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Streamlining Smart Meter Data Analytics

Xiufeng Liu and Per Sieverts Nielsen

Technical University of Denmark
f xiuli, pernn g@dtu.dk

Abstract. Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters ca-
pable of measuring customer energy consumption at a �ne-grained time interval, e.g., every 15 minutes. The
data are very sizable, and might be from different sources, along with the other social-economic metrics such as
the geographic information of meters, the information about users and their property, geographic location and
others, which make the data management very complex. On the other hand, data-mining and the emerging cloud
computing technologies make the collection, management, and analysis of the so-calledbig datapossible. This
can improve energy management, e.g., help utilities improve the management of energy and services, and help
customers save money. As this regard, the paper focuses on building an innovative software solution to stream-
line smart meter data analytic, aiming at dealing with the complexity of data processing and data analytics.
The system offers aninformation integration pipelineto ingest smart meter data;scalable data processing and
analytic platformfor pre-processing and mining big smart meter data sets; and a web-basedportal for visualiz-
ing data analytics results. The system incorporates hybrid technologies, including big data technologies Spark
and Hive, the high performance RDBMS PostgreSQL with the in-database machine learning toolkit, MADlib,
which are able to satisfy a variety of requirements in smart meter data analytics.
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1 INTRODUCTION

Today smart meters are increasingly used in worldwide for the ability of providing timely read-
ing, automating metering without customer promises, producing �ne-grained data, and more.
Smart meters collect energy consumption data at a time interval, usually every 15 minutes or
hourly. Smart meter data analytics system is an ICT-based platform for analyzing the collected
meter readings, which nowadays has become an indispensable part for utilities running smart
grid. Smart meter data analytics can help utilities better understand customer consumption pat-
terns, provision energy supply to peak demand, detect energy theft, and provide personalized
feedback to customers. Also, government can make the decision for future smart grid develop-
ment based on analytic results. For customers, smart meter data analytics can help them better
understand their own energy consumption, save energy, and reduce their bills. Smart meter an-
alytics thus is seen so important that the market has been growing rapidly, which is expected
to reach over four billion dollar by year 2020 [19]. Various algorithms for smart meter data
analytics have been proposed, mainly in the smart grid literature, such as the ones for elec-
tricity consumption prediction, consumption pro�le extractions, clustering similar consumers,
and personalized feedback to consumers on how to adjust their habits and reduce their bills.
Nevertheless, there has been lacking smart meter analytics applications in reality until in the
recent that some database vendors starts to offer smart meter analytics software, e.g., SAP and
Oracle/Data Raker. So did several startups in this area, e.g., C3Energy.com and OPower.com.
Furthermore, some utilities such as California's PG&E4 also start to provide on-line portals
where customers can view their electricity consumption and compare it with their neighbour-
hood's average. However, these systems and tools focus on simple aggregation and simple ways
of visualizing consumption. The details of their implementations are not disclosed. It is unclear
on how to build a practical and scalable analytics system to handling smart meter data, which
are characterized by big volume and big velocity.

In this paper we present a software platform for streamlining smart meter data analytics. This
platform is built based on our benchmark work for smart meter data analytics technologies [30],



and extended from our prototype smart meter data analytics system,SMAS[29]. This platform
aims at providing a solution for facilitating the whole process of smart meter data analytics,
including data ingestion, data transformation, loading, analyzing, and visualization. Utilities or
customers can get the �nal information through these stages. We adopt a hybrid architecture in
the system design, in which the primary building blocks consist of Spark and Hive in the data
processing layer, and PostgreSQL with MADlib [18] in the analytics layer. The design consid-
ers the support for high performance analytics queries, i.e., through RDBMS, and the support
for big data analytics, i.e., through Spark and Hive. We decouple the system architecture into
three layers, including data ingestion layer, processing layer, and analytics layer, which make it
easy for users' implementation and extension. Smart meter data goes through the three layers
from data sources to be presented in a web portal. The processing layer is an open platform that
can integrate various user-de�ned processing units, such as the units for data transformation,
data anonymization, and anormal data detection. While, the analytics layer is also open to the
extension of different analytics algorithms. The analytics layer currently supports multiple types
of algorithms, including time-series analytics at different temporal aggregations (e.g., hourly,
daily, or weekly), load dis-aggregation, consumption pattern discovery, segmentation, forecast-
ing and consumer feedback. Consequently, in this paper we make the following contributions:
1) we propose a hybrid architecture of combining the best of different technologies for stream-
lining smart meter data analytics; 2) we implement the open data platform that can be easily
extended by using different data processing units and analtyics algorithms; and 3) we imple-
ment smart meter data analytics system of supporting both supply- and demand-side analytics,
which can help utilities better to manage energy supply and help consumers save energy.

The rest of this paper is structured as follows. Section 2 summarizes the related work; Sec-
tion 3 presents the design principles of the system; Section 4 gives an overview of the system;
Section 5 and 6 present data processing layer and analytics layer of the system, respectively;
Section 7 concludes the paper with directions for future work.

2 RELATED WORK

Systems and Platforms for Smart Meter Data Analytics.The traditional technologies, such as R
(S-PLUS), Matlab, SAS, SPSS and Stata, which support numeric computing and comprehen-
sive statistical analysis can be used in smart meter data analytics. The recent trend of analytics
technologies is to support in-memory, in-database, and in parallel on a cluster. Main-memory
based systems, such as KDB+ [16] and SAP HANA [13], and the in-database machine learning
toolkit, e.g., PostgreSQL/MADlib [18] are the good options to smart meter analytics. Parallel
distributed platforms such as Hive (built on top of Hadoop) or Spark are the two distinct dis-
tributed computing frameworks that are able to handle big data analytics in a cluster. In this
paper, we implemented our system with a hybrid architecture of using Hive, Spark and Post-
greSQL/MADlib. The system combines the best of each technology, which is able to do data
analytics in-database, in-memory and in parallel.

The systems or prototypes for smart meter data analytics emerge in both industry and
academia. The industry companies that we mentioned in Section 1 developed smart meter ana-
lytic software, but the implementation of the systems and analytics algorithms used are unclear,
which may be due to the license issue. Nezhad et al. developed a smart meter dashboard in their
research work, calledSmartD[20], which is orthogonal to the work of the analytics layer of
our system, but ours provides more comprehensive functionalities, and the whole software ar-
chitecture is the complete solution of supporting data ingestion, transformation, analyzing and
visualization. Liu et al. use analytic procedures in Hive to process smart grid data on cloud stor-



age, and use an RDBMS to cope with daily data management transactions on the information
of meter devices, users, organizations, etc [31]. This is somewhat similar to our architecture,
but our main focus is to streamline the whole process of smart meter analytics by taking ad-
vantage of different technologies. Furthermore, our platform is open to the extension of adding
more data processing units and algorithms. Besides, the work [31] primarily studies how to ef-
�ciently retrieve smart meter data from Hive, and focuses on simple operational queries rather
than the deep analytics that we address in our system. Beyond electricity sector, smart meter
analytics systems and applications were also developed in the water sector, e.g.,WBKMS[25],
a web-based application for providing real-time information of water consumption; andAut-
o�ow [21], a tool for categorising residential water consumption. We are currently developing
water data analytics algorithms, which will be integrated into the analytics layer of our system.
These existing works provide useful information to our implementation.

Benchmarking Smart Meter Data Analytics.Arlitt et al. implements a toolkit, calledIoTAbe-
nch, to benchmark the analytics algorithms of Internet of Thing (IoT). They use synthetic elec-
tricity data, and evaluates six queries for smart meter data analytics algorithms on HP Vertica
cluster platform. Benchmarking time series data mining is also discussed in [17], where differ-
ent implementations of time series similarity search, clustering, classi�cation and segmentation
were evaluated. Anil benchmarks data mining operations for power system analysis [5], which
analyzes voltage measurements from power transmission lines. However, all of these works
only focus on benchmarking analytics algorithms. In our previous work [30], we benchmark
four representative analytics algorithms for smart meter data, as well as �ve technologies with
different categories, including Matlab, KDB, PostgreSQL/MADlib, Spark and Hive. They rep-
resent the technologies of the traditional (Matlab), in-memory (KDB and Spark), in-database
(PostgreSQL/MADlib), in-memory distributed (Spark) and Hadoop based (Hive). The work is
the foundation to implement this system, i.e., providing the reference of choosing the technolo-
gies.

Smart Meter Data Analytics Algorithms.Two broad applications of smart meter data ana-
lytics are widely studied, which are consumer and producer-oriented. Consumer-oriented appli-
cations aim to provide feedback to end-users on reducing electricity consumption and saving
money (see, e.g., [10,19,23]). Producer-oriented applications are for utilities, system operators
and governments, which provide information of consumers, such as their daily habits for the
purposes of load forecasting and clustering/segmentation (see, e.g., [1, 2, 4, 7, 11, 12, 14, 15, 19,
20]). From a technical standpoint, both of the above classes of applications perform two types
of operations: extracting representative features (see, e.g., [7, 10, 12, 14]) and �nding similar
consumers based on the extracted features (see, e.g., [1, 11, 23, 24, 27]). Household electric-
ity consumption can be broadly decomposed into the temperature-sensitive component (i.e.,
the heating and cooling load) and the temperature-insensitive component (other appliances).
Thus, representative features include those which measure the effect of outdoor temperature on
consumption [3, 10, 23] and those which identify consumers' daily habits regardless of tem-
perature [1, 7, 12], as well as those which measure the overall variability (e.g., consumption
histograms) [2]. Some of the above existing algorithms have been integrated into our system,
as well as new implemented algorithms, which are used to study variability of consumption,
load pro�ling, load segmentation, pattern discovery, load dis-aggregation, and load similarity to
other consumers.

3 DESIGN PRINCIPLES

We now describe the high-level design principles for this smart meter data analytics system.



� Scalability. The system will be able to deal with fast-increasing volume of smart meter
data, with at a high frequency, e.g., 15 minutes, 30 minutes or hourly. It may adopt the cur-
rent technologies such as MapReduce to scale big data analytics. Data mining and machine
learning algorithms thus have to be transformed as MapReduce programs to be parallelized
in a cluster environment. The system should be capable of running at both batch and stream
mode to cater for real-time data streams and big data sets.

� Ef�ciency.The system will support low latency queries, and better service quality by giving
users great browsing and analysis experience. To enable this, in-memory based databases,
high performance NoSQL databases (with trading off consistency for availability, fault-
tolerance and performance), or traditional relational database management systems with
their support low latency queries will be exploited. The selected data storage system should
be able to support common operations over time series data such as temporal range queries.

� Availability. In order to capture near real time data and provide data service and analytics,
the system must be highly available. To enable this, this system should support running the
a cluster environment, e.g., a private or public cloud, which offer fault tolerance as a service
to the system which requires reliability and availability.

� Realtime and batch data ingestion.The system will implement two data ingestion mech-
anisms, realtime and batch data ingestion. Real-time data ingestion will integrate the data
stream into the system directly from smart meters, which will provide near realtime analyt-
ics results to customers, while batch ingestion will be used to the scenarios that data needs
to be handled in bulk mode, e.g., the data uploaded by users, or data from legacy systems.

� Solution.The system will provide a complete solution to smart meter data analytics, which
includes data ingestion, transformation, loading, data analytics and visualization. The sys-
tem will aim at streamlining smart meter data analytics, and supporting big data.

4 SYSTEM OVERVIEW

According to the design principle in the above section, we design a smart meter analytic system
with the architecture shown in Fig. 1. The architecture is divided into three layers, data ingestion
layer, processing layer and analytics layer. Each layer represents a separate functional system
to meet the overall requirement of streamlining smart meter data analytics. The left-most is the
data ingestion layer which consists of integrating real-time data stream from smart meters, and
the data from heterogeneous repositories in bulk mode. The objective of this layer is to acquire
the data from data sources, which are delivered to the processing layer for any necessary data
cleansing or transformations.

The middle in the architecture is the processing layer, which can handle the ingested data in
different data processing systems, such as Spark, Hive, Linux Shell, Python or RDBMS SQL
Engine (we will discuss it further in Section 5). Data is processed through work�ows, each of
which consists of multiple processing tasks that are executed in the corresponding underlying
data processing systems. All the work�ows are scheduled to be executed only once or repeat-
edly at a speci�c time interval, such as minutely, hourly, daily, weekly or monthly. In fact, the
processing layer can manage different work�ows for processing the data from different sources.
A work�ow is made of multiple connected worklets, each of which is used for a particular pro-
cessing task and can be executed on a underlying data processing system. For example, a batch
processing work�ow might consist of the worklet for extracting data from a source system and
writing to staging area; the worklet of running data cleansing on Spark, i.e., read data from
staging area, process, and write the �nal results to an analytics database; and the worklet of



Fig. 1.The system architecture of smart meter data analytics system

housekeeping when the job has �nished, e.g., removing the data from staging area, and sending
an email for the noti�cation.

The right-most in the architecture is the analytic layer for smart meter data implemented
in our previous work [29]. The analytics layer consists of a high performance database, ana-
lytics libraries, web application and report engine which are together to serve users' analytic
queries. This system is a web-based application of using Tomcat as the application server,
Highcharts (www.highcharts.com) as the visualization engine, PostgreSQL as the database,
and MADlib [18] as the in-database analytic library. We implement various algorithms using
MADlib analytics functions as well as Pl/PgSQL. The implemented algorithms include those
for load analysis, pattern discovery, segmentation, forecasting and feedback services. With these
algorithms, users can do both supply- and demand-side data analytics, which will be discussed
in Section 6.

We exploit this hybrid architecture for our system in order to combine the best of each
components, i.e., OLTP capability (byPostgreSQL), big data capability (byHive andSpark),
and realtime streaming ability (bySpark). Since RDBMS is more suitable for online analytics
with its powerful OLTP and indexing abilities, we use PostgreSQL to manage the latest smart
meter data, e.g., the data aged less than two years,social-economic data, andstatistics data. It
is because smart meter data typically has a big size, but is rarely updated; social-economic data,
such as the information of customer, property, and geographic locations, etc., is typically small,
but may be updated frequently. Statistics data is the analytics results from batch jobs, which
may be much smaller than the size of the original time-series data. Therefore, in this system
architecture, we use Hive as the archival database for storing history data, e.g., older than two
years. The history data can be run by the analytics algorithms in batch jobs in Hive, and the
results are updated to PostgreSQL.

5 DATA PROCESSING LAYER

The data processing layer is shown in Fig. 2. The core components of this layer consist of the job
scheduler implemented using Quartz library [22], and the data processing algorithms running
in this platform. The algorithms can be run on Spark, Hive, Linux Shell, SQL Engine or Python
environment. The data processing algorithms are the functional modules implemented for a
certain purpose, such as data cleansing, data transformation, data anonymization, streaming



processing, anormal data detection, etc. The sources and the sinks represent the places where a
job reads the data from and writes the �nal results to, respectively. Since this platform is an open
data platform, it supports various data sources and targets in the underlying, which is simply to
implement the corresponding read and write interfaces.

Fig. 2.The building blocks of data processing layer

5.1 Data Stream Processing

This data platform uses Spark for stream data processing (see Fig. 3). The data extractor is
scheduled by the system scheduler running periodically to “pull” the data from the external
sources, e.g., extracting data from sensors or smart meters for every 15 minutes. In fact, this
platform can extract data from any sources as long as the corresponding extractors are imple-
mented. For security reason, some data sources require user authentication for the reading, and
therefore, the authentication needs to be speci�ed in the data extractor program. The extracted
data are created as a distributed data sets (RDDs) in Spark, which are fault-tolerant collections
of objects partitioned across cluster nodes that can be acted on in parallel. RDDs can be ap-
plied by the operations, calledtransformations, including map, �lter, groupBy, and reduce, etc.
The programs for processing data are developed by making use of these operators. Multiple
data processing programs can constitute into a work�ow, a functional module for a particular
requirement, e.g., data imputation or anonymization. The �nal cleaned and well-formatted data
are kept temporarily in an in-memory table in Spark, which is also a RDD but given the name of
each attribute to improve the interoperability of Spark through SQL. When the data resides in
the in-memory table, users can do ad-hoc interactive queries by typing SQL statements through
a web-based user interface, and the results will be shown in a table or graphs in the user in-
terface. Through the interactive queries, users can check the analytics results instantly so as to
verify the implemented programs of work�ows. For more complex analytics requirements, and
the persistence of the data to PostgreSQL, we use BigSQL [9], an open source middleware that
can query the data in Spark and Hive from PostgreSQL through foreign data wrapper (FDW).

5.2 Batch Processing

The data processing layer supports Hive as batch processing system for big data. Hive is an open
source SQL-based distributed warehouse system built on top of Hadoop framework [26]. Hive
is an SQL-to-MapReduce translator with an SQL dialect, HiveQL, for querying data stored in



Fig. 3.The building blocks of data processing layer

a cluster. Since it is typically complicated for users to implement a MapReduce program on
Hadoop, Hive simpli�es this process by the SQL abstraction. Hive can automatically translate
SQL statements into MapReduce jobs, and run on Hadoop. This greatly lowers the barrier of
using Hadoop, and thus people who are familiar with SQL can easily write queries that will
be run on Haddoop. Hive is suitable for the situation where large-scale data is analyzed, fast
response time is not required, and no frequent data updates are done. With these characteristics,
Hive is employed to the batch processing in our platform. Thus, the data from legacy systems,
archival data, or other large-sized data sets residing in Hadoop distributed �le system (HDFS)
can be processed in Hive by analytic queries in SQL, and/or by user-de�ned functions (UDFs).
The �nal results of analtyics are written into the tables in Hive, which can be imported into the
database in the analytics layer, or still kept and maintained in Hive, which can also be queried
from PostgreSQL through the connector, BigSQL.

5.3 Job Scheduling

As mentioned earlier, the data processing layer supports different work�ows running on the
same platform, which are scheduled by the job scheduler. A work�ow may consists of multi-
ple worklets which are the programs of Spark, Hive, Python or Linux Shell. To better control
the scheduling of work�ow and the consumption of computing resources, we implement two
scheduling algorithms to control the jobs, including deterministic scheduling and delay schedul-
ing algorithms. The deterministic scheduling algorithm schedules the work�ows running at the
exact time speci�ed by users. With this algorithm, the scheduling for work�ows is determin-
istic and remains the same for repeated executions. The work�ows that are implemented in
the Python and Shell script, and execute on a single server are scheduled by the deterministic
scheduling algorithm. If a work�ow consists of Hive or Spark programs that require to run on a
cluster environment, the work�ow will be scheduled by the delay scheduling algorithm, which
ensures no more than one jobs submitted to the same cluster at any point of time. The reason
is that Spark or Hive programs run on top of Java virtual machine (JVM) in the underlying
distributed systems, which requires some amount of memory. It is easy to run out of the main
memory if multiple tasks are running simultaneously on a node. In the delay scheduling algo-
rithm, we use a queue to accommodate the jobs of work�ows, which are ordered by the time
set by users. If two scheduling times are identical, the scheduler uses a �rst-in-�rst-out (FIFO)
algorithm to submit the job to the cluster. Therefore, the execution time of some work�ows may
be not the time speci�ed by users, but at a later time.

6 DATA ANALYTICS LAYER

As shown in Fig. 1, the building blocks of data analytics layer consists of PostgreSQL, the in-
database machine learning toolkit, MADLib, the algorithms for smart meter data analytics, and
visualization. This layer was implemented in our previous work [29]. We now describe how we
use these building blocks in smart meter data analytics, and the functionalties provided by this
layer.



6.1 Analytics Algorithms

In traditional execution of analytics using SAS, R, Matlab and Proc-SQL there is signi�cant data
movement from database into the analtyic tools. Thus, the part of the workload related to data
movement is often quite substantial. One of new trends of analytics technology development
is pushing analytic algorithms into database, which aims at removing the overhead of data
movement. MADlib is such a tool for doing in-database analytics for the open source database
system, PostgreSQL. The analytics layer is composed of the two core building blocks,MADLib
andPostgreSQL. MADlib offers various off-the-shelf analytics functions, including the ones for
linear, logistic, multinomial logistic regression, elastic-net regularization for linear and logistic
regressions, k-means, association rules, cross validation, matrix factorization methods, LDA,
SVD and PCA, ARIMA, and many other statistical functions. The analytic functions are used
through a pure SQL interface. In this system, all our analytics algorithms are implemented as
stored procedures in PostgreSQL that use Pl/PgSQL and the analytics functions of MADlib.

In smart grid management, utilities must be provisioned for peak demand, therefore it is
important for utilities to identify consumers with highly variable consumption and offer them
incentives to smooth out their demand. In the analytics, utilities can run histogram on the hourly
consumption of each customer to learn the variability of a customer (see Fig. 4).

Fig. 4.Consumption variability analytics Fig. 5.Thermal sensitivity analytics

In the analytics, we can characterize the effect of external temperature on the electricity
consumption of each customer. For example, in winter and summer, consumption rises as tem-
peratures become more extreme due to heating and cooling. Consider the scatter plot shown in
Fig. 5, with temperature on the X-axis and consumption on the Y-axis. Each point on the scatter
plot corresponds to a particular hourly consumption value and the corresponding temperature
at that hour (for the same customer). We implemented a recent algorithm [10] that computes
a piece-wise linear regression model to characterize. The piece-wise linear regression model
the temperature sensitivity of each customer. The algorithm computes two regression models:
one corresponding to the 90th percentile consumption at each temperature and one correspond-
ing to the 10th percentile at each temperature. As shown in Fig. 5, these models reveal several
interesting features for each customer. For example, the slope of the 90th percentile line corre-
sponding to high temperature is the cooling gradient, and the slope of the line corresponding to
low temperature is the heating gradient. Furthermore, the height of the 10th percentile lines at
their lowest point is the base load, which corresponds to load due to appliances that are always
on, such as a refrigerator.

Another interesting algorithm is for extracting daily consumption patterns that occur regard-
less of the external temperature, as illustrated in Fig. 6. On the left, we show a fragment of the
hourly consumption time series for some consumer over a period of several days. Since smart
meters report the total electricity consumption of a household, we can only observe the total
consumption time series (the upper black curve). The goal of the algorithm is to determine,



for each hour, how much load is due to temperature (i.e., heating and cooling), and how much
load is due to daily activity independent of temperature (the lower blue curve). Once this is
determined, the algorithm �ts a time series auto-regression model and computes the average
temperature-independent consumption at each hour of the day, illustrated on the right of Fig. 6
(the X-axis is the hour of the day and the Y-axis is the average consumption). Since weekday
and weekend activities may differ, it is useful to separately compute the typical weekday and
weekend pro�les for each consumer.

Fig. 6.Daily load pro�le analytics

In addition, we have implemented other algorithms, including for load dis-aggregation, fore-
casting, clustering, and pattern discovery. We now illustrate an example on how to use Pl/PgSQL
and MADlib to implement an algorithm.

Example 1 (Implement PARX Algorithm Using Pl/PgSQL and MADlib) The exempli�ed al-
gorithm is called periodic auto-regression with eXogenous variables (PARX) [7], which can be
used to extract the load regardless of any eXogenous variables that affect the load. Let us take
residential electricity consumption as the example. The additional electricity consumption may
be due to size of family, house area, outdoor weather temperature, and others. For simplicity,
we only consider the weather temperature in this example, i.e., for heating or cooling. Given
the hourly electricity consumption time series for a consumer over time, we use this algorithm
to determine, for each hour, how much load is temperature-independent. Due to the living habit
of customers, the daily load may follow a certain pattern, e.g., having morning peak at 7-8
o'clock after getting up, and evening peak at 17-20 o'clock for cooking after work. Thus, in
this algorithm we take 24hours as a period, and the hour of a day att, i.e., t = 0:::23, as the
seasons, and use the previousp days at the timet for auto-regression. The PARX model at the
s-th season and at then-th period is formulated as

Ys;n =
pX

i =1

� s;i Ys;n� i + � s;1XT 1 + � s;2XT 2 + � s;3XT 3 + � s; s 2 t (1)

whereY is the data point in the time-series;p is the number of order in auto-regression;
XT 1; XT 2 and XT 3 are the exogenous variables to account for temperature, de�ned in the
equations of(2) � (4); � and� are the coef�cients; and� is the value of the white noise.

XT 1 =

(
T � 20 if T > 20

0 otherwise
(2)

XT 2 =

(
16� T if T < 16

0 otherwise
(3)

XT 3 =

(
5 � T if T < 5

0 otherwise
(4)



The variables represent the cooling (temperature above 20 degrees), heating (temperature be-
low 16 degrees), and overheating (temperature below 5 degrees) slopes, respectively.

Table 1 shows the table layout for managing time-series data of hourly resolution. This table
contains not only the time-series of smart meters, but also the hourly temperature time series
obtained from a local weather station of customers. We let temperature independent load empty
(see the columnTempIndependentLoad ), but it will be updated by the implemented algo-
rithm. We now implement the PARX algorithm using Pl/PgSQL and MADlib, shown in Fig. 7
(only the body of stored procedure is listed). Since MADlib does not provide PARX implementa-
tion, we, instead, make use of the provided multiple regression as the workaround, which takes
the values ofY, XT 1; XT 2 andXT 3 as the inputs of the variables. Line 1–25 in Fig. 7 shows
the process of preparing the variable values for the input of multiple regression algorithm in a
temporary table, where we set the orderp = 3 for the auto-regression part. Line 27 performs the
multiple regression using MADlib, which saves the output toresult temp table. Line 29–46
computes the temperature-independent load according to the formula (1), and updates to the
time-series table.

Table 1.Table layout for storing time-series data,tbl hourlyreading

MeterID Temperature Reading Readtime TempIndependentLoad
100 5.7 2.3 2014-01-01 00:00:00
100 5.6 1.8 2014-01-01 01:00:00
100 5.6 2.1 2014-01-01 02:00:00
... ... ... ... ...

Fig. 7.Extracting temperature-independent consumption using Pl/PgSQL and MADlib



6.2 Functionalities

The system supports both supply-side and demand-side smart meter data analytics. Through
supply-side analytics, utilities can optimize smart grid, plan for the future, and provision for the
peak of demand. Through demand-side analytics, utilities can better understand consumption
patterns of customers so as to provide personalized services. The demand-side analytics can
also help customers better understand their own consumption, and help them to save energy.
In the following, we will describe the functionlities of this layer for the support of supply- and
demand-side analytics.

� Consumption analysis.Utilities can view the consumption at different granularities with re-
spect to the dimensions of time and geographic location, and view the aggregated consump-
tion with respect to the functions, sum, average, min or max. Utilities can also compare the
consumption of any two individuals or feed areas.

� Consumption pattern discovery.Smart meter time-series data re�ects the load in�uenced
by various factors, such as consumer indoor activity, outdoor weather temperature, and the
appliances used. Consumption pattern discovery can help utilities to better understand the
consumption practices of customers so that they can provide customers appropriate recom-
mendations for energy saving. In pattern discovery, the analytics layer can display not only
the raw time-series data, but also the load shapes dis-aggregated by the 3-line and PARX
algorithms (see the chart at the top left of Fig. 8 in appendix and the chart at the bottom, re-
spectively). Using the 3-line algorithm, utilities are able to learn the base load, activity load,
heating gradient and cooling gradient of a customer. Using the PARX algorithm, utilities
can learn the daily average load pro�le of a customer regardless of the outdoor temperatures
in weekday and weekend/holiday, respectively. Also, using the histogram, utilities can learn
the hourly consumption distribution of a customer (see the chart at the top right of Fig. 8).

� Segmentation.For utilities, one of the most important tasks is to segment customers accord-
ing to their energy consumption and load pro�les. Customer segmentation can be used to
carry out more precise marketing communication with the customers, e.g., to promote the
most appropriate energy-savings programs to a targeted segment. In this layer, utilities can
cluster customers based on the extracted consumption features, including base load, activity
load, heating and cooling gradients; and the daily load pro�le of customers; and the shapes
of average load over a day, a week or a month. The segmentation is proceeded by using K-
means clustering algorithm. To segment customers who have similar load shapes, e.g., over
a period of time, we �rst normalize the load at each of the time series by dividing the total
load of that period, then segment them by running a clustering algorithm. The segmentation
classi�es customers into three segments according to their loads, or their dis-aggregated
loads including base load and activity load. The customers can be shown on Google Map,
indicated by a different color for each cluster (see Fig. 9).

� Forecasting.Energy industry is reliant on balancing energy supply and demand, and thus
requires to predict customer energy consumption. For instance, by predicting the periods of
peak demand, utilities can avoid distribution failure by upgrading the infrastructure for more
capacity, use dynamic pricing to incentivize customers to lower energy usage during peak
times, and give the recommendation of shifting from the peaks. The system supports the
following forecasts: individual household forecasting, feed area, and the overall forecasting
at the time granularity of daily, weekly, and monthly. The integrated forecast algorithms
includ PARX, ARIMA, and exponential smoothing HoltWinters.

� Feedback service.Feedback service allows utilities to set the rules of sending alert mes-
sages to customers. Utilities can provide a comparative feedback via ranking: what is this



consumer's rank within the neighborhood and within the whole city in terms of overall con-
sumption, base load, heating gradient and cooling gradient, and so on. Once a feedback rule
is set, the system will automatically send messages with a pre-set time interval.

� View my consumption and compare with neighborhoods.In this system, consumers can ex-
plore their own consumption data at different granularities at time dimension, i.e., hourly,
daily, weekly or monthly (see Fig. 10). At the �nest granular level, the system displays the
raw time-series data of the hourly resolution. While, at higher granular levels, the system
returns the summarized data. A customer can also compare his/her own consumption with
the average of households in the same area. Due to the privacy reason, a customer cannot
compare with an individual household. By comparing against the peers, a customer may
�nd the root cause to improve energy ef�ciency. For example, if the consumption is higher
than expected relative to the peers, (s)he may discover that this is due to air conditioners not
being set to a higher temperature during nights or using inef�cient air conditioners.

7 CONCLUSION AND FUTURE WORK

With the widely implementation of smart meters, smart meters produce considerable volumes
of data, presenting the opportunity for utilities to enhance end-customer service, lower cost
and improve energy ef�ciency; and for consumers to reduce the bills and save energy. Smart
meter data analytics is a complex process that involves data ingestion, pre-processing, analyzing
and visualization. In this paper, we have implemented the system with a hybrid architecture to
streamline smart meter data analytics, which consists of the building blocks including Spark,
Hive and PostgreSQL/MADlib. The architecture of the system has been divided into ingestion
layer, processing layer, and analytics layer, which support open extensions for different data
processing units, and different analytics algorithms. The system supports handling realtime data
stream and batch analytics for smart meter data, and OLTP operations for social-economic data.
We have conducted the benchmark work to evaluate the technologies used in this system, and
the results veri�ed the effectiveness for our system design. In the future work, we will evaluate
the performance of the system, including the analytics queries performance in the analytics
layer, the performance of processing data in batch jobs and realtime stream in the processing
layer. It would also be interesting to evaluate the system in handling more other types of data
sets, such as data set of IoT, water, gas, and heat consumption data sets, which might arise
improving the system, i.e., by adding new analytics algorithms for other data sets.
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A APPENDIX

Fig. 8.A screenshot of consumption pattern discovery

Fig. 9.A screenshot of segmentation

Fig. 10.A screenshot of consumption analysis


