Pathogen specific antibody-based molecular imaging of Invasive Aspergillosis with the newly developed PET tracer [64Cu]DOTA-JF5 and its humanized variant [64Cu]NODAGA-hJF5

Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.; Maurer, Andreas; Fischer, Eliane; Spycher, Philipp R.; Schibli, Roger; Boschetti, Frédéric; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Severin, Gregory; Elema, Dennis Ringkøbing; Autenrieth, Stella; Pichler, Bernd; Gunzer, Matthias; Wiehr, Stefan

Published in: Proceedings - World Molecular Imaging Congress 2015

Publication date: 2015

Document Version Peer reviewed version

CONTROL ID: 2232990

TITLE: Pathogen specific antibody-based molecular imaging of Invasive Aspergillosis with the newly developed PET tracer [64Cu]DOTA-JF5 and its humanized variant [64Cu]NODAGA-hJF5

AUTHORS (FIRST NAME, LAST NAME): Anna-Maria Rolle1, Mike Hasenberg2, Christopher R. Thornton3, Andreas Maurer1, Eliane Fischer4, Philipp R. Spycher4, Roger Schibli4, Frederic Boschetti5, Sabine Stegemann-Koniszewski6,7, Dunja Bruder6,7, Gregory W. Severin8,9, Dennis R. Elema11, Stella Autenrieth10, Bernd J. Pichler1, Matthias Gunzer2, Stefan Wiehr1

ABSTRACT BODY:
Abstract Body: Humans with impaired immunity, e.g. those with haematological malignancies or bone marrow transplant recipients are at an elevated risk of severe Aspergillus fumigatus infection known as invasive aspergillosis (IA). Currently IA is diagnosed based on clinical symptoms, radiology, laboratory tests and microscopy or relies on invasive biopsy, which is not always feasible in very sick patients. Most of these methods are unspecific and time consuming, which impedes an early and accurate diagnosis leading to fatalities of up to 80% in certain patient groups. Consequently, there is the potential to increase the survival rates of IA patients, if a definite diagnosis of IA could be obtained early and its response to treatment monitored and adjusted accordingly. The highly A. fumigatus specific monoclonal antibody (mAb) JF5 and its humanized variant hJF5 were radiolabeled with 64Cu, tested in an experimental setup and compared to the standard PET tracer [18F]FDG in various infection models.

In vivo biodistribution studies were performed with neutropenic A. fumigatus infected C57BL/6 mice after the injection of 13 MBq of [64Cu]DOTA-JF5, the isotype control [64Cu]DOTA-MG 3-35, [64Cu]NODAGA-hJF5 or [18F]FDG and compared to the distribution of the respective tracers in control infections (S. pneumoniae and Y. enterocolitica). The Gr-1 antibody RB6-8C5 was administered 24h prior to the intratracheal infection of the mice with A. fumigatus to mimic impaired immunity by the depletion of neutrophil granulocytes. 3, 24 and 48h after the injection of the 64Cu labeled antibodies or [18F]FDG, PET/MRI images of the respective infection groups were acquired and compared to PBS treated controls. Additionally, blocking studies, ex vivo biodistribution, autoradiography and plating of various organs for the detection of the pathogen were performed.

[18F]FDG-PET showed similar results in A. fumigatus infected animals (%ID/cc lungs: 14.67±0.53), PBS treated control animals (%ID/cc lungs: 10.47±2.77) as well as in S. pneumoniae control infections with 13.05±2.80 and 12.37±1.19 %ID/cc in the respective PBS treated control group. Quantification of the PET images showed a significantly higher binding of the A. fumigatus specific JF5 mAb in neutropenic, A. fumigatus infected animals (%ID/cc lungs: 11.08±2.28) compared to PBS treated animals (%ID/cc lungs: 7.51±1.50). All control infections revealed a reduced uptake of JF5 in the lungs. Blocking experiments and studies with the unspecific isotype control antibody demonstrated the high specificity of JF5.

Biodistribution studies with the newly developed humanized [64Cu]NODAGA-hJF5 displayed similar uptake characteristics as the mouse mAb JF5 with 22.73±6.77 %ID/g in infected animals compared to 10.14±3.68 %ID/g in PBS treated animals.

[18F]FDG-PET revealed to be highly unspecific and is therefore not suitable for monitoring
disease progression and therapeutic success in IA. In contrast to that, 64CuDOTA-JF5 and especially the humanized variant 64CuNODAGA-JF5 have been developed and show great potential as novel timely and accurate diagnostic and therapeutic strategy for IA to improve the survival rates of patients.

TABLE TITLE: (No Tables)

(No Table Selected)

(No Image Selected)