135La for Auger-based therapy: preparation, imaging and emissions

Fonslet, Jesper; Tran, T. A.; Lee, B. Q.; Siikanen, J.; Larsson, E.; Kibédi, T.; Stuchbery, A. E.; Elema, Dennis Ringkjøbing; Severin, Gregory

Published in:
Journal of Labelled Compounds and Radiopharmaceuticals

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Title: 135La for Auger-based therapy: preparation, imaging and emissions

Authors: J. Fonslet\(^1\), T. A. Tran\(^2\), B. Q. Lee\(^3\), J. Siikanen\(^4,5\), E. Larsson\(^4\), T. Kibédi\(^3\), A. E. Stuchbery\(^3\), D. R. Elema\(^1\), G. W. Severin\(^1\)

Institutions:
1. Hevesy Laboratory, Technical University of Denmark, Roskilde, Denmark.
2. Lund University Bioimaging Center, Lund University, Lund, Sweden.
3. Department of Nuclear Physics, Australian National University, Canberra, ACT, Australia.
4. Lund University Hospital, Lund University, Lund, Sweden.
5. Department of Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.

Objectives: Our aim was to determine the suitability of \(^{135}\)La for Auger-based internal radiotherapy. We set out to produce and purify \(^{135}\)La (EC, 19.5 h) from nat\(^{136}\)Ba, radiolabel DTPA-mAbs with high specific activity, test X-ray based SPECT/CT imaging capabilities, and calculate detailed X-ray and Auger emission spectra.

Methods: \(^{135}\)La was produced by 16 MeV proton irradiation of nat\(^{136}\)Ba metal and purified by extraction from NH\(_4\)OAc (aq. 30 mM, pH 4.7) onto hydroxamate resin (see \(^{44}\)Sc from nat\(^{45}\)Ca\(^1\)). A DTPA-functionalized-IgG\(_1\) mAb, h11B6 \(^2\), was labeled in NaOAc, pH 5.5, RT. X-ray emissions were used for SPECT/CT (BioScan) phantom imaging. X-ray and Auger spectra were determined by Monte-Carlo simulation of the atomic relaxation process\(^3\).

Results: The saturation production yield of \(^{135}\)La was 431 MBq/µA on the thick nat\(^{136}\)Ba target. At 13 h post-bombardment the radionuclidic purity was over 95%. The main impurities were the short-lived \(^{136}\)La and \(^{134}\)La (10 min, 6 min), and \(^{133}\)La which is dosimetrically similar to \(^{135}\)La but with a potentially useful 7% \(\beta^+\) branch for PET imaging. The chemical separation was 96% efficient for La recovery, reducing the Ba content by a factor of \(\sim10^4\).

Conclusions: \(^{135}\)La production from nat\(^{136}\)Ba and its ultimate chemical and radionuclidic purity are appropriate to begin preclinical studies. These studies will be augmented by SPECT/CT. Dosimetry on both the cellular and organ level are now calculable using emissions from the entire Auger cascade.

Phantom SPECT/CT (BioScan) image of 1-1.5 MBq 135La in an Eppendorf tube.