Experimental Investigation of a Basalt Fiber Reinforced Composite to Metal Joint

Costache, Andrei; Glejbøl, K.; Sivebæk, Ion Marius; Berggreen, Christian

Publication date: 2015

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Experimental Investigation of a Basalt Fiber Reinforced Composite to Metal Joint

A. Costache¹,², K. Glejbøl², I. M. Sivebæk¹, C. Berggreen¹
¹DTU Mechanical Engineering, ²National Oilwell Varco

CONTRIBUTION

This study investigates the possibility of anchoring a basalt fiber reinforced polymer (BFRP) in an aluminum grip [1] using dry friction. The pull-out force vs. clamping pressure will be investigated, together with the surface finish effect and wear pattern.

MODEL

A special test rig has been constructed, which can hold the grips and the specimen. This setup will be on one side attached to a load cell, and displacement is applied to the BFRP. A special system has been constructed, which can precisely record the clamping force via strain gages. It is thus possible to ensure uniform clamping pressure.

The displacement is recorded with digital image correlation. It is important to monitor the actual displacement of the specimen in the grips, in order to get the exact pull-out force when the BFRP slips.

DISPLACEMENT CALIBRATION

The displacement of three reference points that are tracked with DIC. A reference plane is used to remove unwanted rigid body movement.

The highest load that can be safely produced by the grip is the load at which point 3 starts to move.

TEST SETUP

<table>
<thead>
<tr>
<th>configuration a</th>
<th>configuration b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test configurations showing the BFRP specimen and clamp configuration. In configuration a the specimen does not extend outside of the grips. For configuration b, the specimen extends on both sides of the grip. Mechanical interlocking appears where the grips make local indentations in the specimen.

RESULTS

During a pull-out test the three tracking points place at different rates. This effect is more apparent as the clamping force is increased. The maximum force at which the clamp fails is considered at the onset of displacement for the third point.

The two configurations have been tested at several clamping forces. Several repetitions have been done to achieve a statistical valid result. It is clear that there is a lot of scatter between the results. This is more obvious for the configuration where the specimen extends on both sides of the clamp. This behavior is due to the clamps digging into the BFRP.

The flat grips wear marks are localized towards the edges of the specimen. This indicates a small contact area. Fiber breakage is concentrated where the matrix delaminates. The sandblasted grips have produced more uniformly distributed wear, with smaller damage areas. Fibers are mostly intact.

FUTURE WORK

- Test for creep effects.
- Force control tests to estimate ultimate pull-out force in cyclic loading.
- Improved geometry

REFERENCES

CONTACT INFORMATION

Andrei Costache / DTU Mechanical Engineering +45 45251391 / ancos@mek.dtu.dk

ACKNOWLEDGMENT

The guidance and support from Kristian Glejbøl, from National Oilwell Varco, Subsea Production Systems, as well as the economic support from the Danish Agency for Science, Technology and Innovation are gratefully acknowledged.

Higher pull-out force is obtained if the grips are sandblasted. In this way the roughness is increased, as well as contact area. The grip asperities also get into contact with more of the fibers, which have a higher coefficient of friction than the matrix.

The coefficient of friction is measured for all materials. The polypropylene and BFRP coefficient of friction are close, which helps explain the similar behavior in pull-out tests.