An Objective Measure of Interconnection Usage for High Levels of Wind Integration

Yasuda, Yoh; Gómez-Lázaro, Emilio; Holttinen, Hannele; Estanqueiro, Ana; Kondoh, Junji; Orths, Antje; Cutululis, Nikolaos Antonio; Milligan, Michael; Smith, J. Charles

Published in:
Proceedings of 13th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power (WIW 2014)

Publication date:
2014

Citation (APA):
Abstract—This paper analyzes selected interconnectors in Europe using several evaluation factors; capacity factor, congested time, and congestion ratio. In a quantitative and objective evaluation, the authors propose to use publicly available data on maximum net transmission capacity (NTC) levels during a single year to study congestion rates, realizing that the capacity factor depends upon the chosen capacity of the selected interconnector. This value will be referred to as "the annual maximum transmission capacity (AMTC)", which gives a transparent and objective evaluation of interconnector usage based on the published grid data. While the method is general, its initial application is motivated by transfer of renewable energy.

Keywords—wind power; grid integration; flexibility; interconnector; congestion time; duration curve

ABBREVIATIONS AND SYMBOLS

A. Abbreviations and Acronyms

AMTC Annual Maximum Transmission Capacity
ENTSO-E European Network of Transmission System Operators for Electricity
EU European Union
EWIS European Wind Integration Study
IEC International Energy Agency
NTC Net Transmission Capacity
TBCF Transmission Bi-lateral Capacity Factor
TCF Transmission Capacity Factor
TEBR Transferred Energy Balance Ratio
TRM Transmission Reliability Margin
TSO Transmission System Operator
TTC Total Transmission Capacity

B. Abbreviations (Name of Nations and Areas)

DE Germany
DKW Denmark West
DKW Denmark East
ES Spain
FR France
GB Great Britain
IT Italy
NL The Netherlands
SE Sweden
NO Norway

C. Symbols

$CF^+ [%]$ TCF (in export direction)
$CF^- [%]$ TCF (in import direction)
$CF_{bl} [%]$ TBCF
$C^{+}_{AMTC} [MW]$ AMTC (in export direction)
$C^{-}_{NTC} [MW]$ AMTC (in import direction)
$C^{+}_{NTC} [MW]$ NTC (in export direction)
$C^{-}_{NTC} [MW]$ NTC (in import direction)
$P^+ [MWh/h]$ exported physical energy flow per hour
$P^- [MWh/h]$ imported physical energy flow per hour
$R_{balance} [%]$ TEBR
$R_c [%]$ congestion ratio
$T_C [h]$ congested time

I. INTRODUCTION

For high levels of grid integration of variable renewable energy including wind power, the “flexibility” of the grid will become increasingly important. Four important components of grid flexibility are (i) dispatchable generation, (ii) energy storage, (iii) interconnectors and (iv) demand side management [1]. In this paper, the authors will
In the European and US grid, some reports have pointed out that there are bottlenecks in selected interconnectors used to transfer variable renewable energy; this is one barrier to increasing wind penetration levels.

This paper analyzes selected interconnectors in Europe, using several evaluation factors; capacity factor, congested time, and congestion ratio. In a quantitative and objective evaluation, the authors propose several new definitions for the capacity factor of interconnectors, which are based on transparent published data of net transmission capacity (NTC). This is because the capacity factor depends upon the capacity of the chosen interconnector.

Although the installed transmission capacity looks like the most impartial indicator, it is not always easy to get the latest data from TSOs. NTC is the most transparent parameter in Europe, because it is published by every TSO and ENTSO-E. However, it is not a constant value but a variable across the year. Also, thermal capacity is not always transparent because not all TSOs release the latest value. Therefore, a new factor, "the annual maximum transmission capacity (AMTC)", based on the annual net transmission capacity, is defined in this paper. This factor is transparent and objective based on the published grid data.

Definitions of congested time and congestion ratio are also prepared using the AMTC, as further described in Section II.

Using the analysis as described below, the potential usage of the existing interconnectors can be investigated to examine the opportunity for improved flexibility. Synchronous wind plant output time series data will be required for a detailed analysis.

II. DEFINITION OF EVALUATION METHOD FOR INTERCONNECTION USAGE

To evaluate how to measure the usage of interconnectors quantitatively and objectively, the authors propose the following indicators; (1) annual maximum transmission capacity, (2) capacity factor, (3) congestion time and (4) congestion ratio. In this section, definitions of each indicator will be introduced.

A. Annual Maximum Transmission Capacity

What is “transmission capacity”? It is not easy to concisely answer the question. There are numerous sources of uncertainty regarding the determination of the transmission capacity [2]. Some TSOs do not publish installed capacity (thermal capacity) of their interconnectors. ENTSO-E had published an annual Statistical Yearbook [3] in the past, but no updated version has been published since 2011.

Fortunately, net transmission capacities (NTCs) for all international interconnectors in Europe are published on the ENTSO-E Transparency Platform [4]. For each border or set of borders, the NTC is determined individually by all adjacent countries through negotiation between the involved TSOs. As the NTC varies dynamically from the grid reliability viewpoint, sets of NTCs are published as hourly (day-ahead), monthly and annual values by every TSO and ENTSO-E. On the ENTSO-E’s web site “Transparency Platform”, sets of day-ahead hourly NTCs on every international interconnector on the borders between member countries can be found [4].

The calculation method of the NTC is not universal and is not fully clarified by many TSOs. Normally, the total transmission capacity (TTC), which means the maximum capacity to satisfy grid reliability, is determined by a certain method. Then, the NTC is calculated by subtraction of the transmission reliability margin (TRM) from the TTC to provide a margin of safety. However, the TTC and TRM are not generally publicly available.

In this report, the authors define a new indicator “annual maximum transmission capacity” (AMTC) to evaluate interconnector usage quantitatively and objectively from transparent NTC data.

Using a set of the published NTC data, the AMTC, or maximum available NTC in each direction over the course of the year, is defined as follows:

\[
C_{AMTC}^+ = \text{Max}(C_{N TC}(1), C_{N TC}(2), \ldots, C_{N TC}(8760)) \tag{1}
\]

\[
C_{AMTC}^- = \text{Min}(C_{N TC}(1), C_{N TC}(2), \ldots, C_{N TC}(8760)) \tag{2}
\]

The calculated AMTC can be considered nearly the same as the thermal capacity of the selected interconnector. The important point is that an objective indicator can be obtained from transparent published data. In this way, it is possible to determine capacity factor and congested time quantitatively and objectively.

B. Transmission Bi-lateral Capacity Factor

The capacity factor is normally an indicator that evaluates the performance of a generator. In this paper, the authors try to give a similar definition for an interconnector. While the capacity factor of a generator is calculated on the basis of rated (nominal) power, transmission capacity factor (TCF) of an interconnector is determined on the basis of the above discussed AMTC in each direction:

\[
CF_i^+ \% = \frac{\sum_{i}^{8760} P_i}{C_{AMTC}^+ \times 8760} \times 100 \tag{3}
\]

\[
CF_i^- \% = \frac{\sum_{i}^{8760} P_i}{C_{AMTC}^- \times 8760} \times 100 \tag{4}
\]

The transmission bi-lateral capacity factor (TBCF), is simply defined as the sum of the transmission capacity factors in the export and import directions:

\[
CF_{\text{TL}} \% = CF_i^+ + CF_i^- \tag{5}
\]

Here, the TBCF of the given interconnector is calculated as the sum of the TCBs in both export/import directions. However, it never exceeds 100% because only one of the capacity factor parameters can have a non-zero value at any given time. The metric calculates the hourly available capacity and normalizes the average.

The newly defined TBCF of an interconnector can be considered as a useful indicator to evaluate how much the selected interconnector is used in a given year and how much room there is to accept more renewables.
C. Congested Time

There is another indicator that evaluates interconnector usage; “congested time”, as can be seen in the European Wind Integration Study (EWIS) report [5]. In the EWIS report, the congested time is calculated as shown in Figure 1. However, there is no description about a base transfer capacity in the report. In our paper, using the proposed AMTC, a congested time can be clearly defined as:

\[C_T = \sum (\text{countif}(P^r(i) \geq C_{AMTC}) + \text{countif}(P^l(i) \leq C_{AMTC})) \] \hspace{1cm} (6)

D. Congestion Ratio

It is not difficult to calculate a congestion ratio if the congested time can be determined objectively. The definitions based on the AMTC are respectively given as following:

\[R_C[%] = \frac{T_C}{8760} \times 100 \] \hspace{1cm} (7)

Regarding the congestion ratio, an earlier study done in the Western US in 2003 used a different congestion metric. It is based on the percentage of time that a given interface is within 10% of its maximum rated capacity [6], [7].

E. Transferred Energy Balance Ratio

While some interconnectors are operated with a balance between exported and imported energy, others seem to be dominated by export or import only. This usage of the interconnector may give some indication of future potential to accept more renewables. To evaluate these situations, we proposed a new indicator; transferred energy balance ratio (TEBR) \(R_{\text{balance}} \) as follows:

\[R_{\text{balance}} [%] = \frac{\sum_{i=m}^{n} P^r(i) - \sum_{i=m}^{n} P^l(i)}{\sum_{i=m}^{n} P^r(i) + \sum_{i=m}^{n} P^l(i)} \times 100 \] \hspace{1cm} (8)

If export and import are balanced, \(R_{\text{balance}} \) become zero according to the above equation, whereas it becomes 100% if either export or import dominates.

III. COMPARISON ANALYSIS ON MAJOR INTERCONNECTORS IN EUROPE

In this chapter, comparison analysis on several major interconnectors in Europe are performed using the above defined indicators.

A. Selected Interconnectors

Here, we evaluate the following indicators; (i) AMTC, (ii) capacity factor, (iii) congested time, (iv) congestion ratio, and (v) TEBR, against the following selected international interconnectors in Europe as shown in Figure 2.

1. DKW > NO (DC)
2. DKW > SW (DC)
3. DKW > DE (AC)
4. DKE > SE (AC)
5. DKE > DE (DC)
6. FR > DE (AC)
7. FR > GB (DC)
8. FR > IT (AC)
9. FR > ES (AC)
10. NO > NL (DC)
11. NL > GB (DC)

The direction (>) indicates the export (positive) direction of the energy transfer in each interconnector.

All the data on the selected interconnectors were obtained from the ENTSO-E Transparency Platform [4]. In the current analysis, we downloaded a set of hourly cross-border physical flows \(P^r(i) \) [MWh/h] and \(P^l(i) \) [MWh/h] and day-ahead hourly NTC \(C_{NTC} \) [MW] during 1st January 2013 to 31st December 2013 (8760 hourly data per data set).

B. Qualitative Analysis using Duration Curves

Figure 3 shows various duration curves of physical flows in the selected interconnectors. A quick comparison clearly shows the variety of usage of individual interconnectors. For example, some interconnectors (like DKW > NO, FR > GB and NO > NL) have flat horizontal lines at the left-top and/or right-bottom corners on their duration curves. It denotes that the interconnector is fully used in some degree. Another group (e.g. DKW > DE, FR > DE and IE > GB) shows steep peaks at the left-top and/or right-bottom corners, which means the interconnector is not fully used.
Moreover, some graphs show clearly unbalanced curves between the upper quadrant (export) and lower quadrant (import).

From the qualitative observation of the above characteristics of the duration curves, four groups as shown in Table I can be categorized. The groups by row are classified by whether the shape of the curve is convex (facing upwards) or concave (facing downwards), whereas those in column are classified by whether they are symmetric or not.

A convex characteristic in the duration curve indicates that the given interconnector is heavily loaded, which means there is little ability to accept more renewables. In contrast, a concave curve denotes a less heavy use of the interconnector, indicating it has significant potential to accept more renewable energy and enhance flexibility.
Figure 3. Duration curve of physical flow in the selected interconnectors. (cont.)

Table I: Qualitative Classification of Duration Curves of Selected Interconnectors

<table>
<thead>
<tr>
<th>Interconnector Link</th>
<th>AMTC (MW)</th>
<th>Capacity Factor</th>
<th>Congested Time Tc [h]</th>
<th>Congestion Ratio Rc [%]</th>
<th>TEBR Rbalanced [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKW > NO</td>
<td>DC</td>
<td>1,000</td>
<td>32.4</td>
<td>29.2</td>
<td>61.5</td>
</tr>
<tr>
<td>DKW > SE</td>
<td>DC</td>
<td>740</td>
<td>25.3</td>
<td>16.0</td>
<td>41.3</td>
</tr>
<tr>
<td>DKW > DE</td>
<td>AC</td>
<td>1,780</td>
<td>12.4</td>
<td>24.3</td>
<td>36.7</td>
</tr>
<tr>
<td>DKE > SE</td>
<td>AC</td>
<td>1,700</td>
<td>17.1</td>
<td>20.5</td>
<td>37.6</td>
</tr>
<tr>
<td>DKE > DE</td>
<td>DC</td>
<td>565</td>
<td>23.6</td>
<td>47.4</td>
<td>71.0</td>
</tr>
<tr>
<td>FR > DE</td>
<td>AC</td>
<td>1,800</td>
<td>68.8</td>
<td>1.9</td>
<td>70.7</td>
</tr>
<tr>
<td>FR > GB</td>
<td>DC</td>
<td>2,000</td>
<td>62.8</td>
<td>3.0</td>
<td>65.8</td>
</tr>
<tr>
<td>FR > IT</td>
<td>AC</td>
<td>2,750</td>
<td>44.7</td>
<td>0.3</td>
<td>45.1</td>
</tr>
<tr>
<td>FR > ES</td>
<td>AC</td>
<td>1,300</td>
<td>39.4</td>
<td>29.2</td>
<td>68.6</td>
</tr>
<tr>
<td>NO > NL</td>
<td>DC</td>
<td>700</td>
<td>70.5</td>
<td>3.8</td>
<td>74.3</td>
</tr>
<tr>
<td>NL > GB</td>
<td>DC</td>
<td>1,016</td>
<td>72.2</td>
<td>1.6</td>
<td>73.8</td>
</tr>
</tbody>
</table>

C. Quantitative Analysis using the proposed Indicators

To confirm these characteristics identified visually from the duration curves, we employ the quantitative indicators defined in Section II. Table II shows the calculated results of ATMC, TBCF, congested time, congestion ratio, and TEBR of the selected interconnectors as determined from Equations (1) - (8).

Figure 4 illustrates bar graphs that summarize the information given by Table II, where TBCF and congestion ratios based on AMTC are compared. Figure 5 plots the congestion ratio against the TBCF for the selected interconnectors. The data can be divided into two groups. These two groups correspond to the classification Groups I and II according to the qualitative characteristics in the duration curve discussed in Table I above.

Another comparison can be made by plotting the TBCF against the TEBR. From Figure 6, four groups clearly can be recognized in the graphs. These groups correspond to Groups Ia, Ib, Ia and IIb, as discussed in Table I. There is one exception, the interconnector between France and Germany (FR > DE), which cannot be categorized from the duration curve because the ATMCs in both directions are originally asymmetrical. Although it is difficult to distinguish into which group the given interconnector should be categorized, it is easy to classify using the quantitative indicators proposed in this paper.
This paper proposed a novel indicator, *annual maximum transmission capacity (AMTC)*, for quantitative and objective evaluation of interconnector usage for high penetration of renewables. Using a very transparent parameter, *i.e.* a set of day-ahead hourly NTCs, the AMTC can be calculated in an objective fashion. The authors also propose definitions for transmission bi-lateral capacity factor (TBCF), congested time, congestion ratio and transferred energy balance ratio (TEBR) using the above-mentioned AMTC.

Using these objective and quantitative indicators, the usage of the selected interconnectors in Europe was evaluated. From the correlation of the TBCF, congestion ratio and TEBR, it is clear that the selected interconnectors can be categorized into several groups that correspond to the qualitative characteristics of the duration curves given from the physical energy flow data.

It is hoped that the proposed indicators will help to evaluate any interconnector to determine if additional capacity is available to enhance grid flexibility and enable transfer of additional renewable energy.

REFERENCES

https://www.entsoe.net/

IV. CONCLUDING REMARKS

![Figure 4. TBCF and congestion ratio in the selected interconnectors.](image)

![Figure 5. Correlation between TBCF and congestion ratio.](image)

![Figure 6. Correlation between TEBR and TBCF.](image)