Capture and Storage Projects at IVC-SEP

Faramarzi, Leila; Darde, Victor Camille Alfred; Niu, Ben; Lerche, Benedicte Mai; Sadegh, Negar; Arshad, Muhammad Waseem; Fosbøl, Philip Loldrup; Breil, Martin Peter; Yan, Wei; Stenby, Erling Halfdan; Thomsen, Kaj; Kontogeorgis, Georgios; Michelsen, Michael Locht; von Solms, Nicolas

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Lean Amine

Two types of storage experiments are performed in students. Shown by figure 6 performed by Wei Yan and software packages (CAPE-OPEN) for the Faramarzi are involved in the creation of Philip L. Fosbol, Martin P. Breil and Leila solvents. The benefit of these solvents are low the process improvements of using amino acid initialised in order to study.

Recently the PhD project order to improve column calculations.

Improved Design of CO2 Capture

A model of the thermodynamic properties of amines is being created by Leila Faramarzi in order to improve column calculations.

Solvent Design & Selection

The amine solvent may not be the most optimal solvent for CO2 capture. Several interesting alternative solvents are being studied in IVC-SEP.

Aqueous and Chilled Ammonia

Victor Darde is involved in the thermodynamic model development of the electrolytic CO2-NH3-H2O system.

Mathematical Column Models

Philip L. Fosbol, Martin P. Breil and Leila Faramarzi are involved in the creation of software packages (CAPE-OPEN) for the calculation of heat and energy balances for the figure 2 columns as sketched in figure 3.

Capture

Process Optimization & Development

The solvent used in the equipment of figure 2 consists typically of an amine component. It binds and removes the CO2 from the flue gas in the absorber. The CO2 rich solvent is heated in the stripper and pure CO2 is released which is transported for on or off-shore storage. In IVC-SEP the phase equilibria are studied in order to improve current technology. The technology is extended for simultaneous capture of CO2 and H2S in order to lower the cost.

Combined CO2 and H2S capture

The aim of the PhD study by Negar Sadegh is to develop a thermodynamic model which can describe acid gas-alkanolamine mixtures over extensive pressure and temperature ranges.

Amino Acids

Recently the PhD project by Benedicte M. Lerche was initialised in order to study the process improvements of using amino acid solvents. The benefit of these solvents are low toxicity, low volatility, high stability to oxidative degradation, leading to low solvent loss.

Ionic Liquids

Ionic liquids (IL) are liquid salts. They have similar benefits to amino acids and may be used for combined capture of CO2 and SO2. IVC-SEP just received a large grant in collaboration with DTU Chemistry for developing new IL solvents. Muhammad W Arshad is finishing his master on this topic.

Technology Evaluation & Experimental Work

Experimental absorber pilot

Several master students have been, and are, involved in building an absorption column as shown in figure 4. This is done in order to test packings and solvents. Lars Kierboe and Nicolas von Solms are supervising these projects.

Storage

Experimental equilibrium and injection tests

Two types of storage experiments are performed in IVC-SEP. CO2-Chalk interaction test as shown in figure 5 by Ben Niu and CO2 solubility in brine as shown by figure 6 performed by Wei Yan and students.

Model of CO2 Injection

The aim of the studies by Ben Niu is to build a CO2 reservoir injection model in order to predict the experimental findings from the CT-scanner. Figure 7 shows the planned modelling methodology.

Why CO2 Capture and Storage (CCS)?

CO2 is a greenhouse gas and during 2007 the Intergovernmental Panel on Climate Change (IPCC) concluded that the major contribution to the global warming is CO2. Electricity produced solely by renewable energy-sources like wind, solar, or wave power is not possible yet, since the full scale infrastructure and knowledge is not available. In the meantime while these expertises are being developed the existing proven state-of-the-art how must be taken into use in order to lower the emission of CO2. Figure 1 shows a principle sketch of the CO2 flow in electricity production. The capture of CO2 is performed at the plant and storage of CO2 in nearby underground aquifers or in oil reservoirs, which as a side effect may enhance oil production. Figure 2 shows the known solvent-based CO2 capture process studied at IVC-SEP.

Figure 1: Sketch of CO2 flow in electricity production

Figure 2: Solvent based CO2 capture

Facility: Solvent is recycled and pure CO2 is produced.

Figure 3: Column balances

Figure 4: Absorber pilot

Figure 5: HP brine tests

Figure 6: CT-scanner injection test

Figure 7: Modelling of CO2 flooding in chalk reservoirs

Why CO2 Capture and Storage (CCS)?

CO2 is a greenhouse gas and during 2007 the Intergovernmental Panel on Climate Change (IPCC) concluded that the major contribution to the global warming is CO2. Electricity produced solely by renewable energy-sources like wind, solar, or wave power is not possible yet, since the full scale infrastructure and knowledge is not available. In the meantime while these expertises are being developed the existing proven state-of-the-art how must be taken into use in order to lower the emission of CO2. Figure 1 shows a principle sketch of the CO2 flow in electricity production. The capture of CO2 is performed at the plant and storage of CO2 in nearby underground aquifers or in oil reservoirs, which as a side effect may enhance oil production. Figure 2 shows the known solvent-based CO2 capture process studied at IVC-SEP.