Thermodynamic Evaluation of the Production of Chiral Amines from Long-Chain Aliphatic Alcohols

Abu, Rohana; Lima Ramos, Joana; Woodley, John

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Thermodynamic Evaluation of the Production of Chiral Amines from Long-Chain Aliphatic Alcohols

Rohana Abu, Joana Lima-Ramos and John M. Woodley
Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, Kgs. Lyngby, Denmark. roha@kt.dtu.dk

Introduction
ω-Transaminase (EC:2.6.1.1) has been receiving considerable attention in chiral amine production due to its excellent stereoselectivity and its ability to operate under mild conditions. Potentially of even greater interest is to use alcohols as the starting material rather than ketones to produce the corresponding amines using a combination of an alcohol dehydrogenase (EC:1.1.1.2) in combination with the ω-transaminase [1, 2]. However, both reactions are reversible and often limited by thermodynamics where the equilibrium positions are in the favour of the reactants rather than the products.

Thermodynamics
Thermodynamic equilibrium of a system is very crucial in large part responsible for determining the yield of the reaction. However, very little attention has been addressed on this issue in the scientific literature compared to the kinetic study of enzyme-catalysed reactions [3, 4].

- For unfavourable reaction equilibrium, the reaction can be made possible and improved by shifting the equilibrium position towards the product with reaction process engineering and engineering strategies.
- For favourable reaction the study on kinetics will be useful and significant for control strategies.

Process Challenges

![Example Flowsheet](image)

Example Flowsheet

- Substrate feeding strategy
- Co-factor regeneration or enzyme cascade
- Excess of amine donor
- In-situ co-product removal or enzyme cascade
- In-situ product removal
- Biocatalyst format & amount
- Reactor configuration

Thermodynamic estimation

Experimental methodology to determine K_{eq} [3]

\[
Q = \frac{[C][D]}{[A][B]} = \frac{Q_1}{Q_0} \rightarrow 1, \text{when } Q \sim K
\]

- Predictive tools to calculate of ΔG value using group contribution method [5, 6]

Process Perspective

There is a need to predict the thermodynamic equilibrium value of the system in order to guide decision making and to set a realistic target for scale-up.

The engineering tools used to assist process development

- Thermodynamic modelling
- Kinetic modeling

References