Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago

Rasmussen, Simon; Allentoft, Morten Erik; Nielsen, Kasper; Orlando, Ludovic; Sikora, Martin; Sjögren, Karl-Göran; Pedersen, Anders Gorm; Schubert, Mikkel; Van Dam, Alex; Kapel, Christian Moliin Outzen; Nielsen, Henrik Bjørn; Brunak, Søren; Avetisyan, Pavel; Epimakhov, Andrey; Khalyapin, Mikhail Viktorovich; Gnuni, Artak; Kriiska, Aivar; Lasak, Irena; Metspalu, Mait; Moiseyev, Vyacheslav; Gromov, Andrei; Pokutta, Dalia; Saag, Lehti; Varul, Liivi; Yepiskoposyan, Levon; Sicheritz-Pontén, Thomas; Foley, Robert A; Lahr, Marta Mirazón; Nielsen, Rasmus; Kristiansen, Kristian; Willerslev, Eske

Published in:
Cell

Link to article, DOI:
10.1016/j.cell.2015.10.009

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Early Divergent Strains of *Yersinia pestis* in Eurasia 5,000 Years Ago

Highlights
- *Yersinia pestis* was common across Eurasia in the Bronze Age.
- The most recent common ancestor of all *Y. pestis* was 5,783 years ago.
- The *ymt* gene was acquired before 951 cal BC, giving rise to transmission via fleas.
- Bronze Age *Y. pestis* was not capable of causing bubonic plague.

Authors
Simon Rasmussen, Morten Erik Allentoft, Kasper Nielsen, ..., Rasmus Nielsen, Kristian Kristiansen, Eske Willerslev

Correspondence
ewillerslev@snm.ku.dk

In Brief
The plague-causing bacteria *Yersinia pestis* infected humans in Bronze Age Eurasia, three millennia earlier than any historical records of plague, but only acquired the genetic changes making it a highly virulent, flea-borne bubonic strain ~3,000 years ago.

Rasmussen et al., 2015, *Cell* 163, 571–582

October 22, 2015 ©2015 The Authors
http://dx.doi.org/10.1016/j.cell.2015.10.009
Early Divergent Strains of *Yersinia pestis* in Eurasia 5,000 Years Ago

Simon Rasmussen,1,18 Morten Erik Allentoft,2,18 Kasper Nielsen,1 Ludovic Orlando,2 Martin Sikora,2 Karl-Göran Sjögren,3 Anders Gorm Pedersen,1 Mikkel Schubert,2 Alex Van Dam,1 Christian Møløn Otzen Kapel,4 Henrik Bjørn Nielsen,1 Søren Brunak,1,16 Pavel Avetisyan,6 Andrey Epimakhov,7 Mikhail Viktorovich Khalyapin,8 Artak Gnuni,9 Aivar Kriska,10 Irena Lasak,11 Mait Metspalu,12 Vyacheslav Moiseyev,13 Andrei Gromov,13 Dalia Pokuțta,14 Lehti Saag,12 Liivi Varul,10 Levon Yepiskoposyan,14 Thomas Sicheritz-Pontén,1 Robert A. Foley,15 Marta Mirazón Lahr,15 Rasmus Nielsen,16 Kristian Kristiansen,3 and Eske Willerslev2,17,*

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark
2Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
3Department of Historical Studies, University of Gothenburg, 405 30 Gothenburg, Sweden
4Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
5Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
6Division of Armenological and Social Sciences, Institute of Archaeology and Ethnography, National Academy of Sciences, 0025 Yerevan, Republic of Armenia
7Institute of History and Archaeology RAS (South Ural Department), South Ural State University, 454080 Chelyabinsk, Russia
8Orenburg Museum of Fine Arts, 460000 Orenburg, Russia
9Department of Archaeology and Ethnography, Yerevan State University, 0025 Yerevan, Republic of Armenia
10Department of Archaeology, University of Tartu, 51003 Tartu, Estonia
11Institute of Archaeology, University of Wrocław, 50-139 Wrocław, Poland
12Department of Evolutionary Biology, Estonian Biocentre and University of Tartu, 51010 Tartu, Estonia
13Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
14Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences, 0014 Yerevan, Armenia
15Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
16Center for Theoretical Evolutionary Genetics, University of California, Berkeley, California 94720-3140, USA
17Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
18Co-first author
*Correspondence: ewillerslev@snm.ku.dk
http://dx.doi.org/10.1016/j.cell.2015.10.009
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SUMMARY

The bacteria *Yersinia pestis* is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of *Yersinia pestis* identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known *Yersinia pestis*. We find the origins of the *Yersinia pestis* lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics.

INTRODUCTION

Plague is caused by the bacteria *Yersinia pestis* and is being directly transmitted through human-to-human contact (pneumonic plague) or via fleas as a common vector (bubonic or septicemic plague) (Treille and Yersin, 1894). Three historic human plague pandemics have been documented: (1) the First Pandemic, which started with the Plague of Justinian (541–544 AD), but continued intermittently until ~750 AD; (2) the Second Pandemic, which began with the Black Death in Europe (1347–1351 AD) and included successive waves, such as the Great Plague (1665–1666 AD), until the 18th century; (3) the Third Pandemic, which emerged in China in the 1850s and erupted there in a major epidemic in 1894 before spreading across the world as a series of epidemics until the middle of the 20th century (Bos et al., 2011; Cui et al., 2013; Drancourt et al., 1998; Harbeck et al., 2013; Parkhill et al., 2001; Perry and Fetherston, 1997; Wagner et al., 2014). Earlier outbreaks such as the Plague of Athens (430–427 BC) and the Antonine Plague (165–180 AD) may also have occurred, but there is no direct evidence that allows confident attribution to *Y. pestis* (Drancourt and Raoult, 2002; McNeill, 1976).
The consequences of the plague pandemics have been well-documented and the demographic impacts were dramatic (Little et al., 2007). The Black Death alone is estimated to have killed 30%–50% of the European population. Economic and political collapses have also been in part attributed to the devastating effects of the plague. The Plague of Justinian is thought to have played a major role in weakening the Byzantine Empire, and the earlier putative plagues have been associated with the decline of Classical Greece and likely undermined the strength of the Roman army.

Molecular clock estimates have suggested that Y. pestis diversified from the more prevalent and environmental stress-tolerant, but less pathogenic, enteric bacterium Y. pseudotuberculosis between 2,600 and 28,000 years ago (Achtman et al., 1999, 2004; Cui et al., 2013; Wagner et al., 2014). However, humans may potentially have been exposed to Y. pestis for much longer than the historical record suggests, though direct molecular evidence for Y. pestis has not been obtained from skeletal material older than 1,500 years (Bos et al., 2011; Wagner et al., 2014). The most basal strains of Y. pestis (0.PE7 clade) recorded to date were isolated from the Qinghai-Tibet Plateau in China in 1961–1962 (Cui et al., 2013).

We investigated the origin of Y. pestis by sequencing ancient bacterial genomes from the teeth of Bronze Age humans across Europe and Asia. Our findings suggest that the virulent, flea-borne Y. pestis strain that caused the historic bubonic plague pandemics evolved from a less pathogenic Y. pestis lineage infecting human populations long before recorded evidence of plague outbreaks.

RESULTS

Identification of *Yersinia pestis* in Bronze Age Eurasian Individuals

We screened c. 89 billion raw DNA sequence reads obtained from teeth of 101 Bronze Age individuals from Europe and Asia (Allentoft et al., 2015) and found that seven individuals carried sequences resembling Y. pestis (Figure 1, Table S1, Supplemental Experimental Procedures). Further sequencing allowed us to assemble the Y. pestis genomes to an average depth of 0.14–29.5X, with 12%–95% of the positions in the genome covered at least once (Table 1, Table S2, S3, and S4). We also recovered the sequences of the three plasmids pCD1, pMT1, and pPCP1 (0.12 to 50.3X in average depth) the latter two of which are crucial for distinguishing Y. pestis from its highly similar ancestor Y. pseudotuberculosis (Table 1, Figure 2, Table S3) (Bercovier et al., 1980; Chain et al., 2004; Parkhill et al., 2001). The host individuals from which Y. pestis was recovered belong to Eurasian Late Neolithic and Bronze Age cultures (Allentoft et al., 2015), represented by the Afanasievo culture in Altai, Siberia (2782 cal BC, 2794 cal BC, n = 2), the Corded Ware culture in Estonia (2462 cal BC, n = 1), the Sintashta culture in Russia (2163 cal BC, n = 1), the Unetice culture in Poland (2029 cal BC, n = 1), and the Andronovo culture in Altai, Siberia (1686 cal BC, n = 1), and an early Iron Age individual from Armenia (951 cal BC, n = 1) (Table S1).

Figure 1. Archaeological Sites of Bronze Age *Yersinia pestis*

(A) Map of Eurasia indicating the position, radiocarbon dated ages and associated cultures of the samples in which Y. pestis were identified. Dates are given as 95% confidence interval calendar BC years. IA: Iron Age.

(B) Burial four from Bulanovo site. Picture by Mikhail V. Khalyapin. See also Table S1.
Experimental Procedures). (4) Because of the high sequence similarity between \emph{Y. pestis} and \emph{Y. pseudotuberculosis}, we mapped all reads both to the \emph{Y. pestis} CO92 and to the \emph{Y. pseudotuberculosis} IP32953 reference genomes (Chain et al., 2004). Consistent with being \emph{Y. pestis}, the seven investigated samples displayed more reads matching perfectly (edit distance = 0) toward \emph{Y. pestis} (Figure 3, Figure S2). One sample (RISE392) was most likely not \emph{Y. pestis} based on this criterion. (5) A naive Bayesian classifier trained on known genomes predicts the seven samples to be \emph{Y. pestis} with 100% posterior probability, while RISE392 is predicted to have 0% probability of being \emph{Y. pestis} (Figure S2, Table S3). (6) If the DNA was from other organisms than \emph{Y. pestis}, we would expect the reads to be more frequently associated with either highly conserved or low-complexity regions. However, we find the reads to be distributed across the entire genome (Figure S2), and comparison of actual coverage versus the coverage that would be expected from read length distributions and mappability of the reference sequences are also in agreement for the seven samples (Figure 3). (7) In a maximum likelihood phylogeny, the recovered \emph{Y. pestis} genomic sequences of RISE505 and RISE509 are clearly within the \emph{Y. pestis} clade and basal to all contemporary \emph{Y. pestis} strains (Figure 4) (see below).

The Phylogenetic Position of the Bronze Age \emph{Yersinia pestis} Strains

To determine the phylogenetic positions of the two high coverage ancient \emph{Y. pestis} strains, RISE505 (Andronovo culture 1686 cal BC, 8.7X) and RISE509 (Afanasievo culture, 2746 cal BC, 29.7X), we mapped the reads, together with reads from strains of \emph{Yersinia similis} (n = 5), \emph{Y. pseudotuberculosis} (n = 25), and \emph{Y. pestis} (n = 139), to the \emph{Y. pseudotuberculosis} reference genome (IP32953). Only high confidence positions were extracted. To assess whether the individuals were infected with multiple strains of \emph{Y. pestis} we investigated the genotype heterozygosity levels of the ancient genomes and found no indications of mixed infection (Figure S3). There was no decay in Linkage Disequilibrium (LD) across the chromosome (Figure S3), indicating no detectable recombination among strains. We therefore used RAxML (Stamatakis, 2014) to construct a Maximum Likelihood phylogeny from a supermatrix concatenated from 3,141 genes and a total of 3.14 Mbp (Figure 4). This contrasts with earlier phylogenies (Bos et al., 2011; Cui et al., 2013; Morelli et al., 2010; Wagner et al., 2014), which were based on less than 2,300 nucleotides that were ascertained to be variable in \emph{Y. pestis}, likely leading to lower statistical accuracy than with whole-genome analyses. Furthermore, the use of SNPs ascertained to be variable in \emph{Y. pestis} would downwardly bias estimates of branch lengths in \emph{Y. pseudotuberculosis} and lead to underestimates of the \emph{Y. pestis} versus \emph{Y. pseudotuberculosis} divergence time, as seen in the branch length of the \emph{Y. pestis} clade to \emph{Y. pseudotuberculosis} (Figure S3). The topology of our whole genome tree shows \emph{Y. pestis} as a monophyletic group within \emph{Y. pseudotuberculosis} with RISE505 and RISE509 (Figure 4A, black arrow, Figure S4) clustered together within the \emph{Y. pestis} clade. The \emph{Y. pestis} sub-tree topology (Figure 4B, Figure S4) is similar to that reported previously (Bos et al., 2011; Cui et al., 2013; Morelli et al., 2010; Wagner et al., 2014), but with the two ancient strains (RISE505 and RISE509) failing basal to all other known strains of \emph{Y. pestis} (100% bootstrap support).

Determination of \emph{Yersinia pestis} Divergence Dates

To determine the dates for the most recent common ancestor (MRCA) of \emph{Y. pestis} and \emph{Y. pseudotuberculosis}, and for all known \emph{Y. pestis} strains, we used a Bayesian Markov Chain Monte Carlo approach implemented in BEAST2 (Bouckaert et al., 2014) on a subset of the supermatrix. We estimated the MRCA of \emph{Y. pestis} and \emph{Y. pseudotuberculosis} to be 54,735 years ago (95% HPD [highest posterior density] interval: 34,659–78,803 years ago) (Figure 4C, Figure S5, Table S5), which is about twice as old compared to previous estimates of 2,600–28,000 years ago (Achtman et al., 1999, 2004; Cui et al., 2013; Wagner et al., 2014). Additionally, we estimated the age of the MRCA of all known \emph{Y. pestis} to 5,783 years ago (95% HPD interval: 5,021–7,022 years ago). This is also significantly older and with a much narrower confidence interval than previous findings of 3,337 years ago (1,505–6,409 years ago) (Cui et al., 2013).

Bronze Age \emph{Yersinia pestis} Strains Lacking \emph{Yersinia Murine Toxin}

For the high-depth ancient \emph{Y. pestis} genomes, we investigated the presence of 55 genes that have been associated with the virulence of \emph{Y. pestis} (Figure 5A, Table S6). We found all virulence genes to be present, except the \emph{Yersinia} murine toxin (\emph{ymt}) gene that is located at 74.4–76.2 kb on the pMT1 plasmid (Figure 2C, arrow 1). The \emph{ymt} gene encodes a phospholipase D that protects...
Y. pestis inside the flea gut, thus enabling this enteric bacteria to use an arthropod as vector; it further allows for higher titers of Y. pestis and higher transmission rates (Hinnebusch, 2005; Hinnebusch et al., 2002). When investigating all seven samples for the presence of ymt, we identified a 19 kb region (59–78 kb, Figure 2C arrow 2–3, Figure 5B) to be missing except in the youngest sample (RISE397, 951 cal BC) (Figure 5B, Table S7). We find this region to be present in all other published Y. pestis strains (modern and ancient), except three strains (5761, 945, and CA88) that are lacking the pMT1 plasmid completely.

Although larger sample sizes are needed for confirmation, our data indicate that the ymt gene was not present in Y. pestis before 1686 cal BC (n = 6), while after 951 cal BC, it is found in 97.8% of the strains (n = 140), suggesting a late and very rapid spread of ymt. This contrasts with previous studies arguing that the ymt gene was acquired early in Y. pestis evolution due...
to its importance in its life cycle (Carniel, 2003; Hinnebusch, 2005; Hinnebusch et al., 2002; Sun et al., 2014). Interestingly, we identified two transposase elements flanking the missing 19 kb region, confirming that the ymt gene was acquired through horizontal gene transfer, as previously suggested (Lindler et al., 1998). Moreover, it has recently been shown that the transmission of Y. pestis by fleas is also dependent on loss of function mutations in the pde2, pde3, and rcsA genes (Sun et al., 2014). The RISE509 sample carries the promoter mutation of pde3 and the functional pde2 and rcsA alleles (Figure S6). In combination with the absence of ymt, these results strongly suggest that the ancestral Y. pestis bacteria in these early Bronze Age individuals were not transmitted by fleas.

Native Plasminogen Activator Gene Present in Bronze Age Yersinia pestis

Another hallmark gene of Y. pestis pathogenicity is the plasminogen activator gene pla (omptin protein family), located on the pPCP1 plasmid (6.6–7.6 kb). The gene facilitates deep tissue invasion and is essential for development of both bubonic and pneumonic plague (Sebbane et al., 2006; Sodeinde et al., 1992; Zimbler et al., 2015). We identify the gene in six of the seven genomes, but not in RISE139, the sample with the lowest overall depth of coverage (0.75X on pPCP1) (Figure 2D, arrow 4, Table S6). Recently, it has been proposed that pPCP1 was acquired after the branching of the 0.PE2 clade (Zimbler et al., 2015); however, we identified pPCP1 in our samples, including in the 0.PE7 clade (strains 620024 and CMCC05009), which diverged prior to the common ancestor of the 0.PE2 lineage (Figure 4B, Figure 5A). This shows that pPCP1 and pla likely were present in the most basal Y. pestis (RISE509), suggesting that the 0.PE2 strains lost the pPCP1 plasmid. Interestingly, three 2.ANT3 strains (5761, CMCC64001, and 735) are also missing the pla gene, indicating that the loss of pPCP1 occurred more than once in the evolutionary history of Y. pestis.

Additionally, we investigated whether RISE397, RISE505, and RISE509 had the isoleucine to threonine mutation at amino acid 259 in the Pla protein. This mutation has been shown to be essential for developing bubonic, but not pneumonic, plague (Zimbler et al., 2015). We found that these samples, in agreement with their basal phylogenetic position, carry the ancestral isoleucine residue. However, we also identified a valine to isoleucine frameshift mutation in the flhD regulatory gene (Minnich and Rohde, 2007). However, we do not find this mutation in either RISE505 or RISE509, suggesting that they have fully functional flhD genes and that the loss of function occurred after 2746 cal BC. Interestingly, the youngest of these two Y. pestis genomes (RISE505, 1686 cal BC) shows partial loss of one of the two flagella systems (758–806 kb), with 39 of 49 genes deleted (Figure 2A, arrow 5, Table S9). This deletion was not found in any of the other Y. pestis samples (n = 147). This may point to selective pressure on ancestral Y. pestis when emerging as a mammalian pathogen, yielding variably adaptive strains.

DISCUSSION

Our calibrated molecular clock pushes the divergence dates for the early branching of Y. pestis back to 5,783 years ago, an additional 2,000 years compared to previous findings (Table S5, Figure S5) (Cui et al., 2013; Morelli et al., 2010). Furthermore, using the temporally stamped ancient DNA data, we are able to derive a time series for the molecular acquisition of the pathogenicity elements and immune avoidance systems that facilitated the evolution from a less virulent bacteria with zoonotic potential, such as Y. pseudotuberculosis, to one of the most deadly bacteria ever encountered by humans (Figure 6).

From our findings, we conclude that the ancestor of extant Y. pestis strains was present by the end of the 4th millennium BC and was widely spread across Eurasia from at least the early 3rd millennium BC. The occurrence of plague in the Bronze Age Eurasian individuals we sampled (7 of 101) indicates that plague infections were common at least 3,000 years earlier than recorded historically. However, based on the absence of crucial virulence genes, unlike the later Y. pestis strains that were responsible for the first to third pandemics, these ancient ancestral Y. pestis strains likely did not have the ability to cause bubonic plague, only pneumonic and septicemic plague. These early plagues may have been responsible for the suggested population declines in the late 4th millennium BC and the early 3rd millennium BC (Hinz et al., 2012; Shennan et al., 2013).
It has recently been demonstrated by ancient genomics that the Bronze Age in Europe and Asia was characterized by large-scale population movements, admixture, and replacements (Allentoft et al., 2015; Haak et al., 2015), which accompanied profound and archaeologically well-described social and economic changes (Anthony, 2007; Kristiansen and Larsson, 2005). In light of our findings, it is plausible that plague outbreaks could have facilitated—or have been facilitated by—these highly dynamic demographic events. However, our data suggest that Y. pestis did not fully adapt as a flea-borne mammalian pathogen until the beginning of the 1st millennium BC, which precipitated the historically recorded plagues.

EXPERIMENTAL PROCEDURES

Samples and Archaeological Sites

We initially re-analyzed the data from Allentoft et al. (2015) and identified Y. pestis DNA sequences in 7 of the 101 individuals. Descriptions of the archaeological sites are given in Supplemental Experimental Procedures and Table S1.

Generation of Additional Sequence Data

In order to increase the depth of coverage on the Y. pestis genomes we sequenced more on these seven DNA extracts. Library construction was conducted as in (Allentoft et al., 2015). Briefly, double stranded and blunt-ended DNA libraries were prepared using the NEBNext DNA Sample Prep Master Mix Set 2 (E6070) and Illumina-specific adapters (Meyer and Kircher, 2010). The libraries were “shot-gun” sequenced in two pools on Illumina HiSeq2500 platforms using 100-bp single-read chemistry. We sequenced 32 lanes generating a total of 11.2 billion new DNA sequences for this study. Reads for the seven Y. pestis samples are available from DNA PRJEB10885. Individual sample accessions numbers are available in Table S2.

Creation of Database for Identification of Y. pestis Reads

To identify Y. pestis reads in the Bronze Age dataset (Allentoft et al., 2015) we first created a database of all previously sequenced Y. pestis strains (n = 140), Y. pseudotuberculosis strains (n = 30), Y. similis strains (n = 5), and a selection of Y. enterocolitica strains (n = 4) (Supplemental Experimental Procedures and Table S2). The genomes were either downloaded from NCBI or downloaded as reads and de novo assembled using SPAdes-3.5.0 (Bankevich et al., 2012) with the--careful and--cov-cutoff auto options.

Identification and Assembly of Y. pestis From Ancient Samples

Raw reads were trimmed for adaptor sequences using AdapterRemoval-1.5.4 (Lindgren, 2012). Additionally leading and trailing Ns were removed as well as bases with quality 2 or less. Hereafter, the trimmed reads with a length of at least 30 nt were mapped using bwa mem (local alignment) (Li and Durbin, 2009) to the database of Y. pestis, Y. pseudotuberculosis, Y. similis, and Y. enterocolitica mentioned above. Reads with a match to any of the sequences in this database were aligned separately to three different reference genomes: Yersinia pestis CO92 genome including the associated plasmids pCD1, pMT1, pPCP1 (Parkhill et al., 2001); Yersinia pseudotuberculosis IP32953 including the associated plasmids (Chain et al., 2004); Yersinia pestis biovar Microtus 91001 and associated plasmids (Zhou et al., 2004). This alignment was performed using bwa aln (Li and Durbin, 2009) with the seed option disabled for better sensitivity for ancient data, enforcing global alignment of the read to the reference genome. Each sequencing run was merged to library level and duplicates removed using Picard-1.124 (http://broadinstitute.github.io/picard/), followed by merging to per sample alignment files. These files were filtered for a mapping quality of 30 to only retain high quality alignments and the base qualities were re-scaled for DNA damage using MapDamage 2.0 (Jönsson et al., 2013). We defined Y. pestis as present in a sample if the mapped depth of the CO92 reference sequences were higher or equal to 0.1X and if the reads covered at least 10% of the chromosome and each of the plasmids. The assembly of Justinian, Black Death, and the modern samples were performed similarly and is described in detail in the Supplemental Experimental Procedures.

Coverage, Depth and Mappability Analyses

We calculated the coverage of the individual sample alignments versus the Y. pestis CO92 reference genome using Bedtools (Quinlan and Hall, 2010) and plotted this using Circos (Krzywinski et al., 2009). For the chromosome, the coverage was calculated in 1 bp windows and for the plasmids in 100 bp windows. Mappability was calculated using GEM-mappability library using a k-mer size of 50, which is similar to the average length of the trimmed and mapped Y. pestis reads (average length 43–65 bp). Statistics of the coverage and depth are given in Tables S3 and S4.

DNA Decay Rates

We investigated the molecular degradation signals obtained from the sequencing data. Based on the negative exponential relationship between frequency and sequence length, we estimated for each sample the DNA damage fraction (λ, per bond), the average fragment length (1/λ), the DNA decay rate (k, per bond per year), and the molecular half-lives of 100 bp fragments (Allentoft et al., 2012). We compared these DNA decay estimates for Y. pestis to the decay of endogenous human DNA from the host individuals. If the plague DNA is authentic and ancient, a correlation is expected between the rate of DNA decay in the human host and in Y. pestis, because the DNA has been exposed to similar environmental conditions for the same amount of time. See Supplemental Experimental Procedures for additional information.
Comparison of Samples to Y. pestis and Y. pseudotuberculosis Reference Genomes

We used the alignments of several sets of reads (Y. pestis, Y. pseudotuberculosis, and Y. similis) to Y. pestis CO92 and the Y. pseudotuberculosis IP32953 genomes. Per sample we determined the distribution of edit-distances (mismatches) of the reads versus the particular reference genome. We used these distributions to build a Naive Bayesian classifier to classify whether reads were originating from Y. pestis, Y. pseudotuberculosis, or Y. similis. See Supplemental Experimental Procedures and Table S3.

Expected versus Actual Coverage

We estimated the expected coverage of Y. pestis given a specific sequencing depth and correlated that with the actual coverage of a genome per sample. Expected coverage was calculated as

\[c = 1 - \prod_{i=1}^{N} \left(1 - \frac{l_i}{L}\right)^{n_i} \]

where the reads have N different lengths, \(l_i \) to \(l_N \) with counts \(n_1 \) to \(n_N \). To account for mappability we determined the mappable fraction for each reference sequence using k-mers of length 40, 50, and 60, and then used the mappability value with the k-mer length closest to the actual average read length for each sample/reference combination. For more information see Supplemental Experimental Procedures.

Genotyping For Phylogenetic Analyses

Alignments of all strains versus Y. pseudotuberculosis IP32953 was used as reference for genotyping the consensus sequences for all samples used in the phylogeny. The samples were genotyped individually using samtools-0.1.18 and bcftools-0.1.17 (Li et al., 2009) and hereafter filtered (Supplemental Experimental Procedures). Based on Y. pseudotuberculosis IP32953 gene annotations, the consensus sequences for each gene and sample were extracted. Because of the divergence between Y. pestis and Y. pseudotuberculosis, a number of gene sequences displayed high rates of missing bases and we removed genes where 20 or more modern Y. pestis samples had >10% missingness. This corresponded to a total of 985 genes, leaving data from 3,141 genes that were merged into
a supermatrix. We created two different supermatrices, one with *Y. similis*, *Y. pseudotuberculosis*, and *Y. pestis* containing 173 taxa x 3,141 genes that was used for the initial phylogeny (Figure 4A). The second supermatrix consisted of all *Y. pestis* strains and the genomes from the two closest *Y. pseudotuberculosis* clades, which was used for the divergence time estimations.

Phylogenetics

The alignments were partitioned by codon position and analyzed with jmodeltest-2.1.7 (Darriba et al., 2012) to test for the best fitting substitution model. All decision criteria (Akaike, Bayesian, and Decision theory) found the Generalized Time Reversible substitution model with gamma distributed rates, using four rate categories, and a proportion of invariable sites (GTR+G+I) to be the best fit for each of the three codon partitions. To test for recombination across the chromosome we estimated linkage disequilibrium (LD) using 141 *Y. pestis* strains. A total of 482 bi-allelic single nucleotide variations (SNVs), with a minor allele frequency of 5% or higher were extracted. For all pairs of the extracted SNVs, the LD r^2 was calculated using PLINK 1.9 (Chang et al., 2015) and plotted against the physical distance between the pairs. We reconstructed the phylogeny from the codon-partitioned supermatrix using RAxML-8.1.15 (Stamatakis, 2014) with the GTR+G+I substitution model. Bootstraps were performed by generating 100 bootstrap replicates and their corresponding parsimony starting trees using RAxML. Hereafter, a standard Maximum Likelihood inference was run on each bootstrap replicate, and the resulting best trees were merged and drawn on the best ML tree.

Divergence Estimations

To date the divergence time for *Y. pestis* and nodes within the *Y. pestis* clade we performed Bayesian Markov Chain Monte Carlo simulations using BEAST-2.3.0 (Bouckaert et al., 2014) and the BEAGLE library v2.1.2 (Ayres et al., 2012). We used the codon-partitioned supermatrix that included the two closest *Y. pseudotuberculosis* clades, with unlinked substitution models, GTR+G+I with eight gamma rate categories and unlinked clock models. Dates were set as years ago with the RISE509, RISE505, Justinian and Black Death samples set to 4,761, 3,701, 1,474, and 667 years ago, respectively. All unknown dates were set to 0 years ago. We followed previous work (Cui et al., 2013; Wagner et al., 2014) and applied a lognormal relaxed clock, assuming a constant population size. We re-rooted the ML tree from RAxML so that the root was placed between the two *Y. pseudotuberculosis* clades (IP32953, 260, IH111554) and (IP32921, IP32881, IP32463) and used this as the starting tree. Based on the ML tree we defined the closest *Y. pseudotuberculosis* clade (IP32921, IP32881, IP32463) and the *Y. pestis* clade as a monophyletic group and defined a uniform prior with 1,000 and 100,000 years as minimum and maximum bounds. We ran 20 independent parallel BEAST chains sampling every 2,000 states for between 52 and 64 million states using a total of 240,000 core hours. The chains were combined using LogCombiner discarding the initial 10 million states as burn-in. The combined post burn-in data represented 961 million states and

Heterozygosity Estimates

We determined heterozygosity by down-sampling the *Y. pestis* bam-files to the same average depth as the corresponding RISE samples, genotyped each of the samples and extracted heterozygote calls with a depth equal to or higher than 10. All transitions were excluded. See Supplemental Experimental Procedures for detailed information.
55 genes previously reported to be associated with virulence of \textit{Y. pestis}

To assess the potential virulence of the ancient \textit{Y. pestis} genome, we used the alignments to \textit{Y. pseudotuberculosis} reference genome we determined the fraction of the each gene sequence that was covered by at least one read for each \textit{Y. pestis} sample. Additionally, because the different region 4 (DFR4) (Radnedge et al., 2002) has been associated with virulence, but is not present in the CO92 genome, we examined the alignments to \textit{Y. pestis} CO92 reference genome we determined the fraction of the each gene sequence that was covered by at least one read for each \textit{Y. pestis} sample. Additionally, because the different region 4 (DFR4) (Radnedge et al., 2002) has been associated with virulence, but is not present in the CO92 genome, we used the alignments to \textit{Y. pestis} microtus 91001 to determine the presence of this region (Supplemental Experimental Procedures). We note that the absence of KIM pPCP1 is due to it being missing from the reference genome, but that it has been reported to be present in KIM strains (Hu et al., 1999). The genotypes were generated as described above and the variant call format (VCF) files from these analyses are available at http://www.cbs.dtu.dk/suppl/plague/. For detailed information on genotyping of pde2, pde3, rscA, pla, and flhD see Supplemental Experimental Procedures.

Identification of the Missing ymt Region on pMT1

Most of the regions that were unmapped could be associated with low mappability. However, we identified a region from 59–78 kb on pMT1 that could not be explained by low mappability. From the depth of coverage this region was found. We additionally ran BEAST2 sampling the priors only (and disregarding the sequence information) and found the posterior distribution no different than the heights. We randomly sampled 1/5 of the trees from each chain and combined them for a total of 192,406 trees that were summarized for the computational resources to perform the BEAST divergence estimations. The effective sample sizes (ESS) for the posterior was 398, for the TreeHeight 238.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and eight tables and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2015.10.009.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

The project was funded by the European Research Council (FP/2007-2013, grant 269442, The Rise), Marie Curie Actions of the European Union (FP7/2007-2013, grant 300554), The Villum Foundation (Young Investigator Programme, grant 10120), University of Copenhagen (KU2016 Programme), The Danish National Research Foundation, and The Lundbeck Foundation. A.V.D. was supported by the National Science Foundation Postdoctoral Research Fellowship in Biology under grant 1306489. S.B. was supported financially by the Novo Nordisk Foundation Grant agreement NNF14CC0001. We thank Jesper Stenderup for technical assistance and want to acknowledge the Danish national supercomputer – Computerome (computerome.cbs.dtu.dk) for the computational resources to perform the BEAST divergence estimations.

Received: August 6, 2015

Accepted: October 2, 2015

Published: October 22, 2015

REFERENCES

