Passive Dosing of Pyrethroid Insecticides to Daphnia magna: Expressing Excess Toxicity by Chemical Activity

Nørgaard Schmidt, Stine; Gan, Jay; Kretschmann, Andreas Christopher; Cedergreen, Nina; Mayer, Philipp

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Passive Dosing of Pyrethroid Insecticides to *Daphnia magna*: Expressing Excess Toxicity by Chemical Activity

Stine N. Schmidt, Jay Gan, Andreas C. Kretschmann, Nina Cedergreen and Philipp Mayer

1 Department of Environmental Engineering, Technical University of Denmark, Denmark; 2 Department of Environmental Sciences, University of California Riverside, U. S.; 3 Department of Pharmacy, University of Copenhagen, Denmark; 4 Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.

*e-mail: stnsch@env.dtu.dk

Introduction and objectives

It is challenging to control and express exposure of hydrophobic organic compounds in aquatic toxicity experiments, due to the sorption of these compounds to vessel surfaces and organic material. In the current study, **passive dosing** was used to tightly control exposure throughout toxicity experiments [1], while **chemical activity** was used to express exposure and form basis for comparison of toxicity data [2].

This study addresses the acute toxicity of pyrethroid insecticides towards the aquatic invertebrate *Daphnia magna* and asks:

1. Is pyrethroid toxicity generally underestimated in the literature due to poorly controlled exposure?
2. At which chemical activity do pyrethroids exert their toxicity, and how similar are the median effect chemical activity (Eₐₐ₉) for different pyrethroids?
3. How much more toxic are pyrethroids relative to baseline toxicity?

Experimental

Passive dosing with silicone was used to set and maintain freely dissolved concentrations of α-cypermethrin, esfenvalerate and bifenthrin in 48-h immobilisation experiments with *Daphnia magna*.

- Silicone elastomer was cast in glass vials.
- Silicone was loaded with test compounds (C_{silicone}).
- Test organisms were exposed in water, continuously equilibrated with loaded silicone (C_{free}).
- Experiments to determine partition ratios (K_{partition}) for the specific silicone are ongoing.

Results

Figure 2. Immobilisation (%) of *Daphnia magna* after 48 h exposure to the three pyrethroids as a function of freely dissolved concentration (C_{free} µg L⁻¹). The median effect concentrations (Eₐₐ₉) are given, with ranges of literature Eₐₐ₉ values indicated by dark grey bands (---). The Eₐ₉ values correspond to 160 pmol L⁻¹ (95% CI: 143-179 pmol L⁻¹) for α-cypermethrin, 133 pmol L⁻¹ (95% CI: 298-374 pmol L⁻¹) for esfenvalerate and 357 pmol L⁻¹ (95% CI: 300-426 pmol L⁻¹) for bifenthrin. Error bars represent the standard error of the mean (n=6).

Figure 3. Regression of subcooled liquid solubility (S_{LC}, mmol L⁻¹) and lines representing the chemical activity 0.1, 0.01, 0.001 and 0.0001 (a, unit less, broken line). The dashed (---) and solid (-----) lines were fitted to a sigmoidal response curve: 50% = 0.075 µg L⁻¹ (α-cypermethrin), 0.07 µg L⁻¹ (esfenvalerate) and 0.1 µg L⁻¹ (bifenthrin) respectively. Points represent the 50% immobilisation concentration (EC₅₀), n=6.

Conclusions

Based on current data, the following was concluded:

1. In general, the median effect concentrations (Eₐₐ₉) were in agreement with lowest literature values (Figure 2), and these studies thereby validate each other. To the contrary, higher literature values seem to underestimate pyrethroid toxicity.

The three pyrethroids had median effect chemical activities (Eₐₐ₉) in the chemical activity range 0.00001 to 0.001 (Figure 3), corresponding to median immobilisation at 0.01 to 1% of the pyrethroid’s subcooled liquid solubility. The Eₐₐ₉ values were within 2 orders of magnitude.

The three pyrethroids were 1-3 orders of magnitude more toxic relative to baseline toxicity (Figure 3). In this way, excess toxicity was expressed by Eₐₐ₉ values well below the chemical activity range 0.01 to 0.1 for the initiation of baseline toxicity.

Acknowledgements and References

We thank Anja Webell and Margit M. Fernqvist for guidance and assistance with *Daphnia magna* and passive dosing, respectively. We also thank Nuria Mejias, Maj-Britt A. Bjerager and Emilie Reiler for help during the toxicity experiments. The research was financially supported by the European Commission (OSIRIS, COOE-037017) and Unilever UK Central Resources Limited (Contract CH-2013-0003).