A study of thermoelectric \(-\text{Zn4Sb3}\) under thermal cycling and large temperature gradients

Le, Thanh Hung; Van Nong, Ngo; Han, Li; Brummerstedt Iversen, Bo; Yin, Hao; Pryds, Nini

Published in:
Book of Abstracts - 34th Annual International Conference on Thermoelectrics (ICT 2015) and 13th European conference on Thermoelectrics (ECT 2015)

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
34th Annual International Conference on Thermoelectrics (ICT 2015)

and

13th European Conference on Thermoelectrics (ECT 2015)

June 28th - July 2nd, 2015 Dresden, Germany

www.cpfs.mpg.de/ict2015
PA188

A study of thermoelectric β-Zn$_4$Sb$_3$ under thermal cycling and large temperature gradients

Le Thanh Hung1, Ngo Van Nong1, Li Han1, Bo Brummerstedt Iversen2, Hao Yin3, and Nini Pryds1

1 Department of Energy Conversion and Storage, Technical University of Denmark, DTU Risø Campus, 4000 Roskilde, Denmark
2 Centre for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, 8000, Aarhus C, Denmark
3 TEGnology ApS, Lysholt Alle 10, 7100, Vejle, Denmark
* e-mail of presenting author: lthh@dtu.dk

β-Zn$_4$Sb$_3$ is among the highest performance and lowest cost thermoelectric (TE) materials in the medium to high temperature region [1]. However, the usage of this material in practice for TE power generation is still hindered. In this study, the thermoelectric properties of β-Zn$_4$Sb$_3$ legs are investigated under thermal cycling at hot-side temperatures up to 718 K, and in a large temperature difference of 653 K, corresponding to the hot and cold side temperatures of 673 K/293 K. The results after thermal cycling reveal that a zT value of about 1.4 at 718 K is maintained after 30 cycles. However, under a temperature gradient of 653 K for 24 hours, the β-Zn$_4$Sb$_3$ leg gradually decomposes into zinc whiskers and ZnSb. This occurs in a temperature range lower than 563 K due to the nature of the phase transition [2]. This study provides insight into the stability of β-Zn$_4$Sb$_3$ under large temperature gradients.

Figure 86: SEM micrographs of β-Zn$_4$Sb$_3$ sample before and after 24 hours under temperature gradient of 653 K.

References: