Methods for HT-PEM FC electrodes preparation

Vassiliev, Anton; Andersen, Kjeld Bøhm; Martin, S.; Cleemann, Lars Nilausen; Jensen, Jens Oluf

Publication date:
2014

Citation (APA):
Methods for HT-PEMFC electrode preparation and their influence on MEA activity

A. Vassiliev, K.B. Andersen, S. Martin, L.N. Cleemann and J.O. Jensen
Proton Conductors Group, Department of Energy Conversion and Storage, Technical University of Denmark

Catalyst layers made by spraying or tape casting have been prepared and evaluated on the cathode side of an HT-PEMFC. For spraying the catalyst inks were prepared by ultrasonic treatment and for tape casting the slurries were prepared by planetary milling. Different solvents and various amounts of binder have been tried to find optimum compositions. Additions of more than 20 wt% binder content greatly improves handling of the electrodes without sacrificing MEA performance.

Recently it has been shown that a MEA with catalyst layers made from an ink containing only the Pt/C catalyst in ethanol exhibits similar performance with a MEA prepared by standard methods [1].

To obtain better handling of the final electrodes and improve the porosity a binder with decomposition temperature suitable for in-situ removal was chosen. Several solvents have been tried to find an optimum ink formulation and 2-butanone proved to be the best candidate. Ink formulations were made with ultrasonic treatment or by planetary milling. Spraying and tape casting were investigated as catalyst deposition methods.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Ethanol</th>
<th>Acetone</th>
<th>2-butanone</th>
<th>1-propanol</th>
<th>2-propanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder</td>
<td>Not dissolved</td>
<td>Dissolved</td>
<td>Dissolved</td>
<td>Not measured</td>
<td>Not measured</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Combustion</td>
<td>No reaction</td>
<td>No reaction</td>
<td>Peroxide formation</td>
<td>Peroxide formation</td>
</tr>
</tbody>
</table>

Particle size analysis show no significant influence of preparation methods on the growth of Pt catalyst particles. Prolonged operation at elevated temperature showed a stronger effect for the cathode catalyst.

Polarisation and power curves of MEAs with increasing binder content on the cathode side show a positive effect on the cell performance in high current density range. This can be due to increased triple phase boundary obtained by removal of the binder.
