Investigations on PVD Al/Ni electrocatalysts for alkaline water electrolysis

Kjartansdóttir, Cecilía Kristín; Caspersen, Michael; Egelund, Sune Daaskov; Møller, Per

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Investigations on PVD Al/Ni electrocatalysts for alkaline water electrolysis

Cecilia Kjartansdottir, Michael Caspersen, Sune Egelund and Per Møller
Department of Materials and Manufacturing Engineering, The Technical University of Denmark

1. Introduction
1.1 Alternative electrodes for alkaline electrolysis
- Manufacturing of low-cost and efficient electrodes for alkaline electrolysis, plays a crucial role in promotion of this technique as a suitable route for renewable energy storage.
1.2 Characterization of HER and OER properties
- A new method for manufacturing of Raney type electrodes were investigated and the electrodes were characterized using conventional electrochemical techniques.

2. Experimental and procedures
2.1 Manufacturing of electrodes
- Deposition of Al by physical vapour deposition onto Ni
- Diffusion of Al and Ni leaves a Raney alloy suitable as skeletal catalyst for increased gas evolution

3. Results and discussion
3.1 Diffusion
- Up to 30 minutes heat treatment of the Al/Ni couple at 600 °C leads to a fast formation of leachable intermetallic phases (Al3Ni2, Al3Ni) (Figure 1)

![Figure 1: Diffusion of Al in Ni vs. time](image)

- Columnar structure of the PVD Al results in fast grain boundary diffusion (Figure 2)

![Figure 2: Columnar structure of PVD Al](image)

3.2 Characterization of electrodes
- Hydrogen and oxygen evolution reactions were measured

![Figure 3: Overpotentials for hydrogen evolution](image)

![Figure 4: Top-view of activated NiAl surface](image)

![Figure 5: Overpotentials for oxygen evolution (OER)](image)

4. Conclusion
- A porous and highly efficient electrode was created
- Fast diffusion of Nickel in columnar Aluminum occurred
- Longer diffusion times yielded higher HER activity.
- Only slight changes in activity for the OER with increased diffusion time
- HER overpotentials @100 mA/cm2 as low as 123 mV (385 mV lower than polished Ni)
- OER overpotentials @100 mA/cm2 as low as 338 mV (74 mV lower than polished Ni)