Magnetic High-Field Phases of Magnetoelectric LiNiPO4

Fogh, Ellen; Toft-Petersen, R.; Nojiri, H.; Granroth, G.; Kihara, T.; Christensen, Niels Bech

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Magnetic High-Field Phases of Magnetoelectric LiNiPO$_4$

E. Fogh 1, R. Toft-Petersen 2, H. Nojiri 3, G. Granroth 4, T. Kihara 3 and N. B. Christensen 1

1 Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
2 Helmholtz Zentrum Berlin für Materialien und Energie, Berlin-Wannsee, Germany
3 Institute for Material Research, Tohoku University, Sendai, Japan
4 Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

In this work the magnetic high-field phases and magnetoelectric properties of LiNiPO$_4$ are studied up to 30T.

LiNiPO$_4$ is a member of the family of lithium orthophosphates which are of orthorhombic structure and exhibit the magnetoelectric effect [1]. LiNiPO$_4$ is a quasi-2D system with long range antiferromagnetic order below $T_N = 21.8$T in zero-field. The magnetic phase diagram of the material has previously been studied up to 17.3T [2,3] and pulsed-field magnetization measurements up to 23T show several additional phase transitions [4].

Here LiNiPO$_4$ is investigated for fields up to 30T by pulsed high magnetic field time-of-flight Laue neutron diffraction and by magnetization and electric polarization measurements. Two high-field phases were found in agreement with the previous observations. The ordering vectors were determined and possible spin structures were suggested. The polarization measurements show a re-entrance of the magnetoelectric effect for $\mu_0 H \approx 19 - 21$T, which points towards a commensurate ferrimagnetic state. However, the behavior of the effect is not fully understood. The effect vanishes above 21T where either a linearly polarized spin structure or a spin spiral is present.

The experimental technique using pulsed high magnetic fields in connection with neutrons is relatively new [5]. Nevertheless, the results displayed here show that the technique presents a future possibility to study high-field phases of certain magnetic materials.

References