Residential heat pumps in the future Danish energy system

Petrovic, Stefan; Karlsson, Kenneth Bernard

Publication date: 2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Residential heat pumps in the future
Danish energy system

Stefan Petrović, Kenneth Karlsson
Systems Analysis division, Department of Management Engineering, Technical University of Denmark
Elements of future Danish energy system

- Wind power
- District heating
- Residential heat pumps, biomass boilers and solar heating
- Heat savings in buildings
- Demolition of existing and construction of energy-efficient buildings
Residential heat pumps in the previous studies

• Oil and natural gas boilers are switching to residential HPs in 2025 (Münster et al. 2012)

• Expansion of district heating around cities and towns and residential HPs (Lund et al., 2010, Möller and Lund, 2010)

• Expansion of district heating based on biomass and large HPs and residential HPs, solar heating and biomass boilers (IDA's Climate Plan 2009)

• District heating, solar heating and residential heat pumps in Aalborg and Frederikshavn (Østergaard et al., 2010 and Østergaard, 2012)
Benefits of using residential heat pumps

• Contribute to the integration of wind power and PVs – provide flexibility and reduce excess power production

• Reducing fuel consumption, CO$_2$ emissions and total system costs

• Favoured in high health impact areas
TIMES-DTU – time definition

- No chronological values
- 32 time-slices and 10 model-years

<table>
<thead>
<tr>
<th>Time period</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start year</td>
<td>2010</td>
<td>2011</td>
<td>2014</td>
<td>2018</td>
<td>2023</td>
<td>2028</td>
<td>2033</td>
<td>2038</td>
<td>2043</td>
<td>2048</td>
</tr>
<tr>
<td>End year</td>
<td>2010</td>
<td>2013</td>
<td>2017</td>
<td>2022</td>
<td>2027</td>
<td>2032</td>
<td>2037</td>
<td>2042</td>
<td>2047</td>
<td>2052</td>
</tr>
<tr>
<td>Length (years)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Representative year</td>
<td>2010</td>
<td>2012</td>
<td>2015</td>
<td>2020</td>
<td>2025</td>
<td>2030</td>
<td>2035</td>
<td>2040</td>
<td>2045</td>
<td>2050</td>
</tr>
</tbody>
</table>
TIMES-DTU – geographical definition

- Two regions – East and West Denmark
- Subdivisions into Central, Decentral and Individual
TIMES-DTU – geographical definition
TIMES-DTU – geographical definition
TIMES-DTU model – residential buildings

- Region – DKE and DKW
- Construction period – before 1972, after 1972 and new buildings
- Location relative to existing district heating areas – Central, Decentral and Individual
- Building use – Single-family and Multi-family
- Heat savings, construction, demolition
Supply of heat and DHW in TIMES-DTU

District heating

Primary energy → District heat → Heat from pipeline

- HO and CHP plants
- Expanded DH network
- Existing DH network
- New heat exchangers
- Existing heat exchangers

Residential heat and DHW

Residential individual heating

Primary energy → Residential heat boilers

Heat savings
TIMES-DTU model – Modelling of residential heat pumps

- Three types of residential HPs are modelled
- Variable COPs
- Spatial constraints
- Other techno-economic parameters

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-to-air</td>
<td>2015</td>
<td>4.02</td>
<td>20</td>
<td>0.06</td>
<td>0</td>
<td>0.12</td>
<td>4.02</td>
<td>20</td>
<td>0.06</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>3.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>3.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>3.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-to-water</td>
<td>2015</td>
<td>9.69</td>
<td>20</td>
<td>0.10</td>
<td>0</td>
<td>0.20</td>
<td>7.45</td>
<td>20</td>
<td>0.01</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>8.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>8.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brine-to-water</td>
<td>2015</td>
<td>12.67</td>
<td>30</td>
<td>0.10</td>
<td>0</td>
<td>0.20</td>
<td>8.20</td>
<td>30</td>
<td>0.01</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2020</td>
<td>11.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>11.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>10.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Temperature-dependant COP

Air-source heat pumps

Ground-source heat pumps

COPs are expressed as a linear function of a temperature difference between air/water output and ambient temperature.
Temperature regions

Soil temperature regions in Denmark

Air temperature regions in Denmark
Temperatures and calculated COPs

<table>
<thead>
<tr>
<th>Type of heat pump</th>
<th>Region</th>
<th>Seasons</th>
<th>Yearly average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spring</td>
<td>Summer</td>
</tr>
<tr>
<td>GSHP</td>
<td>Denmark</td>
<td>3.05</td>
<td>3.95</td>
</tr>
<tr>
<td>ASHP</td>
<td>East Denmark</td>
<td>2.72</td>
<td>3.30</td>
</tr>
<tr>
<td>ASHP</td>
<td>West Denmark</td>
<td>2.70</td>
<td>3.22</td>
</tr>
</tbody>
</table>

Hourly changes of air and soil temperatures

Hourly changes of COPs

Seasonal COPs
Spatial constraints

• Maybe there is not enough space to install ground source heat pumps

\[
COP = \frac{W_h}{W_e} = \frac{W_h}{W_{h-W_{gr}}} \\
W_h = \frac{COP}{COP-1} \cdot W_{gr} \\
W_h = P_{h,spec} \cdot A_{av} \cdot k_{area} \cdot T_{fih} \cdot \frac{COP_{av}}{COP_{av} - 1}
\]
Spatial constraints - results

- A Heat pump can only supply its own demand, not the neighbours

- Example 1: Heat pump can cover 100 MWh, building's demand is 50 MWh → Heat pump can produce at most 50 MWh

- Example 2: Heat pump can cover 100 MWh, building's demand is 150 MWh → Heat pump can produce at most 100 MWh

<table>
<thead>
<tr>
<th>Region</th>
<th>Building type</th>
<th>Useable area (km²)</th>
<th>Heat demand (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKE</td>
<td>Single-family</td>
<td>2194</td>
<td>4.8</td>
</tr>
<tr>
<td>DKE</td>
<td>Multi-family</td>
<td>37</td>
<td>0.7</td>
</tr>
<tr>
<td>DKW</td>
<td>Single-family</td>
<td>6402</td>
<td>6.7</td>
</tr>
<tr>
<td>DKW</td>
<td>Multi-family</td>
<td>45</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Analysed scenarios

• Base scenario includes politically agreed renewable energy targets declared in:
 - At least 50% of electricity consumption needs to be produced from wind power starting from 2020.
 - Use of fossil fuels is forbidden in the production of electricity and heat starting from 2035.

• NoIHP (No Installation of Heat Pumps) – The only difference from Base scenario is that installation of residential ASHPs and GSHPs is not allowed.

• NoCIHP (No Constrains on Installation of Heat Pumps) – The only difference from Base scenario is that installation of residential GSHPs is unconstrained.
Results – Electricity production

Electricity production divided by fuels

- Import
- Export
- Onshore wind
- Offshore wind
- PV
- Biomass
- Biosynth. nat. gas
- Natural gas
- Waste
- Coal
Results – Heat supply

Heat delivered to residential consumers

Heat delivered to residential consumers from individual heating sources
Results – total system costs

Sum of total undiscounted system costs over the analysed period

- Base
- NoHP
- NoCIHP

- Salvage
- Export/Import
- Fuel
- Var. O&M
- Fix. O&M
- Investment

Sum of total undiscounted system over the analysed period
Results – environmental emissions

Small differences among scenarios in emissions
Results – fuel consumption

Small differences among scenarios in fuel consumption
Sensitivity analysis

<table>
<thead>
<tr>
<th>Sensitivity action</th>
<th>System costs</th>
<th>CO₂ emissions</th>
<th>Onshore wind production</th>
<th>Offshore wind production</th>
<th>DH production</th>
<th>GSHP production</th>
<th>ASHP production</th>
<th>Biomass boilers production</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 10 % investment costs of ASHPs</td>
<td>-0.4%</td>
<td>0.4%</td>
<td>0.0%</td>
<td>-1.8%</td>
<td>-5.4%</td>
<td>-21.7%</td>
<td>38.9%</td>
<td>-22.7%</td>
</tr>
<tr>
<td>- 10 % investment costs of GSHPs</td>
<td>-0.1%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>-0.9%</td>
<td>-0.9%</td>
<td>53.2%</td>
<td>2.9%</td>
<td>-13.3%</td>
</tr>
<tr>
<td>- 10 % investment costs of wind turbin.</td>
<td>-2.9%</td>
<td>0.3%</td>
<td>0.0%</td>
<td>19.6%</td>
<td>1.2%</td>
<td>8.2%</td>
<td>3.2%</td>
<td>-25.0%</td>
</tr>
<tr>
<td>- 10 % price of biomass</td>
<td>-1.1%</td>
<td>-1.6%</td>
<td>0.0%</td>
<td>-3.4%</td>
<td>-3.9%</td>
<td>-23.9%</td>
<td>-15.6%</td>
<td>94.6%</td>
</tr>
<tr>
<td>- 20 % price of biomass</td>
<td>-2.5%</td>
<td>-5.5%</td>
<td>0.0%</td>
<td>-7.1%</td>
<td>-14.0%</td>
<td>-41.6%</td>
<td>-39.7%</td>
<td>288.8%</td>
</tr>
<tr>
<td>- 20 % inv. costs of DH expansion</td>
<td>-0.2%</td>
<td>0.2%</td>
<td>0.0%</td>
<td>-0.7%</td>
<td>0.9%</td>
<td>-1.5%</td>
<td>-5.4%</td>
<td>2.4%</td>
</tr>
<tr>
<td>+ 10 % investment costs of ASHPs</td>
<td>0.2%</td>
<td>-0.4%</td>
<td>0.0%</td>
<td>-1.1%</td>
<td>2.0%</td>
<td>-1.1%</td>
<td>-26.8%</td>
<td>41.8%</td>
</tr>
<tr>
<td>+ 10 % investment costs of GSHPs</td>
<td>0.0%</td>
<td>-0.1%</td>
<td>0.0%</td>
<td>-0.2%</td>
<td>0.4%</td>
<td>-54.4%</td>
<td>2.3%</td>
<td>10.4%</td>
</tr>
<tr>
<td>+ 10 % investment costs of wind turbin.</td>
<td>2.5%</td>
<td>2.5%</td>
<td>0.0%</td>
<td>-14.0%</td>
<td>-1.0%</td>
<td>-24.1%</td>
<td>-3.2%</td>
<td>29.4%</td>
</tr>
<tr>
<td>+ 10 % price of biomass</td>
<td>0.7%</td>
<td>2.2%</td>
<td>0.0%</td>
<td>-0.6%</td>
<td>2.0%</td>
<td>12.5%</td>
<td>0.7%</td>
<td>-33.7%</td>
</tr>
<tr>
<td>+ 20 % price of biomass</td>
<td>1.3%</td>
<td>3.9%</td>
<td>0.0%</td>
<td>1.0%</td>
<td>2.5%</td>
<td>8.5%</td>
<td>-0.2%</td>
<td>-36.1%</td>
</tr>
<tr>
<td>+ 20 % inv. costs of DH expansion</td>
<td>0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>-0.2%</td>
<td>-1.5%</td>
<td>1.4%</td>
<td>10.2%</td>
<td>-5.9%</td>
</tr>
<tr>
<td>reduction factor (k_{area} = 0.8)</td>
<td>-0.01%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>-0.4%</td>
<td>23.0%</td>
<td>-1.5%</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Fixed COPs over whole year</td>
<td>-0.2%</td>
<td>-0.3%</td>
<td>0.0%</td>
<td>-2.0%</td>
<td>-1.6%</td>
<td>-1.5%</td>
<td>9.5%</td>
<td>-2.9%</td>
</tr>
<tr>
<td>- 50 % out of total heat saving potential</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>-0.1%</td>
<td>-1.8%</td>
<td>0.2%</td>
<td>12.8%</td>
<td>-8.4%</td>
</tr>
<tr>
<td>Forbidding heat savings</td>
<td>8.5%</td>
<td>0.9%</td>
<td>0.0%</td>
<td>3.2%</td>
<td>4.8%</td>
<td>3.9%</td>
<td>82.2%</td>
<td>45.5%</td>
</tr>
</tbody>
</table>
Conclusions and future work

• Improved modelling makes a difference

• Residential HPs produce of 66-70 % of heat from individual heating sources, i.e. 24-28 % of total heat demand after 2035.

• Danish energy system can function without investments in residential HPs - total system costs increase by 16 % and biomass use by 70 %.

• Parameters $P_{h,spec}$ and k_{area} should be explored in more details

• ASHPs in multi-storey buildings – noise as a by-product

• More detailed COPs

• Role of residential HPs in the light of accelerated introduction of heat savings
Thank you for your attention

• Questions
• Answers
• Comments
• Suggestions