Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

Published in:
Environmental Science and Technology

Link to article, DOI:
10.1021/es504000h

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Utilization of CO₂ Fixating Bacterium *Actinobacillus succinogenes* 130Z for Simultaneous Biogas Upgrading and Biosuccinic Acid Production

Ingólfr B. Gunnarsson, Merlin Alvarado-Morales, and Irini Angelidaki*

Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

ABSTRACT: Biogas is an attractive renewable energy carrier. However, it contains CO₂ which limits its use for certain applications. Here we report a novel approach for removing CO₂ from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO₂ into biosuccinic acid using the bacterial strain *Actinobacillus succinogenes* 130Z, and simultaneously producing high-purity CH₄ (> 95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO₂ solubility was achieved, thereby positively affecting final succinic acid yield and titer, CO₂ consumption rate, and CH₄ purity. When using biogas as the only CO₂ source at 140 kPa, the CO₂ consumption rate corresponded to 2.59 L CO₂ L⁻1 d⁻¹ with a final succinic acid titer of 14.4 g L⁻¹. Under this pressure condition, the highest succinic acid yield and biogas quality reached corresponded to 0.635 g g⁻¹ and 95.4% (v v⁻¹) CH₄ content, respectively, after 24 h fermentation. This work represents the first successful attempt to develop a system capable of upgrading biogas to vehicle fuel/gas grid quality and simultaneously produce biosuccinic acid, a valuable building block with large market potential in the near term.

INTRODUCTION

The EU Renewable Energy Source (RES) directive states that EU members should increase RES share of final energy consumption to an EU average of 20% and reduce CO₂ emissions 15–30% by 2020. With the EU commission trying to implement its emissions trading system (EU ETS), firms are likely to be charged a carbon tax of €10 per metric tonne of CO₂ emissions by the end of 2014 (predicted to reach €13 by the end of 2015). In the context of the EU directive framework, increased biofuel production and consumption should be complemented by increased production and use of biobased chemicals and should be prefered over their petrochemical derived equivalents. Gaseous biofuels, mainly biogas, are increasingly becoming an important renewable energy source for combined heat and power (CHP) generation, while their role as transport fuel is also expected to increase in the coming years. Biogas, produced through anaerobic digestion of organic material, is generally composed of 50–75% CH₄ and 25–50% CO₂. Depending on the final use, different processing steps are necessary. For instance, where it is important to have high energy content in the gas, as in vehicle fuel or for grid injection, the CH₄ needs to be purified (upgrading). By removing CO₂ from the biogas in the upgrading process the energy content of the gas increases. Current upgrading technologies such as absorption make use of the physical/chemical properties of CO₂ where it is captured from the biogas (thereby increasing the CH₄ purity) and then released into the atmosphere, contributing to the global warming effect. The necessity for reducing CO₂ emissions has never been greater, as recently the amount of CO₂ in earth’s atmosphere was observed to exceed 400 ppm for the first time since measurements started 55 years ago, also the fact that current technologies for CO₂ capturing and storage are costly, therefore processes that use CO₂ as a raw material are likely to become increasingly important. An example of such a process is biological production of succinic acid through bacterial...
fermentation, where CO₂ fixation is performed by *Actinobacillus succinogenes* or any other bacterium capable of producing succinic acid. Succinic acid is a four-carbon diacid with the chemical formula C₄H₆O₄ and is a precursor in the chemical synthesis of numerous commodities in agricultural, food, chemical, and pharmaceutical industries (e.g., solvents (1,4-butanediol, tetrahydrofuran, 2-pyrrolidinone, and gamma-butyrolactone) and biodegradable polymers (polybutylene succinate (PBS) and polyamides)). Producing succinic acid biologically through fermentation has the advantage of consuming 1 mol of CO₂ per 1 mol of succinic acid produced, opposed to producing it chemically through hydrogenation of maleic acid as most of it is currently produced. Substantial CO₂ emission savings in the range of 4.5−5 t per t biosuccinic acid produced have been estimated compared to emissions of petrochemical-derived succinic acid, therefore, it is evident that biosuccinic acid production could contribute to the abatement of CO₂ emissions. A number of bacterial strains are able to produce succinic acid through fermentation, including *Actinobacillus succinogenes*, *Mannheimia succiniciproducens*, *Anaerobiospirillum succiniciproducens*, *Corynebacterium glutamicum*, and recombinant *Escherichia coli.* *A. succinogenes* is recognized as one of the most promising microorganisms utilized for biosuccinic acid production, as it is a facultative anaerobe with high tolerance to initial sugar concentrations (≤158 g L⁻¹ D-glucose), but also tolerates high levels of succinic acid (>70 g L⁻¹). Additionally, *A. succinogenes* has a broad preference of carbon sources such as glucose, xylose, arabinose, galactose, maltose, fructose, sucrose, cellobiose, lactose, mannitol, arabitol, sorbitol, and glycerol. This makes it possible to utilize a large variety of residual biomasses, such as carbohydrate-rich wastes or high-purity CH₄ and biosuccinic acid. The benefits of integrating both processes—succinic acid production via bacterial fermentation and biogas upgrading—would potentially overcome the cost of CO₂ capture and storage and the cost of biogas upgrading, thereby promoting biobased economy.

EXPERIMENTAL SECTION

Chemicals and Gases

All chemicals used in this study were of analytical grade and purchased from Sigma-Aldrich ApS (Brøndby, Denmark); gases were supplied by AGA A/S (Copenhagen, Denmark).

System Setup and Operation

Two identical 3-L bioreactors (Sartorius BISTAT Aplus, Germany) with an initial liquid working volume of 1.5 L were used. The bioreactors were equipped with EASYFERM PLUS K8 200 pH probes (Hamilton Bonaduz AG, Switzerland), temperature probes (Sartorius, Germany) and InPro 5000i dissolved CO₂ sensors (Mettler Toledo, Switzerland). Flow rate of gas mixtures was controlled through a peristaltic pump (Watson-Marlow, United Kingdom). For monitoring and controlling pressure inside bioreactors a pressure gauge (Cewai, Italy) was mounted with a relief valve (Hy-Lok, USA) set to the experimental pressure. Gas−liquid ratio is defined in this study as initial volume of gas per liquid working volume. Experiments were conducted using different gas−liquid ratios (8.3:1 and 5:1). As shown in Figure 1 the gas was recirculated through the system during fermentation, allowing changes in biogas composition to be observed. Under anaerobic conditions, the biogas was injected through the sparger at the bottom of the reactor. As the biogas bubbles go through the reactor some of the gaseous CO₂ gets solubilized in the culture broth. As fermentation progresses, CO₂ decreases in the liquid phase (due to consumption by bacterial fermentation) which, according to Henry’s law, forces more CO₂ to the gas phase to be dissolved into the culture broth. In this way the CH₄ content of the biogas is increased.
Microorganisms, Medium, and Succinic Fermentation.

The strain of Actinobacillus succinogenes 130Z (DSM 22257) was obtained from DSMZ. The culture stock was stored in glycerol at −80 °C until used. Seed culture medium was composed of (g/L) glucose (10.0), yeast extract (5.0), NaHCO₃ (10.0), NaH₂PO₄ (24.0), 2H₂O (9.6), and K₂HPO₄·3H₂O (20.3). Medium was sterilized at 121 °C for 20 min. Seed culture was cultivated at 37 °C and 150 rpm in 50-mL sealed anaerobic bottles containing 30 mL of medium and inoculated with 1 mL of −80 °C glycerol stock culture. Biogas upgrading and succinic fermentation production batch experiments were conducted in duplicates. Fermentation experiments were conducted using biogas (60% CH₄, 40% CO₂) or 100% CO₂ as only source of CO₂ for succinic acid production. Fermentations were carried out at either 101.325 or 160 kPa pressure. Experimental medium for biogas upgrading and fermentation was composed of (g/L) yeast extract (10.0), K₂HPO₄ (3.0), MgCl₂ (0.2), CaCl₂ (0.2), and NaCl (1.0). Medium was sterilized at 121 °C for 20 min. Sterile glucose solution was added separately to the bioreactors to get a glucose concentration of 30–32 g L⁻¹. All batch fermentations in 3-L bioreactors were carried out at 37 °C, pH 6.75, and 200 rpm for 24 h, and inoculated with 5% (v v⁻¹) of exponentially growing inoculum. Prior to start of fermentation, pH was adjusted to 6.75 using 50% (w v⁻¹) phosphoric acid, and 0.05 mL of sterile antifoam 204 (Sigma-Aldrich) was added. NaOH (8 M) was added automatically to maintain the pH at 6.75 during fermentation. N₂ gas was used in all cases to create anaerobic conditions prior to start of fermentation.

Analytical Methods. Dissolved CO₂ in fermentation broth was determined experimentally using an InPro 5000i (Mettler Toledo, Switzerland) CO₂ sensor controlled by M400 transmitter (Mettler Toledo, Switzerland). Gas containing 100, 40, and 20% (v/v) CO₂ was used to determine the dissolved CO₂ in fermentation broth at 101.325, 120, and 140 kPa pressure with temperature and pH fixed at 37 °C and 6.8, respectively. Cell growth was monitored by measuring the optical density at 660 nm (OD₆₆₀) using a spectrophotometer (Jenway Buch and Holm A/S 64050UV/vis). At OD₆₆₀ of 1.0, A. succinogenes 130Z has a concentration of 0.626 g dry cell weight (DCW) L⁻¹ (data not shown). Glucose, succinic acid, lactic acid, formic acid, acetic acid, and ethanol were all detected and quantified using high-performance liquid chromatography (HPLC). The HPLC (Agilent 1100 series) had a refractive index detector (detection of sugars, VFAs, and ethanol) and a Bio-Rad Aminex HPX-87H column (300 mm × 7.8 mm) with 4 mM H₂SO₄ as an eluent at a flow rate of 0.6 mL min⁻¹ with column oven temperature set to 63.5 °C. To protect the HPX-87H column from contamination and foreign particles a guard column was fitted to the system. The yield of succinic acid, expressed as a percentage, was defined as the amount of final succinic acid produced from 1 g of reduced sugar consumed.

Model Description and Calculation. From low to moderate pressures at supercritical temperature, the solubility of a gas (e.g., CO₂) in a pure solvent (e.g., water) can be calculated by Henry’s law:

\[p_{CO_2} = H_0 C_{CO_2} \]

where \(p_{CO_2} \) is the CO₂ partial pressure in a gas mixture (kPa), \(H_0 \) is the Henry’s constant for CO₂ in a pure solvent (kPa L mol⁻¹), and \(C_{CO_2} \) is the concentration of dissolved CO₂ in the liquid phase (mol L⁻¹). However, in a culture broth different kinds of organic substances and salts are always present which affects the solubility of CO₂. The effect of pH, temperature, and the organic substances and salts on CO₂ solubility has been taken into account through an empirical model for further predictions. For details see the Supporting Information.

Statistical Analysis. An ANOVA analysis followed by Fisher’s Least Significant Difference test (LSD, \(p < 0.05 \)) was used to evaluate if any significant differences were observed between model predictions and experimental measurements. All statistical analyses mentioned above were carried out using OriginPro software, version 9.0.0 (OriginLab Corporation, Northampton, MA).

RESULTS AND DISCUSSION

Proof of Concept. In this experiment, biogas (60% CH₄, 40% CO₂) was used as the only source of CO₂ for succinic acid fermentation (Figure 2a) using a gas–liquid ratio of 8.3:1. At atmospheric pressure (CO₂ partial pressure of 40 kPa), the maximum solubility of CO₂ corresponds to 9.15 mM. As shown in Figure 2b at 101.325 kPa, the final biogas composition at the end of the fermentation corresponded to 76.4% CH₄, 24.6% CO₂. The CO₂ partial pressure lessens as CO₂ is consumed during the course of the fermentation. This resulted in a decrease of the solubility of CO₂ (5.4 mM) in the culture broth at the end of the fermentation. In terms of succinic acid production, the final titer was 12.85 g L⁻¹ with a yield of 0.60 g g⁻¹. When fermentation was performed at 101.325 kPa, the overall CO₂ consumption rate during 24 h fermentation corresponded to 1.35 L CO₂ L⁻¹ d⁻¹. Succinic acid yield and productivity were in agreement with those reported in previous studies. To our...
knowledge, this is the first study reporting simultaneous biogas upgrading and succinic acid production by means of this novel concept.

Improving Process Performance. It was investigated if increasing pressure in the system (therefore increasing CO₂ solubility) could significantly increase final CH₄ content in biogas. To study the effect of pressure, the gas–liquid ratio of the system was first kept constant (8.3:1). When total pressure was increased to 140 kPa (CO₂ partial pressure of 56 kPa) the final methane content in biogas was increased to fixation, thereby increasing CH₄ purity in biogas and favorably affecting the succinic acid production. Gas–liquid ratio in the system was reduced to 5:1 in order to investigate its effect on the process performance, especially if CH₄ content could be increased further. At the end of fermentation, CH₄ content was increased from 85.2% at 101.325 kPa to 95.4% at 140 kPa (see Table 1).

When comparing results obtained at 101.325 kPa to similar experimental conditions, the succinic acid titer was observed to be 10.0% higher (p < 0.05) from 101.325 to 140 kPa (see Table 1).

Additionally, there was a positive effect on the succinic acid yield when pressure was increased, improving it by 13.8% (from 0.56 to 0.63 g g⁻¹). Increased pressure appears to favor succinic acid metabolism in relation to other fermentation products. Increase of the CO₂ pressure from 101.325 to 140 kPa resulted in decrease of the final formic acid titer by 15.7% (p < 0.05) compared to that at 101.325 kPa. However, in this case the final acetic acid titer was not found to be significantly different. By reaching 95.4% CH₄ content, the system (gas–liquid ratio 5:1) was able to upgrade the biogas (60% CH₄, 40% CO₂) to a purity similar to that of commercial biogas upgrading technologies (95–98% CH₄ content). Although countries have different standards for purity of natural gas used for gas grid injection and vehicle fuel, purity of 95–98% CH₄ is a common target.

System Performance at Different CO₂ Partial Pressures. One of the key factors in succinic acid fermentation is the availability of CO₂. Many studies focusing on succinic acid production have increased the CO₂ availability by addition of salts such as MgCO₃, NaHCO₃, or CaCO₃. Through addition of such salts the CO₂ solubility is greatly increased. Nevertheless, from an industrial perspective the addition of these salts will likely increase the cost of the fermentation process and certainly any solid residue left will increase the cost of downstream processing. Many studies have investigated the use of CO₂ gas in succinic acid production up to 101.325 kPa, while few or no studies have investigated the effect of raising the total pressure (>101.325 kPa) in the system. For this reason, experiments were conducted using CO₂ gas as the only CO₂ source to study the effect of increasing pressure in the system. The first approach was to predict the effect of increasing pressure in the system (from 101.325 to 140 kPa) by means of an empirical model (SI) together with our experimental conditions (pH, temperature, and culture broth composition). Model prediction showed an increase of 38.1% in CO₂ solubility, which was confirmed later by experimental determination (Figure 3).

As observed in Table 1, the increment of pressure favorably affected the succinic acid production. Comparing the two experimental conditions, the succinic acid titer was observed to be 10.0% higher (p < 0.05) at 140 kPa compared to 101.325 kPa. At 140 kPa the succinic acid yield was calculated to be 0.69 g g⁻¹, which represents an increase of 11.5%. Additionally the productivity at 24 h increased from 0.73 to 0.80 g L⁻¹ h⁻¹. When comparing results obtained at 101.325 kPa to similar studies, the yield and productivity were 12.7% and 35.4% lower. However, these differences are mainly due to the higher initial glucose concentration used in that study. The final acetic and formic acid titers after 24 h were found not to be significantly different (p < 0.05) when comparing both pressure conditions. In summary, the system described in this work was able to simultaneously upgrade biogas to CH₄ purity of 95.4% and produce succinic acid. To the best of our knowledge this study represents the first investigation of biosuccinic acid production.

Table 1. System Performance at Different CO₂ Partial Pressures and Gas–Liquid Ratios

<table>
<thead>
<tr>
<th>CO₂ partial pressure (kPa)</th>
<th>CO₂ gas (40% CO₂/60% CH₄)</th>
<th>CO₂ gas (40% CO₂/60% CH₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>9.15</td>
<td>16.7</td>
</tr>
<tr>
<td>56</td>
<td>9.15</td>
<td>16.7</td>
</tr>
<tr>
<td>101.325</td>
<td>23.16</td>
<td>31.97</td>
</tr>
</tbody>
</table>

Figure 3. Calculated dissolved CO₂ (—) and CH₄ (−−−) concentrations in culture broth as a function of CO₂ and CH₄ partial pressure using the model and dissolved CO₂ concentration in the culture broth determined experimentally at different CO₂ partial pressures (◆).
along with CH₄ purification through utilization of CO₂ fixing bacterium A. succinogenes 130Z. By increasing pressure in the system, higher CO₂ solubility was achieved, thereby positively affecting succinic acid yield and titer, CO₂ consumption rate, and CH₄ purity. This work serves as a state-of-the-art study about the integration of production of a biobased bulk chemical and purification of a gaseous energy carrier. Further studies involving the optimization of the system are necessary to fully demonstrate its economic feasibility. Finally, the implementation of this concept on a larger scale may promote its practical application thereby contributing to a worldwide biobased economy.

ASSOCIATED CONTENT

Supporting Information
Model description and details, as well as additional fermentation data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*Phone: +45 45251429; e-mail: iria@env.dtu.dk.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study is the result of work done in the Biorefinery Øresund project. We thank Interreg IVA for the financial support given.

REFERENCES

