Nordic mcl2-3 trials: mirna-18b overexpression identifies a mantle cell lymphoma subgroup with poor survival and improves mipi-b prediction of prognosis

Published in:
Haematologica

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Haematologica | 2014; 99(s1) | 487

P1268

COST-EFFECTIVENESS OF EDOXABAN, APAIXABAN, RIVAROXABAN AND DABIGATRAN VERSUS WARFARIN FOR STROKE PREVENTION IN NONVALVULAR ATRIAL FIBRILLATION

M Marchetti1,*, N L Liberato2, C Rognoni3, S Quaglini3
1Hematology Unit, Ospedale Cardinal Massaia, Asti, 2Medicine Unit, Az Ospedaliera Pavia, Casorate Primo, 3Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy

Background: Non-valvular atrial fibrillation (NVAF) causes one fifth of overall ischemic strokes, therefore, oral anticoagulation with warfarin is recommended since it can prevent about one third of the events. Novel oral anticoagulants (NOAC), i.e. oral inhibitors of thrombin or factor Xa, compete with warfarin in this setting since a simplified monitoring is required and intracranial bleedings are significantly reduced.

Aims: We aimed at assessing the cost-effectiveness of NAOs (dabigatran, apixaban, rivaroxaban, edoxaban), versus warfarin, for stroke prevention in NVAF patients with CHADS2 score ≥2.

Methods: We built a Markov decision model including 11 health-states. Quarterly transition probabilities among states were estimated based on data from published randomized trials. Quality of life estimations for each event or health-state were derived from reference studies. For each therapeutic strategy, the model estimated expected quality-adjusted life-years (QALY) in the lifetime horizon. The economic analysis was performed in the perspective of the Italian National Health System. Quarterly drug cost of NOA2s was €198 versus €3.9 of warfarin. Future life years and costs were discounted by 3.5% per year, according to international guidelines. Incremental cost per QALY gained (ICUR) as compared with warfarin was calculated for each NAO. First- and second-order (probabilistic) sensitivity analyses were run. The model was developed and run by TreeAge SW.

Results: NOA2s increased quality-adjusted life expectancy by 0.405-0.753 discounted years, as compared with warfarin. Incremental lifetime healthcare costs of patients assigned to NOA2s ranged from €3,439 to €4,923. The cost-effectiveness of NAOs versus warfarin ranged from €4,567/QALY (80% CI: 2,129-8,993) for apixaban to €12,156/ QALY (80% CI: 5,147-33,200) for rivaroxaban. Dabigatran and edoxaban reported intermediate ICUR values: €6,307/QALY (80% CI: 3,034-13,421) and €7,713/QALY (80% CI: €3,909-€17,963), respectively. Second-order sensitivity analysis showed that the results were robust: over 90% of the simulations provided an incremental-cost-effectiveness ratio lower than €50,000/QALY, irrespectively of the NAO being compared with warfarin. The results were sensitive to the time in warfarin therapeutic range, the analysed time horizon, and the impact of anticoagulants

Summary and Conclusion: NAOs are cost-effective drugs for stroke prevention in moderate-high risk patients with NVAF. Lacking head-to-head studies, the relative cost-effectiveness of one NAO versus another one is surrounded by a wide uncertainty. Economic sustainability of widespread NAO adoption in industrialized countries still needs to be assessed, therefore phase 4 studies should investigate clinical and economic outcomes in specific patient subgroups, i.e. warfarin-treated patients with a high rate of time-in-treatment-range.

P1269

ECONOMIC VALUE CREATED BY ADDING RITUXIMAB TO CHEMOTHERAPY IN THE UNITED STATES FROM 1998-2013

C Reyes1,*, M Danese2, M Gleeson2, M Halperin2, S Skettino3, J Mikhael4
1Genentech Inc, South San Francisco CA, 2Outcomes Insights, Westlake Village CA, 3Genentech, Inc, South San Francisco CA, 4Mayo Clinic, Scottsdale AZ, United States

Background: Rituximab has become the standard in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL). The incremental cost of adding rituximab to existing chemotherapy and the value of the life years saved have not been estimated at the population level.

Aims: Our objective is to estimate the net economic value of rituximab in the United States for policy decision-makers.

Methods: We constructed a population effectiveness model from 1998-2013. Age group, gender, and year-specific incidence rates for each cancer were estimated from the Surveillance, Epidemiology, and End Results (SEER) program. Incidence rates were multiplied by Census estimates to calculate total diagnosed patient counts. Utilization, survival and cost inputs were estimated using SEER Medicare merged data for patients diagnosed 1999-2009 and followed through 2010, extrapolated through 2013. First-line utilization of rituximab plus chemotherapy (R+Chemo) and Chemo Alone were calculated as a proportion of all diagnosed patients to estimate treated patient counts.

Differences in mean survival between R+Chemo and Chemo Alone for each cancer were estimated using flexible parametric survival models. The incremental cost of R+Chemo versus Chemo Alone for each cancer was based on Medicare paid amounts for all Part A and B services using regression, accounting for censoring. Costs were computed over 72-months to capture short and long-term effects, and inflated to 2013 US dollars. The value of a life year saved was $80,941 in 2013 dollars, as based on published literature (Lee, et al. 2009). Monte Carlo sampling was used to estimate the 95% uncertainty intervals (UI).

Results: Across all three cancers from 1998 to 2013, there were 280,819 cumulative life years saved (95% UI, 269,136-293,345). The additional total costs of care for R+Chemo were $33,525, $23,511, and $31,435 in DLBCL, FL, and CLL, respectively. Across all 3 tumors, the incremental direct medical cost of R+Chemo compared to Chemo Alone was $7.0 billion (95% UI $5.8-$8.2 billion), and the resulting economic value of the life years saved was $25.5 billion (95% UI $11.7-$69.1 billion).

Summary and Conclusion: For DLBCL, FL and CLL patients treated with R+Chemo in the US from 1998-2013, 281,000 life years were saved that created a net economic value of $18.5 billion.