Kinetic parameters obtained by non-linear regression of the rate expression to initial rate data.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimated value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{\text{cat}})</td>
<td>15 μmol/min/mg CFE</td>
</tr>
<tr>
<td>(K_{m})</td>
<td>36.8 mM</td>
</tr>
<tr>
<td>(K_{M})</td>
<td>3.0 mM</td>
</tr>
<tr>
<td>(K_{S})</td>
<td>196.5 mM</td>
</tr>
<tr>
<td>(a)</td>
<td>3.06 mM</td>
</tr>
</tbody>
</table>

Process considerations

Oxygen supply

The high \(K_{S}\) for oxygen relative to the solubility of oxygen reveals a trade-off between supplying oxygen sufficiently fast and utilizing the enzyme most efficiently.

Enzyme stability

The stability of enzymes is known to be affected by process related parameters such as the gas-liquid interface created upon aerating with air. This is not the case for GOase.

Substrate and product volatility

Oxygen supply by bubbling with air might cause volatile compounds in the reaction mixture to be stripped out of solution.

Conclusions and further challenges

- The high \(K_{S}\) for oxygen relative to the solubility of oxygen results in poor utilization of the enzyme at standard operating conditions. Therefore, the benefits of using enriched air or increased reactor pressure are large.

- The apparent stability of GOase towards bubbling makes the choice of aeration method less critical. However, the operating stability has to be investigated, since this might be significantly different from the stability of non-catalytically active enzyme.

- Volatility of the product is a limiting factor. This may be avoided by using alternative aeration methods, such as dead end membrane aeration. On the other hand the volatility could be utilized to selectively remove and concentration the product from the reaction mixture.

References