Regularization of Piecewise Smooth Two-Folds

Kristiansen, Kristian Uldall; Hogan, S. John

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Regularization of Piecewise Smooth Two-Folds

Kristian Uldall Kristiansen*, S. John Hogan†

* Technical University of Denmark - Department of Applied Mathematics and Computer Science (kuke@dtu.dk)
† University of Bristol (UK) - Department of Engineering Mathematics (s.j.hogan@bristol.ac.uk)

1 Piecewise Smooth Systems

$X = (X^+, X^-)$ with vector-fields (X^+, X^-) as a piecewise smooth (PWS) system. $\Sigma = \Sigma^+ \cap \Sigma^- : f(x, y, z) = 0$ is the switching manifold. Locally we take $f(x, y, z) > 0$ if (0) is divided into sliding $\Sigma_{x, y}$ and tangencies. T see Fig. (a). On $\Sigma_{x, y}$ we adopt the Filippov convention [2] of sliding (see Fig. (b)) to obtain a vector-field $(X_{\Sigma}, \Sigma_{x, y})$.

2 Singularities

$p \in \Sigma$ is a singularity of X^\pm with $X^\pm f(p) = 0$. A singularity is a fold if $X^\pm f(p) \neq 0$. Being visible when $\Sigma > 0$ (see Fig. (a)), invisible when $\Sigma < 0$ (see Fig. (c)). Here $X^\pm f = X^\pm f(x, y, z)$ is the Lie-derivative. A two-fold $p \in \Sigma$ is a fold from above and below: $X^\pm f(p) = X^\pm f(p) = 0$.

3 Two-Folds in \mathbb{R}^3

Proposition. [3] Generically, a two-fold p in \mathbb{R}^3 is the transverse intersection of two lines Σ: $x = y = 0, z \in [-c^{-1}, c^{-1}]$. $\Gamma^\pm: y = 0, x \in [-c^{-1}, c^{-1}]$ consisting of fold points of X^\pm, respectively. The lines Γ^\pm divide $\Sigma : y = 0$ into four separate regions:

- Stable sliding $\Sigma_{x, y}^+: x \leq 0, z \leq 0$
- Unstable sliding $\Sigma_{x, y}^-: x \geq 0, z \geq 0$
- Crossing downwards $\Sigma_{x, z}: x \leq 0, z \leq 0$
- Crossing upwards $\Sigma_{x, z}: x \geq 0, z \geq 0$

See Fig. (d)-(f). A two-fold is:

- Visible if Γ^\pm are both visible (Fig. (d)).
- Visible-invisible if Γ^\pm visible, Γ^\mp invisible (Fig. (e)).
- Invisible if Γ^\mp are both invisible (Fig. (f)).

Definition. A singular canard of a PWS is a trajectory of $\Sigma_{x, y}$ having a continuation through the two-fold singularity p.

The two-fold p is an equilibrium of the vector-field $F_{\Sigma}X_{\Sigma}^+$ defined in $\Sigma_{x, y}^+ \cup \Sigma_{x, y}^- \cup \Sigma_{x, y}$ and with $F_{\Sigma} = H(x, z) \in \mathbb{R}$ a scalar smooth function which is positive (negative) for $x, z < 0$ ($x, z > 0$). Then:

- Proposition. [3] Non-degenerate singular canards exists if and only if p corresponds to a node or a saddle of $F_{\Sigma}X_{\Sigma}^+$ and an eigenspace is contained in $\Sigma_{x, y} \cup \Sigma_{x, y}$.

See Fig. (g).

4 Regularization

- What happens to the two-fold/singular canards when we regularize the PWS system?
- Can we learn something about the PWS system by regularizing?

We consider the Sotomayor-Teixeira regularization [5]

$X_{\epsilon} = \frac{1}{2}X^+(1 + \phi(x, y, z)) + \frac{1}{2}X^-(1 - \phi(x, y, z))$, with $\epsilon < 1$ (see Fig. (h) and (i)). Writing $y = \epsilon y$ we obtain a hidden slow-fast system with $X_{\Sigma} = \epsilon X_{\Sigma}$ slow and \hat{y} fast.

Theorem. [3] X_{ϵ} has critical manifolds: $\Sigma_0 = \Sigma_1$ (attracting), $\Sigma_1 = \Sigma_0^+$ (repelling) and a non-hyperbolic line $p: x = 0, y \in (-1, 1)$ (see Fig. (j)). On $\Sigma_{x, y}$ Reduced system = Filippov sliding system.

Note that in terms of $y = \epsilon y$ we have $\hat{p} = p$.

5 Blowup

To study the persistence of canards we blowup the nonhyperbolic line $p: x = \epsilon x, z = \epsilon^2, \epsilon = \epsilon^r, \epsilon > 0$ following the formulation of Krupa and Szmolyan [4]. We study the phase space using directional charts $\kappa_x : x = -1$, $\kappa_y : y = 1$ and a rescaling chart: $\kappa_y : \lambda = 1$. We obtain:

Theorem. [3] Singular canards \Rightarrow (Primary, maximal) Canards as transverse intersections of continuations of Filippov slow manifolds S_{Σ^+} and S_{Σ^-} provided a certain non-resonance condition holds true. These maximal canards are $O(\sqrt{\epsilon})$ close to the singular canards.

Result and approach very similar to [6, 7] for folds in slow-fast systems in \mathbb{R}^3. But the geometry is very different.

6 Visible-Invisible Two-Fold

The two-fold is associated with forward and backwards non-uniqueness. By regularizing we can pick the “right orbits”.

Theorem. Consider the visible-invisible case and suppose as in Fig. (k) that there exists a singular cycle γ_0 satisfying certain non-degeneracy conditions, see also [1]). Then for $\epsilon \ll 1$ sufficiently small X_{ϵ} possesses an attracting limit cycle γ_0, satisfying $\gamma_0 = \gamma_0 + O(\sqrt{\epsilon})$.

PWS orbit γ_0 is therefore distinguished, as $\gamma_0 = \lim_{\epsilon \to 0+} \gamma_0$, among all the orbits through p. Note that these results hold true for all monotone regularization functions.

References