Complete Genome Sequence of the Persistent Listeria monocytogenes Strain R479a

Schmitz-Esser, Stephan; Gram, Lone; Wagner, Martin

Published in:
Genome Announcements

Link to article, DOI:
10.1128/genomeA.00150-15

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Complete Genome Sequence of the Persistent *Listeria monocytogenes* Strain R479a

Stephan Schmitz-Esser, a Lone Gram, b Martin Wagner a

Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria a; Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark b

The complete genome sequence of the persistent *Listeria monocytogenes* strain R479a isolated from smoked salmon in Denmark and belonging to lineage II, serovar 1/2a, and multilocus sequence type 8 (ST8) is presented here.

The Gram-positive facultative intracellular pathogen *Listeria monocytogenes* is the causative agent of listeriosis, a rare but severe disease transmitted through the consumption of contaminated food (1). *L. monocytogenes* can survive and grow in a multitude of natural and man-made habitats (2). The long-term occurrence of genetically indistinguishable *L. monocytogenes* strains in the same food production plant over a long time period has been termed persistence. Some *L. monocytogenes* strains are able to persist for months or years in food production environments (2–4). Currently, two models are available to explain this persistence (2): either certain *L. monocytogenes* strains have unique phenotypic and genotypic characteristics facilitating long-term survival in food processing environments, or persistence is largely a random process and most *L. monocytogenes* strains can establish persistence if present in an appropriate niche at an appropriate time (2). Thus, persistent *L. monocytogenes* strains represent a big challenge for food safety; we therefore analyzed the genome sequence of the persistent *L. monocytogenes* isolate R479a (lineage II, serovar 1/2a, sequence type 8 [ST8]), which was isolated from smoked salmon from Denmark and persisted from November 1996 to January 1999 (5).

DNA was isolated using the Qiagen Genomic-tip columns and buffers, according to the recommendations of the manufacturer. Genome sequencing was performed using an Illumina GAII genome analyzer with paired-end sequencing technology and 100-bp read length, using Illumina standard protocols. A total of 3,057 million reads were used for a de novo assembly using Velvet, resulting in 33 contigs, with an average coverage of 140×. The remaining gaps were closed by PCR and Sanger sequencing (LG Genomics, Berlin, Germany). Gene prediction and annotation were done using the MicroScope platform (https://www.genoscope.cns.fr/agc/microscope/home/ [6]). Multilocus sequence typing (MLST) was performed with the MLST tool available on the Center for Genomic Epidemiology website (https://cge.cbs.dtu.dk/services/MLST/ [7]).

The R479a genome consists of a single circular chromosome with a size of 2,944,998 bp and 2,995 predicted coding sequences, a G+C content of 37.9%, and a plasmid (pLMR479a) of 86,652 bp containing 92 predicted coding sequences and a G+C content of 37.0%. Interestingly, and in contrast to most other sequenced *L. monocytogenes* genomes, the R479a genome contains only 5 tRNA operons and 58 tRNA genes.

The *L. monocytogenes* R479a genome contains a typical *Listeria* pathogenicity island and a full-length inter nalin AB (inlAB) locus. R479a encodes 11 intern alins and 17 intern alin-like proteins. All virulence genes present in *L. monocytogenes* EGDe, except the homologues of *lmo0320* (vip) and *lmo2026*, are present in R479a. pLMR479a is highly similar to other *Listeria* plasmids and carries many genes possibly involved in stress response or transporters for the export of heavy metals, such as a Tn5422 copy. Interestingly, pLMR479a harbors a region of 14 genes (LMR479A_p0071 to LMR479A_p0083) of approximately 10 kb, with a G+C content of 37.9%, in which all proteins show the highest similarity to proteins from *Firmicutes* other than *Listeria* species; this region had thus most likely recently been transferred into pLMR479a.

Nucleotide sequence accession numbers. The complete genome and plasmid genome sequences of strain R479a have been deposited in ENA/GenBank/DDBJ under the accession numbers HG813247 and HG813248, respectively. The versions described in this paper are the first versions.

ACKNOWLEDGMENTS

We thank Christian Schlötterer and Viola Nolte for genome sequencing and assembly.

M.W. and S.-S.-E. are members of the EU COST action FA1202 (CGA-FA1202), “A European network for mitigating bacterial colonisation and persistence on foods and food processing environments” (http://www.bacfoodnet.org/), and we acknowledge this action for facilitating the collaborative networking that assisted with this study.

This work was not supported by any external funding.

REFERENCES

