Limited area forecasting for wind energy scheduling

Rosgaard, Martin Haubjerg; Hahmann, Andrea N.; Madsen, Henrik; Giebel, Gregor; Sørensen, Poul Ejnar; Nielsen, Henrik Aalborg; Nielsen, Torben Skov

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
INTRODUCTION

For any energy system relying on wind power detailed knowledge of near-future wind fluctuations is essential for efficient utilisation in the power grid. To this end, accurate weather forecasts constitute vital input and this study concerns assessment of the value added by increasing the resolution of global weather forecasts using a specific configuration of a limited area weather forecast model (LAM).

Objective:
Quantify the extent to which LAM predictions can add value to day ahead scheduling of wind power for efficient Elspot market trading.

METHODOLOGY

The LAM employed is the open source Weather Research and Forecasting (WRF) model developed and maintained by the National Center for Atmospheric Research (NCAR), Boulder CO, USA. Initialisation and lateral boundary conditions are derived from the National Centers for Environmental Prediction (NCEP) developed and maintained Global Forecast System (GFS); four daily global weather forecasts are freely available for download.

The forecast dataset consists of twice-daily (0000 and 1200 UTC) 48-hour WRF model forecasts, generated for the time period May 2012 to May 2013, for three wind farms offshore, on the coast and inland, respectively. The forecast reference is farm-averaged wind turbine nacelle anemometer measurements.

WRF grid values are tricube-weighted according to wind farm radius and GFS grid values are bilinearly interpolated to wind farm centre coordinates. Wind speed prediction accuracy is assessed in terms of standard scalar accuracy metrics, namely root mean square error (RMSE), mean absolute error (MAE), and Pearson correlation coefficient (PCC), respectively, as well as in terms of ramp objects;

\[
\text{Critical Success Index} = \frac{\text{Hits}}{\text{Hits} + \text{False alarms} + \text{Misses}}
\]

though the ramp object evaluation results are not shown, only the results are mentioned. Likewise, the effect on performance of temporal smoothing is mentioned, yet not explicitly shown. Last, the WRF model source code is modified such that wind speed variability (standard deviation) is output; the potential of this quantity to assess wind farm production uncertainty is explored.

CONCLUSIONS

WRF model performance in terms of scalar accuracy metrics is deteriorating with model resolution offshore and on the coast, while improvement relative to the GFS forecasts is achieved inland. The forecast examples illustrate how close-to-correct wind speed simulations subject to slight phase errors and/or temporal dilation are severely penalised in terms of PCC.

However, in terms of wind speed ramp objects a nearly consistent improvement in the Critical Success Index is observed across a range of different ramp widths (not shown). Finally, forecasted wind speed variability may serve as predictor for wind speed prediction uncertainty — and hence also wind power prediction uncertainty.

RESULTS

• Weather forecasts and wind farm measurements are postprocessed to hour-resolution
• Performance in terms of PCC is shown below (MAE and RMSE are sensitive to model bias)†

Offshore

On the coast

Inland

• Forecasted wind speed variability is a feasible predictor for wind power uncertainty near the ocean
• Over land the explanatory effect severely diminishes

ACKNOWLEDGEMENT

The study and publication of results are financed by CITIES and the Danish transmission system operator Energinet.dk, under Public Service Obligation project PSO 10464.