Biosynthetic potential for polyketides in Talaromyces atroroseus

Rasmussen, Kasper Bøwig; Mortensen, Uffe Hasbro; Thrane, Ulf

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Biosynthetic potential for polyketides in *Talaromyces atroroseus*

K. B. Rasmussen¹, U. H. Mortensen¹, U. Thrane¹

¹Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

Talaromyces atroroseus is an efficient producer of red *Monascus* pigments. We genome sequenced *Talaromyces atroroseus* IBT11181 and found it to lack the *Monascus* pigment PKS with the rest of the *Monascus* pigment cluster intact. The PKS closest related to the *Monascus* pigment PKS is the mitorubrin PKS11, and deletion of PKS11 results in the loss of *Monascus* pigment production. *T. atroroseus* PKS11 is delivering a precursor for both the mitorubrins and the *Monascus* pigments. Based on this finding we propose hypothetical models for the evolution of azaphilone pigment PKS clusters in *Talaromyces* and *Monascus*.

Acknowledgement

We thank Simon Rasmussen, Bent Petersen and Thomas Sicheritz-Pontén, Center for Biological Sequence analysis, DTU Systems Biology, for assembling the genome of *T. atroroseus*. We thank the Danish Research Council for financial support via grant FTP.09-064967