Long-term variability of the wind speed over land, in coastal and in marine areas

Gryning, Sven-Erik; Batchvarova, Ekaterina; Floors, Rogier Ralph; Pena Diaz, Alfredo

Published in:
Program Book. 3rd International Conference Energy and Meteorology (ICEM 2015)

Publication date:
2015

Document Version
Peer reviewed version

Citation (APA):

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Long-term Variability of the Wind Speed over Land, in Coastal and in Marine Areas

Sven-Erik Gryning¹, Ekaterina Batchvarova¹,² Rogier Floors¹, Alfredo Peña¹

¹DTU Wind Energy, Technical University of Denmark
²National Institute of Meteorology and Hydrology, Bulgaria
Outline.

- Lidar Measurements
- Sensitivity to CNR (Carrier to Noise Ratio)
- Profile of Weibull distribution parameters (land, coastal and marine)
Figur af lidar princippet

\[v_r = v_t + \frac{2V_r}{\lambda} \]
Comparison lidar cups/vanes

Høvsøre coastal

Fino3 marine

Cup 106 m vs WLS 122 m

Vane 100 m vs WLS rec 122 m
Tall Wind project
Høvsøre
Hamburg
Table 1 Number of measurements and measuring periods at each site. The numbers in brackets represent the number of wind lidar measurements relative to the total number of cup anemometer measurements.

<table>
<thead>
<tr>
<th>Site</th>
<th>Wind lidar 100m/600m</th>
<th>Wind lidar and cup anemometer measurements; concurrent and full profiles up to 600 m</th>
<th>Cup anemometer</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Høvsøre-land</td>
<td>9885/8876 (84%)/(75%)</td>
<td>8754 (74%)</td>
<td>11758</td>
<td>25 April 2010 – 31 March 2011</td>
</tr>
<tr>
<td>Høvsøre-coastal</td>
<td>12618/11616 (73%)/(67%)</td>
<td>11383 (66%)</td>
<td>17377</td>
<td>15 June 2011 – 23 March 2012</td>
</tr>
<tr>
<td>Hamburg</td>
<td>34692/27504 (88%)/(70%)</td>
<td>26403 (67%)</td>
<td>39374</td>
<td></td>
</tr>
<tr>
<td>Fino3</td>
<td>40685/34487 (100%)/(85%)</td>
<td>32425 (80%)</td>
<td>40541</td>
<td>29 August 2013– 26 June 2014</td>
</tr>
</tbody>
</table>
Data availability

![Graph showing data availability for different locations: Hamburg, Høvsøre land, Høvsøre coastal, and Fino3. The graph plots CNR threshold against availability (%).]
The two-parameter Weibull distribution can be expressed as:

$$f(u) = \frac{k}{A} \left(\frac{u}{A}\right)^{k-1} \exp \left(-\left(\frac{u}{A}\right)^k\right)$$

where:
- $f(u)$ is the probability density function
- u is Wind speed
- $\langle u \rangle$ is Mean wind speed
- A is Scale factor
- k is Shape factor

The expected value of wind speed is:

$$\langle u \rangle = A \Gamma(1 + 1/k)$$
Left: the wind profile at Hamburg; circles represent observations by the wind lidar and triangles from cup anemometers.
Right: mean wind speed at 100 m as function of the CNR when full profiles up to 600 m are used. The full lines are wind lidar measurements, triangles concurrent wind speed from the cup anemometer. The dashed lines represent the CNR dependency when only the measurements at 100 m are used (no height filter).
Generally good agreement between mast (triangles) and lidar (circles) for estimates of k. It is especially visible at Hamburg because of the height of the mast – illustrated here.
Full line parametrization suggested by Gryning et al. (2014)
Høvsøre coastal

Fino3

Mean wind speed (m s⁻¹)

Time of day (hour)
Wieringa (1989): \[k = k_s + c_k (z - z_s) \exp \left(-\frac{z - z_s}{z_r - z_s} \right) \]

Gryning et al. (2014)

\[k = k_s + c \frac{z - z_s}{z_r - z_s} \exp \left(-\frac{z - z_s}{z_r - z_s} \right) - (k_s - k_t) \exp \left(-\frac{z_t - z_s}{z - z_s} \right). \]

where \(k_s \) is the value of the shape parameter at the height \(z_s \) near the ground, \(z_r \) is the height of the shape parameter maximum (reversal height) and \(k_t \) is related to the synoptic value at height \(z_t \).
Thanks for your attention