1. Introduction

The Sustainable Electronics and IT – SUSIE (62562) is an elective course integrating sustainability for 5 or 6 semester IT and Electronics students. The course is offered in 3½ year B.Eng. Program, which includes a ½ year internship and Diploma engineering project in the industry.

This poster presents:
- The course curriculum.
- How ICT, low power design and LCA are integrated in students work.
- Some students’ projects and results.

For our technical interested students, it makes sense to:
- The sustainable science in project work about energy consumption, monitoring and control of indoor climate in buildings.
- Design for low power, by practical examples.

2. SUSIE curriculum

Open Project framework in SUSIE

Team based project work is undertaken with the purpose of using all the topics from the classes in solving a self-chosen problem. At Campus Ballerup we are used to give open project frames, hence this part of the project proposal in SUSIE:

"...Choose a problem domain for which it is relevant to monitor environmental data and controlling actuators, e.g., in a house, at Campus Ballerup, a green house, plant control, electrical vehicle, etc." "...One of the wireless nodes should be powered by a renewable energy source". For prototyping and experiments each team is given a Box.

3. SUSIE Project work

Students are asked to do a Life Cycle Assessment (LCA) using the MECO0 screening method (Ref 3)

An Example: An Xbee module is dismounted and its main parts identified.

1. Production-Data for main parts are found in SimPro database (www.pre-sustainability.com)
 - resources
 - energy used per kg unit.

2. They use the MECO0 method for:
 - calculating the resource load in mPr2
 - the primary energy consumption for the production, transport, usage and disposal phase for the Xbee.

3. The results are normally used by the students:
 - comparing the found results with alternatives for the service of the functional unit
 - Discussing the environmental impacts of substituting materials with a high resource load – in mPr2

4. The results are based on an rather old dataset for materials?

For discussion – where to find newer data – and easy for students to get?

4. Energy and protocols

Exercise about power and power management in an embedded system:
- a. Describe which main components and software parts a system contains.
- b. Which strategies can be used for power management due to reducing the energy cost?
- c. How can the energy Consumption be estimated?
- d. Discuss and list the Dynamical opportunities for power management.
- e. How should a design be carried out for best energy efficiency?

(Read chap. 3 and 7 in litt. Ref 1)

Practical lab-work

"Purpose is to estimate the power required for two boards which can full fill the user’s needs and to do experiments with the XBEE in sleep mode together with the coordinator_controller board.

By practical measurement as shown in Fig. 3 and 4 the students are taught what to consider when designing low power wireless systems.

Students are encouraged using alternative Wi-Fi devices such as:
- CC3000 (IEEE 802.11 b/g and – Embedded IPv4 TCP/IP stack ref 2.) – Or the ESP8260 to compare WIFI with low-power protocols.

5. Life cycle screening - MECO

6.1 Room monitoring

How is a class room used? That was monitored using the SUSIE kit and the knowledge gained in the first part of the course and using a free cloud service Xively.com for storage and visualization.

The prototype was made by SUSIE for the students in SDTU and that leaded to an energy saving campaign in 2013.

6.2 In-door climate monitoring

The project is about building a working prototype of an in-door climate monitoring system:
- temperature, humidity and light level
- collected through a sensor node device and transmitted to a master device.

6.3 Light control

When lights are turned on in a classroom, all light sources are turned on with 100 % light output. Ambient light from windows etc. also needs to be taken into account. The main scope of this project is to save power by controlling the light output through sensors.

7. Preliminary results

Exams and practical prototypes proves:
- In SUSIE the students obtain knowledge and can design for low power and get awareness about resources used in electronic devices
- Courses have inspired students to bring their project to Green challenge.
- Some diploma thesis within the sustainable domain Relations to other courses
- In parallel with the SUSIE course, a cross disciplinary optional course is given in Sustainable product development (SDTU) and students from the two courses meet and get inspiration for projects and prototypes which can support SDTU – mostly Civil engineering students.

References

2. CC3000 data sheet https://cdn.sparkfun.com/datasheets/Wireless/WiFi/cc3000.pdf
4. Rapid MCO0 method by Morten T. Jørgensen, 2013
5. In-classes climate monitoring project by Christian Friedrichs, Erhard Michael Oerter, Kasper Bligaard, 2010
6. Light control system from Project SUSIE18 by 2012
7. Energy savings examples by Anja Damal, Behrang Aghamirouri, Anna Holmgren Hammelius, 2010
8. Window comparison project by André Daniel Birkkjær Christensen, Anna Holmgren Hammelius, 2010
9. SUSIE Course web site with projects and reports: www.susie.dtu.dk