Thin films of CZTS prepared by Pulsed Laser Deposition

Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Engberg, Sara Lena Josefin; Canulescu, Stela; Crovetto, Andrea; Pryds, Nini; Hansen, Ole; Schou, Jørgen

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Thin films of CZTS prepared by Pulsed Laser Deposition

Andrea Cazzaniga1*, Rebecca Bolt Ettlinger1, Sara Engberg1, Stela Canulescu1, Andrea Crovetto2, Nini Pryds3, Ole Hansen2 and Jørgen Schou1

1 DTU Fotonik, Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark.
2 DTU Nanotech, Technical University of Denmark, Lyngby Campus, DK-2800 Kgs. Lyngby, Denmark.
3 DTU Energy, Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark

Introduction:

We are investigating the properties of the chalcogenide semiconductor Cu2ZnSnS4 as an absorber layer for earth-abundant thin-film solar cells. The physics behind the working principles of CZTS-based devices is not yet fully understood, including the relation between electro-optical and structural properties. In order to understand the underlying physics it is necessary to identify and optimize the most critical parameters that affect the structural properties. Here we illustrate how the deposition of a thin layer of ZnS (~ 60 nm) on top of a 700 nm Cu-rich CZTS absorber layer (as obtained with Pulsed Laser Deposition of a single stoichiometric target) can dramatically enhance the material properties during the annealing. While on one hand Cu-rich composition is always related to low efficiency of the photovoltaic device, on the other hand it is understood that Cu-rich precursors favor the synthesis of CZTSe crystals (see: Cu-Rich Precursors Improve kesterite solar cells, M. Mousel et al., Adv. Energy Mater. 2014, 4, 1300543)

Experimental:

We deposit a bilayer of CZTS/ZnS onto Mo-coated Soda Lime Glass by using Pulsed laser Deposition (PLD). The laser works at 248 nm, 10 Hz and with a fluence of 1 to 3 J/cm². The targets were made of stoichiometric, sintered powder and the substrate was placed at distance of 40 mm. Depositions were carried out under high vacuum (p ~ 1*10⁻⁶ mbar) and substrate temperature was fixed at 300° C. Annealing was done in a tube furnace in N₂ + S₂ atmosphere at 550° C for 30 minutes. Why using PLD? PLD allows us to make single step deposition of materials of complex stoichiometry. Films of 700 nm can be fabricated in less than 1 hr and the crystallinity can be enhanced at modest substrate temperatures compared to other deposition techniques.

ZnS thin layer on top

- Very stable – acts a cap layer
- Prevents CZTS decomposition inhibiting SnS evaporation
- Allows Self-adjusting of [Zn]% content

- Annealing process is more reproducible, since sulfur gas dynamics are less relevant to CZTS formation
- Crystallinity of CZTS is enhanced
- Suppression of some secondary phases
- Can be removed with etching

Next goals

- Change the thickness of the ZnS layer and discuss the change in Low Temperature Photoluminescence.
- Change the position of the ZnS layer
- Estimate the content of ZnS secondary phase (High resolution TEM-EDX analysis)

(*) When the 60nm ZnS layer is placed below the 700 nm Cu rich CZTS layer, the XRD pattern shows unwanted secondary phases

This work has been supported by a grant from the Danish Council of Strategic Research.