Passive Dosing of Pyrethroid Insecticides to Daphnia magna: Expressing Excess Toxicity by Chemical Activity

Nørgaard Schmidt, Stine; Gan, Jay; Kretschmann, Andreas Christopher; Cedergreen, Nina; Mayer, Philipp

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Passive Dosing of Pyrethroid Insecticides to *Daphnia magna*: Expressing Excess Toxicity by Chemical Activity

Stine N. Schmidt1,*, Jay Gan2, Andreas C. Kretschmann3, Nina Cedergreen1 and Philipp Mayer1

1Department of Environmental Engineering, Technical University of Denmark, Denmark; 2Department of Environmental Sciences, University of California Riverside, U. S.; 3Department of Pharmacy, University of Copenhagen, Denmark; 4Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.

*e-mail: stnsch@env.dtu.dk

Introduction and objectives

It is challenging to control and express exposure of hydrophobic organic compounds in aquatic toxicity experiments, due to the sorption of these compounds to vessel surfaces and organic material. In the current study, passive dosing was used to tightly control exposure throughout toxicity experiments [1], while chemical activity was used to express exposure and form basis for comparison of toxicity data [2].

This study addresses the acute toxicity of pyrethroid insecticides towards the aquatic invertebrate *Daphnia magna* and asks:

1. Is pyrethroid toxicity generally underestimated in the literature due to poorly controlled exposure?
2. At which chemical activity do pyrethroids exert their toxicity, and how similar are the median effect chemical activity (Eₐ₉₀) for different pyrethroids?
3. How much more toxic are pyrethroids relative to baseline toxicity?

Experimental

Passive dosing with silicone was used to set and maintain freely dissolved concentrations of α-cypermethrin, esfenvalerate and bifenthrin in 48-h immobilisation experiments with *Daphnia magna*.

- Silicone elastomer was cast in glass vials.
- Test organisms were exposed in water, continuously (µg L⁻¹)
- Silicone was loaded with test compounds (710⁻¹)
- Immobilisation or EC₅₀ (mmol L⁻¹)
- Conclusions

Results

![Figure 2. Immobilisation (%) of *Daphnia magna* after 48 h exposure to the three pyrethroids as a function of freely dissolved concentration (Cᵣₑₐ, µg L⁻¹). The median effect concentrations (EC₅₀) are given, with ranges of literature EC₅₀ values indicated by dark grey bars. (1) The EC₅₀ values correspond to 180 pmol L⁻¹ (95% CI 149-219 pmol L⁻¹) for α-cypermethrin, 335 pmol L⁻¹ (95% CI 298-374 pmol L⁻¹) for esfenvalerate and 357 pmol L⁻¹ (95% CI 300-426 pmol L⁻¹) for bifenthrin. Error bars represent the standard error of the mean (n=6).](image2)

![Figure 3. Regression of subcooled liquid solubility (Sᵣₑₐ, mmol L⁻¹) solid line, (13) and lines representing the chemical activity 0.1, 0.01, 0.001 and 0.0001 (a, unit less, broken line). The shaded area is the chemical activity range 0.00001 to 0.1 for the initiation of baseline toxicity. EC₅₀ values of naphthalene (1), phenanthrene (2) α-cypermethrin (3), esfenvalerate (4) and bifenthrin (5) are plotted against their Kᵣₑₐ values. The median effect chemical activity (Eₐ₉₀) is +0.000032, +0.00032 and +0.000979 for α-cypermethrin, esfenvalerate and bifenthrin, respectively.](image3)

Conclusions

Based on current data, the following was concluded:

1. In general, the median effect concentrations (EC₅₀) were in agreement with lowest literature values (Figure 2), and these studies thereby validate each other. To the contrary, higher literature values seem to underestimate pyrethroid toxicity.

2. The three pyrethroids had median effect chemical activities (Eₐ₉₀) in the chemical activity range 0.00001 to 0.001 (Figure 3), corresponding to median immobilisation at 0.01 to 1% of the pyrethroid’s subcooled liquid solubility. The Eₐ₉₀ values were within 2 orders of magnitude.

3. The three pyrethroids were 1-3 orders of magnitude more toxic relative to baseline toxicity (Figure 3). In this way, excess toxicity was expressed by Eₐ₉₀ values well below the chemical activity range 0.01 to 0.1 for the initiation of baseline toxicity.

Acknowledgements and References

We thank Anja Webell and Margit M. Fernqvist for guidance and assistance with *Daphnia magna* and passive dosing, respectively. We also thank Nina Mejias, Maj-Britt A. Bjerager and Emilie Reiler for help during the toxicity experiments. The research was financially supported by the European Commission (OSIRIS, COGE-037017) and Unilever UK Central Resources Limited (Contact CH-2013-0093).