Phytoscreening and - remediation of brownfield mega sites

Clausen, Lauge Peter Westergaard; Trapp, Stefan; Nielsen, Mette Algreen

Publication date: 2015

Document Version
Peer reviewed version

Citation (APA):
Phytoscreening and -remediation of brownfield mega-sites

By Lauge Clausen
Professor Stefan Trapp and
Mette Algreen Nielsen

DTU Environment
Department of Environmental Engineering
We need a definition...

Brownfields are sites that are:

- Affected by the former uses of the site and surrounding land
- Are derelict and underused
- Real or perceived contamination
- Mainly in developed urban areas
- Require intervention to bring them back to beneficial use.

(Cabernet, 2015)
Brownfield test site: Szprotawa, Poland
Overview of the site
Site Impressions

Total area: 200 ha
So...

What do you do when brownfields are too large to handle by conventional screening and remediation technologies?
What happens within and around a tree?
Evapotranspiration

Degradation within the tree

Retention in stem, leaves and fruits

Prevents erosion

CO_2/O_2

Volatilization

Root zone degradation

Minimize infiltration

Uptake of contaminant

Lowering GW table

Many other processes

O_2
Phytoscreening by tree coring

- Tree core samples are taken with a small hand drill
- A small tree core represents a large soil volume: Semi-quantitative
- Fast, low-cost and non-invasive → High sampling density

Mainly used to focus other more expensive methods

Nielsen (2015)
Phytoscreening at Szprotawa

Conventional

Nielsen (2015)
Phytoremediation

- **Phytoextraction:** Transfer of pollutants to the vegetation.

- **Phytovolatilization:** Volatilization of components through trunks or stomata of the leaves.

- **Rhizo- and phytodegradation:** Degradation of pollution in the root zone or inside the plants.

- **Hydraulic control and prevent soil corrosion:** Plants binds the soil an minimizing infiltration.

- **Others**
Phytoremediation

- **Phytoextraction**: Transfer of pollutants to the vegetation.

- **Phytovolatilization**: Volatilization of components through trunks or stomata of the leaves.

- **Rhizo- and phytodegradation**: Degradation of contamination in the root zone or inside the plants.

- **Hydraulic control and prevent soil corrosion**: Plants binds the soil an minimizing infiltration.

- **Others**
Time estimate of phytoremediation
- Szprotawa test site

Change of mass with time = Microbial deg. + Uptake to plants

Microbial deg. >> Plant uptake

Assume that deg. is controlled by O_2 accessibility (3.5 mole O_2/ mole alkanes)

Phytoremediation takes long time!
Remember (when working with plants)

Phytotoxicity:
If the site conditions are toxic to plants, they are no good.

Depth of pollutants:
The roots needs to get in contact with the pollution.

Physico/chemical properties of pollutants:
Some pollutants sorp too strongly to the soil, making them not available to the plants.

NVTF (2015)
NPL (2015)
Key messages

Phytoscreening:
Semi-quantitative
Need plants
False negatives

Phytoremediation:
Takes time
May generate new issues

Nielsen (2015)

ROUX (2015)
When dealing with brownfield mega-sites plants might be our best solution
Our thanks goes to...

...and all others that helped us out.
Questions
References

Cabernet, 2015, Concerted Action on Brownfield and Economic Regeneration Network, Definition of brownfields,

Nielsen MA, 2015, The Feasibility of Tree Coring as a Screening Tool for Selected Contaminants in the Subsurface, Ph.D-thesis,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

ROUX Associates, 2015, Environmental consulting and management, Image, Phytoremediation of closed landfill,

Nodaway Valley Tree Farm (NVTF), 2015, Plant farming, Image, Dead trees,

National Physical Laboratory (NPL), 2015, National Measurement Institute of UK, Image, PAH’s,