Bioprospecting and Functional Analysis of Neglected Environments

Vogt, Josef Korbinian; Sicheritz-Pontén, Thomas

Publication date:
2013

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Bioprospecting and Functional Analysis of Neglected Environments

Josef Korbinian Vogt

30th November, 2013
Preface

This thesis was prepared at the Center for Biological Sequence Analysis, Department of Systems Biology, at the Technical University of Denmark in partial fulfillment of acquiring the PhD degree. The PhD was funded by the NOVENIA (Enzymes of Industrial Relevance) project and DTU.

All the work was carried out at the Center for Biological Sequence Analysis under supervision of Professor Thomas Sicheritz-Pontén.

Lyngby, November 2013

Josef Korbinian Vogt
Contents

Preface .. iii
Contents ... v
Abstract ... vii
Dansk resumé .. viii
Acknowledgements x
Papers included in the thesis xi
Papers not included in the thesis xii

I Introduction 1

1 General Introduction 3

2 Next Generation Sequencing 7
 2.1 Metagenomics 10
 2.2 Whole Transcriptome Shotgun Sequencing 13

3 Governance of Environmental Samples 15
 3.1 Bioprospecting as a research strategy 15
 3.2 Biopiracy 16
 3.3 Convention on Biological Diversity 17

4 Proteolytic enzymes 19
 4.1 Classification 19
 4.2 Proteolytic enzymes in the industry 21

II Methods 23

5 From Sequencing Reads to Sequence Assembly 25
 5.1 Pre–Processing of Sequencing reads 25
 5.2 De novo Assembly 27
 5.3 Assembly assessment 30
CONTENTS

6 Gene finding and *ab initio* prediction 31
6.1 Gene finding in metagenomic datasets 32
6.2 Gene finding in eukaryotes 33

7 From Sequence to Function and Taxonomy 35
7.1 Functional Annotation of Coding Regions 35
7.2 Taxonomic Annotation of Metagenomes 38
7.3 Manuscript I 40

8 Analysis of polar marine environments 49
8.1 From Genes to Abundance matrix 49
8.2 Functional analysis – Finding the needle in the haystack 51
8.3 Identifying proteolytic enzymes in the polar marine environment 52

III Manuscripts 53

9 Manuscript II 55
9.1 The polar marine environment 55
9.2 Comparative functional analysis of Arctic marine metagenomes reveals strategies for deep sea persistence 58

10 Manuscript III 79
10.1 Proteolytic enzymes of the polar marine environment - Patent application 79
10.2 Exploiting the polar marine environment for bioprospecting: novel protease discovery 85

11 Manuscript IV 99
11.1 Carnivorous plants - the Venus flytrap 99
11.2 Transcriptome and genome analyses of the Venus flytrap (*D. muscipula*) 101

IV Epilogue 113

12 Summary and Perspectives 115
12.1 Summary 115

Bibliography 119

Appendices 131
Abstract

Advances in Next Generation Sequencing technologies made it possible to sequence DNA extracted from environments and organisms at a reasonable cost allowing research fields such as metagenomics and whole transcriptome sequencing (RNA-seq) to be established. These techniques allow the study of functional relationships in single organisms and environments. The sequencing data can also be mined for novel compounds and enzymes. The process of exploiting biological resources for commercial use is known as bioprospecting.

This PhD thesis describes the concept of bioprospecting in the post genomic era (Chapter 1) and introduces the research fields of metagenomics and RNA-seq (Chapter 2) as concepts to access and analyze biological resources. When attempting to discover and commercialize such biological resources, legal obligations have to be met, which is generally governed by the Convention on Biological Diversity (explained in Chapter 3). Proteolytic enzymes – described in Chapter 4 – are the target for bioprospecting due to their high market value. Section II describes methods used for the analysis of metagenomic and RNA-seq datasets, including Manuscript I, which includes the taxonomic annotation of a late Pleistocene horse metagenome and the functional annotation of the donkey genome. The functional analysis and the identification of novel proteolytic enzymes in the polar marine environment and the full transcriptome analysis of the carnivorous plant *Dionaea muscipula* is also presented.

The polar seas are a unique, extreme habitat with constant low temperatures and no light penetration in the deep. Water samples at varying depth (40 m – 4,300 m) were collected during the Galathea III and LOMROG II polar expeditions. The sample DNA was extracted and sequenced. Comparative functional analysis of arctic marine metagenomes reveals bacterial strategies for deep sea persistence (Manuscript II). Furthermore, this extreme environment is a fertile ground to mine for novel proteolytic enzymes. Manuscript III presents a bioinformatics approach to identify sequences for potential commercialization.

Carnivory is a rare trait in the plant kingdom, and only few species are able to trap and digest prey. The sequencing, assembly and functional annotation of a normalized transcriptome of the most famous carnivorous plant, the Venus flytrap (*Dionaea muscipula*), is presented in Manuscript IV.

Chapter 12 summarizes the thesis and includes final remarks on the future perspectives on the presented research. In summary, this thesis demonstrates how biological resources can be exploited for commercial use. Furthermore, the findings give a better understanding of the microbial community’s persistence in the deep sea. Lastly, the transcriptome data of the Venus flytrap provide a public resource for unveiling features of the carnivorous syndrome such as digestion.
Dansk resumé

Fremskridt i Next Generation sequencing teknologier har gjort det muligt at sekvensere DNA ekstraheret fra miljøer og organismer til en rimelig pris, der har tilladt forskningsfelter som metagenomics og hele transskriptom sekventering (RNA-seq) at blive etableret. Disse teknikker gør det muligt at studere funktionelle relationer i miljøer og også enkelte organismer. Også hidtil ukendte forbindelser og enzymer kan blive udvundet fra sekventeringsdata. Processen med at udnytte de biologiske ressourcer til kommerciel brug er kendt som bioprospektering.

Polarhavet er et unikt, ekstremt habitat med konstante lave temperaturer og ingen lys indtrengen i dybden. Vandprøver blev indsamlet ved varierende dybde (40 m – 4.300 m) under polarekspeditionerne Galathea III og LOMROG II og blev derefter sekvenseret. Funktional analyse af polare marine metagenomer kan afdekke bakterielle strategier for overlevelse i polarhavet (manuskript II). Desuden er dette ekstreme miljø en rig ressourcetil udvinding af nye proteolytiske enzymer. Manuskript III præsenterer en bioinformatik tilgang til at identificere sekvenser for potentiel commercialisering.

Kun få arter i planteriget er i stand til at fange og fordøje byttedyr. Sekventering, assembly og funktionel annotering af et normaliseret transskriptom fra den mest berømte kødædende plante Venus-Fluefanger (Dionaea muscipula) er præsenteret i manuskript IV.

Kapitel 12 opsummerer de berørte emner og indeholder afsluttende bemærkninger om de fremtidige perspektiver for den præsenterede forskning. Sammenfattende viser denne afhandling, hvordan biologiske ressourcer kan udnyttet til kommerciel brug. Desuden giver resultaterne en bedre forståelse
af det mikrobielle samfunds overlevelse i det dybhavet. Endelig giver data fra Venus-Fluefanger transkriptomet en tilgængelig ressource til afdækning af egenskaber hos kødædende planter.
Acknowledgements

The work on this thesis would not have been possible without the encourage-
ment of my supervisor Professor Thomas Sicheritz-Pontén, who has always
provided advise and guidance when needed. Thanks for sharing your passion
and enthusiasm for science with me and giving me the opportunity to be
part of exciting research projects.

Without my collaborators, I would not have been able to achieve the goals
set for my PhD. I would like to express my graduate to Søren Sørensen and
Lea Skov Hansen from KU Microbiology, John Mundy and Michael Krogh
Hansen from KU functional genomics, the research team at GeoGenetics and
Jesper Salomon from Novozymes. It have enjoyed the time working with you.

I was lucky to have been a part of such a great research team, thanks
to all members of the Metagenomics group. It has been very inspiring
to participate in the scientific discussions at our weekly group meetings,
I would especially like to thank Nikolaj Blom, Thomas Nordahl Petersen,
Henrik Bjørn Nielsen, Bent Petersen and Simon Rasmussen for sharing your
knowledge with me. Special thanks to Henrik Marcus Geertz-Hansen for
making the collaboration with Novozymes easier on my part.

CBS has not just been a place to work, but also to socialize and make
friends. Thanks to all of you at CBS for making this working place so special.
Thanks to Agata, Arcadio, Kasper, Grace, Dhany, Agnieszka, Juliet and
Tejal for creating such a great atmosphere in our office.

Handling big datasets has its challenges, owing to the system administra-
tion team's support most technical issues were solved quickly. I would like
to thank John Damm Sørensen, Peter Wad Sackett and Kristoffer Rapacki.
The CBS administration has always helped me out with formalities, thanks
to Lone Boesen, Dorthe Kjærgaard and Marlene Beck.

I would also like to thank Agata, Asli, Bent, Ida and Tejal for reading
through parts of my thesis, giving me input and encouragement during the
final stages of the writing process.

Thanks to all of my friends for the moral support. My deepest gratitude
goes to my parents, grandmother and siblings for being so very supportive
and patient with me during my years of studies. Lastly, to Lise, who has
always been there for me and believing in me, thank you so very much.
Papers included in the thesis

* These authors contributed equally.
Papers not included in the thesis

Part I

Introduction
Chapter 1

General Introduction

This PhD thesis focuses on the functional analysis of genomes and environmental samples and how biological resources can be exploited for industrial use. Functional analysis of environments and single organisms reveals strategies how organisms adapted to its habitat and why specific traits have been developed. Research fields applying Next Generation sequencing technologies, such as metagenomics and whole transcriptome sequencing (RNA-seq) analysis, aid in accessing the encoded functions of the DNA or its transcripts. The research field metagenomics makes it possible to directly sequence and analyze environmental samples without the need for cultivation. In connection with the functional analysis efforts of metagenomes, the donkey genome was functionally annotated and the taxonomic composition of a Middle Pleistocene horse was investigated. The results were a part of manuscript I which will be presented in the methods part as a lot of principle knowledge about NGS data handling and taxonomic annotation was acquired. RNA-seq analysis aims to research transcribed genes within a genome. An elaborate explanation of metagenomics and RNA-seq is provided in Section 2.1 and Section 2.2 respectively. The sequencing data can also be used to explore and identify novel compounds for commercialization. Tapping into natural resources is also known as bioprospecting. Bioprospecting is an application-driven strategy for utilizing natural resources for industrial use. The principle workflow of a typical bioprospecting project is shown in Figure 1.1. As a first steps, probes are sampled from an (extreme) environment and sequenced. The sequencing data are analyzed and potential targets for commercialization are identified. Sampling and exploitation of such resources is governed by the Convention on Biological Diversity (CBD) [33]. The ethics behind bioprospecting and
The research projects presented in this thesis are based on discovering environments, which exhibit protease activity such as (1) microbiological environments where proteolytic enzymes are adapted to environmental conditions of interest to the biotech industry (high pH, high pressure and low temperature), and (2) unexplored environments, rich in proteolytic enzymes. Proteases are enzymes which are capable of cleaving other proteins (amino acid chains) or even themselves in catalytic fashion. This enzyme class exhibits a high market value. Chapter 4 elaborates on the properties and applications of proteases.
As mentioned earlier, bioprospecting is generally governed by the CBD. However, research with the aim of commercialization can be hindered due to royalty issues and compensation payments. Metagenomic samples of the Ikka columns in Greenland were initially part of the project due to the environment’s constant low temperature and high pH, they would have been an optimal target for finding novel proteases [20, 143]. Even though, exploitation of biological resources from Greenland is regulated by the CBD and the law on Commercial Exploitation of Greenlandic Biological Resources, no agreement could be reached between the involved parties for a reasonable commercialization of the natural resources. Thus, the Ikka column samples were replaced with water samples of the polar marine environment collected during the Galathea III and LOMROG II polar expeditions as these samples comply with the CBD and do not subject to national law for financial compensation. The samples span the entire water column from 40 m – 4,300 m. Bacteria such as Pseudoaltermonas [184] from deep-sea environments have already been shown to produce pressure-stable proteolytic enzymes. In addition to pressure-stability, several of the enzymes from the deep-sea are also known to be active at cold temperatures [184]. Furthermore, the transcriptome of the carnivorous plant Venus flytrap (Dionaea muscipula) was analyzed. The Venus flytrap is a promising target for identifying proteases as the digestive fluid of carnivores plants is capable of digesting an intact animal (e.g, a fly) as the only representative of the plant kingdom. The proteolytic enzymes in these plants may exhibit properties and activities that differ from other organisms. The transcriptome data will aid in identifying proteases in future analysis.
Chapter 2

Next Generation Sequencing

Since the advent of the Human Genome Project, new sequencing technologies arose, which expand the applications of sequencing data. New analysis methods make it possible to utilize the genomic sequence information in various research projects and in the industry. High throughput or Next Generation Sequencing (NGS) makes sequencing of genomes reasonable at low costs and high coverage. The sequencing costs dropped dramatically within recent years (Figure 2.1), making it feasible to include sequencing in numerous biological experiments [173]. NGS opens the door for many types of analyses such as metagenomic studies, sequencing of the transcriptome and many more [81, 110, 151]. The following sections will introduce the concept of metagenomics and whole transcriptome shotgun sequencing. Several sequencing technologies are available with different specific advantages and disadvantages. Table 2.1 gives an overview of the most predominant NGS sequencing technologies together with their specification, advantages and disadvantages.
Figure 2.1. Sequencing cost per raw megabase of DNA. The development in sequencing costs started to outperform Moor’s law the years 2007 – 2008. Illustrations adapted from the National Human Genome Research Institute (www.genome.gov/sequencingcosts, accessed 15. October 2013.).

<table>
<thead>
<tr>
<th>Method</th>
<th>Pacific Bio</th>
<th>Ion Torrent</th>
<th>Pyrosequencing, Illumina</th>
<th>SOLiD</th>
<th>Sanger sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read length</td>
<td>> 5,000</td>
<td>< 400 bp</td>
<td>< 700 bp</td>
<td>< 250 bp</td>
<td>50+50 or 50+35 bp</td>
</tr>
<tr>
<td>Reads per run</td>
<td>50 thousand/cell</td>
<td>< 80 million</td>
<td>1 million</td>
<td>< 6 billion</td>
<td>< 1.4 billion</td>
</tr>
<tr>
<td>Time per run</td>
<td>< 2 hours</td>
<td>2 hours</td>
<td>24 hours</td>
<td>27 hours - 11 days</td>
<td>> 1 week</td>
</tr>
<tr>
<td>Cost per 1 million bases (in US$)</td>
<td>< $1.50</td>
<td>$1</td>
<td>$10</td>
<td>$0.05 to $0.15</td>
<td>$0.13</td>
</tr>
<tr>
<td>Accuracy</td>
<td>87% (read length mode), > 99% (accuracy mode)</td>
<td>98%</td>
<td>99.9%</td>
<td>98%</td>
<td>99.9%</td>
</tr>
<tr>
<td>Advantages</td>
<td>very long read length, fast inexpensive equipment, fast long reads, fast high sequence yield low cost per base long individual reads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>low yield at high accuracy; expensive equipment</td>
<td>expensive runs expensive equipment slow expensive, not suitable for larger sequencing projects</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1 Metagenomics

It is estimated that the earth hosts $>10^{30}$ microbial cells [179]. This figure exceeds the number of known stars in the universe by nine orders of magnitude. This richness of single-celled life, the first life to evolve on the planet, still accounts for the vast majority of functional drivers of our planet’s ecosystems [47] but the diversity and interdependencies of these microscopic organisms remain largely unknown [88].

Cultivation is the most important laboratory technique in conservative microbiology. The majority of microbial life, however, cannot be discovered with these traditional laboratory (cultivation) based approaches. Amann et al. [5] estimated that only 1% of environmental microbial species can be readily cultivated, whereat the remaining 99% are not accessible for research. Metagenomics, however, compasses the need for cultivation. Metagenomics can be described as both, (1) a set of research techniques and (2) a research field [62]. Its main goal is to study DNA and translated protein sequences from all the genomes found in an environment [168]. Metagenomic samples originate from “common” or extreme environmental habitats, such as sea water from the Sargasso Sea [172], acid mine drainage [133], whale fall [167] or the human gut [118].

Methods for environmental sampling vary depending on the purpose of the study, the habitat sampled and the desired downstream analysis. In principle three different approaches to metagenomics analysis exist. Figure 2.2 depicts a typical metagenomics workflow. The clone library approach (Figure 2.2 left), where random DNA amplification and cloning into host vectors is followed by host expression, focuses on expression of the amplified DNA in a suitable host. Subsequent screening for e.g. enzymatic activity – functional screening – is the major goal in this kind of analysis. Companies, such as Verenium apply this method to systematically screen metagenomes for novel catalytic proteins or improved products\(^1\).

The amplicon library approach (Figure 2.2 middle) targets specific genes, such as the 16S rRNA gene. Those genes are enriched by PCR. The library is sequenced and the typical abundance (OTU abundance) is analyzed. The third high throughput approach (Figure 2.2 right) does usually not include an intermediate gene selection and amplification step before sequencing. However, depending on the sequencing technology, the sequencing process itself might include an amplification step. The isolated metagenomic DNA is then sequenced directly and usually to a very high depth using a high throughput platform. The output sequences which are referred to as "reads" are then assembled. Thereby, a library of contigs is created which serves as starting point for computational analysis, such as gene annotation, sequence translation and functional annotation.

Despite the fact that the science of metagenomics as an accredited research field is only a few years old, a lot of interest into the emerging scientific field

has been observed. For the period of 2005 to 2008, 18 review articles and 45 original research papers were published [85]. A SciVerse Scopus search on metagenomics in the period of the beginning of 2005 to September 2013 already results in 2,739 review and original research papers, where approximately 50% of all metagenomics papers have been published in the years 2012 and 2013. Still, new computational methods and pipelines are evolving in order to tackle such huge amounts of data. These techniques should serve the need of maximizing the understanding of the genetic diversity and activities within the sampled community. As technologies for DNA extraction, sequencing, assembly and annotations are constantly optimized, the potential to generate complete genome data, reconstruct large DNA fragments and assign functions to genes and translated amino acid sequences have greatly improved.

A high throughput sequencing approach poses a challenge for downstream bioinformatics analysis. Extracting meaningful information from the millions or billions of genomic sequences is challenging for bioinformaticians. Where assembly and annotation of sequencing data from a single cultured organism is a manageable task, handling of metagenomics data is far less trivial. In metagenomics, the data come heterogeneous microbial communities, at times comprised of more than 10,000 species, with the sequence data being noisy and mostly partial [182]. It is difficult to capture the whole truth or composition of a community.

Within the last decade, the number of public metagenomes is ever increasing. Metagenomes can be retrieved from online databases collecting various metagenomic data sets. Such databases are the Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis (CAMERA) [150] or Genomes Online [14]. The latter is an online database for comprehensive access to information regarding complete and ongoing genome projects, as well as metagenomes and metadata, around the world. As by May 2013, the Genomes Online Database reported over 376 metagenome studies in progress with 2,749 samples being researched¹. CAMERA makes raw environmental sequence data, partial assemblies, genes, associated metadata, precomputed search results, and high-performance computational resources accessible for a broad research community.

Figure 2.2. A typical metagenomic experiment starts with sampling and DNA isolation. The DNA is fragmented and can either be directly sequenced and analyzed or the fragments can be cloned into vectors and screen. 16S analysis of metagenomic samples include a PCR amplification of 16S rRNA genes; (a) offshore oil reservoir, (b) acidic snotties, (c) ice core, (d) saltern crystallizer ponds, (e) Yellowstone national park hot spring, (f) mine, (g) black smoker chimney, (h) the Dead Sea, (i) and (j) glacier ice. Illustration modified from Lewin [96].
2.2 Whole Transcriptome Shotgun Sequencing

The transcriptome represents the total set of RNA in a given organism [171]. In contrast to a genome, which can be described as fixed within a cell, the transcriptome varies within time. The transcriptome mostly gets described as the genes that are being actively expressed by the cell at the point of analysis, i.e. mRNA within the cell. Technically, however, mRNAs only cover a subset of a transcriptome [171].

Earlier methods for transcriptome analyses such as microarray and qPCR based technologies require prior knowledge. *A priori* knowledge, however, does not exist for many organisms. Whole Transcriptome Shotgun Sequencing (RNA-seq) does not require knowledge *a priori* such as well-characterized species. It takes advantages of the advances within next generation sequencing to sequence the entity of RNAs present within the cell making high-throughput sequencing technology the standard method for accessing the transcriptome of an organism [134]. Its applications range from expression profiling to differential gene expression studies [81, 116, 121].

Figure 2.3 depicts a typical library preparation workflow for an RNA-seq experiment. RNA library preparation starts with RNA (mRNA) extraction, followed by removal of DNA contamination using DNase. The remaining RNA is fragmented into short segments. In contrast to genomics or metagenomics sequencing approaches, RNA-seq setups involve a cDNA synthesis step, where the RNA fragments are reverse transcribed into cDNA. The cDNA is sequenced after adaptor ligation and fragment size selection.
Figure 2.3. Workflow of an RNA-seq experiment. (1) Total or mRNA is extracted, (2) DNA contamination is removed, (3) fragmentation of RNA, (4) reverse transcription, (5) sequence adaptor ligation and range selection (6), final sequencing of the cDNA. Illustration adapted from Martin and Wang [107].
Chapter 3

Governance of Environmental Samples

This chapter provides an introduction to the ethics behind the use of metagenomic data sampled from environments in academia and in the industry. This section, however, neither discusses biopiracy in context of directed exploitation of indigenous knowledge, nor the implications arising from patents in an agricultural context.
Metagenomics as a research field strives to unravel the diversity of ecosystems, describing dependencies of species within the system and hunting for novel compounds, enzymes and pathways. Such findings can bare a huge potential for industrial applications. However, one has to be certain about the origin of the data. Sample sources or the intellectual properties of the samples have to be secured. An extensive debate about the ethics and intellectual property rights of natural sources being exploited by academia and industry started in the late 90s and the early 2000s. The academic dispute pinpointed biopiracy and the exploitation of natural material for bioprospecting as the major cause of the conflict. In order to grasp the implications of biopiracy, one has to understand the concept of bioprospecting.

3.1 Bioprospecting as a research strategy

Metagenomics and bioprospecting share many characteristics given their aim to uncover novel characteristics from environments. While metagenomics is a defined research field, bioprospecting is coined as a process encompassing several techniques but more importantly it is an application–driven strategy. However, both are very much interlinked and can also be described as the opposite sides of the same coin.
Bioprospecting originates from the field of chemical ecology dating back to the late 1950s [64]. Chemical ecology is the study of chemical compounds directly associated with the interactions between organisms and their occupied environment [64]. The research of natural products increased considerably followed by a directed “pursuit” of commercializable natural compounds - eventually establishing chemical prospecting [43]. While similar in principle, chemical prospecting solely relied upon chemical synthesis of newly discovered, commercially-relevant compounds, bioprospecting in the post genome area takes advantage of decreased sequencing cost, metagenomics as screening technology and advanced bioinformatics infrastructures.

An up-to-date definition of bioprospecting is divergent. It covers stages of searching and sampling of resources to be used in applications and development, the common understanding of bioprospecting, however, is the commercial exploitation of such research. It includes the following elements¹:

- systematic search, collection, gathering or sampling of biological resources for purposes of commercial or industrial exploitation
- screening, isolation, characterization of commercially useful compounds
- testing and trials
- further application and development of the isolated compounds for commercial purposes, including large-scale collection, development of mass culture techniques, and conduct of trials for approval for commercial sale

3.2 Biopiracy

Since bioprospecting became an important research concept, the matter of property rights, ethics and exploitation became an issue pointing out biopiracy as the main reason. Biopiracy has various definitions, the most coherent definitions of biopiracy in the context of metagenomics are as follows:

(1) "Biopiracy can be defined as the intentional theft of indigenous and traditional knowledge and resources of indigenous people for commercialization (and profit) without permission, recognition or compensation to the indigenous peoples from which it originated” [111].

(2) "Oftentimes biopiracy is described as the commercial development of naturally occurring biological materials [...] by a technologically advanced country or organization without fair

compensation to the peoples or nations in whose territory the materials were originally discovered”1.

The Merck-INbio Agreement2 is one of the most prominent examples of a case where biopiracy efforts have been exerted by compensating the country where the natural resource originates [32]. In order to address biopiracy the Convention on Biological Diversity (CBD) was established, providing guidelines for biological resource administration, i.e. metagenomic datasets for bioprospecting [33, 70].

3.3 Convention on Biological Diversity

The Convention on Biological Diversity (CBD) was signed by 150 governments, including the United States, at the 1992 Rio Earth Summit. The agreement was later ratified by more than 187 countries, however not the United States, and is an international legally binding treaty. The treaty is in charge of administering and discussing issues related to the CBD3. The CBD “[...] recognizes that biological diversity is about more than plants, animals and microorganisms and their ecosystems, it is about people and our need for food security, medicines, fresh air and water, shelter, and a clean and healthy environment in which to live”4. In summary the convention has three major goals [62]:

- conservation of biological diversity (or biodiversity)
- sustainable use of biological components
- fair and equitable sharing of benefits arising from genetic resources

States gain sovereignty over their own natural resources by subjecting its distribution to their national legislation. The treaty also grants protection of (1) intellectual property rights to its nation and (2) compensation or benefit-sharing from commercialized findings.

In the context of metagenomics, it is important to recognize that metagenomics projects rely foremost on collecting environmental samples. The collection within national borders is strictly guided by the CBD. Sample collection outside national borders, however, are not part of the CBD, e.g.

2 Against payment of a certain sum of money and profit-sharing, the U.S. American company Merck has been granted a temporary right to perform pharmacological analysis of genetic resources in Costa Rica, as well as the right to patent the developed drugs. In exchange, it had to provide the INBio laboratory with scientific equipment. A major part of the money was invested in the conservation of Costa Rican national parks, so that, in this case, the utilization of biological diversity eventually contributes to its conservation [32]
3 http://www.cbd.int/convention/, accessed 26 September 2013
4 quoted from http://www.cbd.int/convention/, accessed 26 September 2013
deep-sea vents beyond national jurisdictions or the [62]. Territories which are not under national jurisdiction may, however, be regulated under different agreements, e.g. Antarctica. Antarctica is regulated under the Antarctic Treaty System (ATS) from 1961, signed by 50 nations. The treaty allows organisms to be taken, patented and commercialized [67]. Large scale extraction of organisms is not permitted to limit adverse impacts on the Antarctic environment and dependent and associated ecosystems\(^1\).

Compliance to the CBD nowadays is very important to prevent charges of biopiracy. Most companies which are specialized in commercializing metagenomic driven research results declare their compliance to the CBD as advantages, such as Novozymes\(^2\) or Verenium\(^3\). The latter markets itself as "pioneer in the field of ethical bioprospecting", profiting from compliance to the CBD by integration into the corporate identity.

\(^{1}\)http://www.ats.aq/, accessed, 30 September 2013

Chapter 4

Proteolytic enzymes

The bioprospecting efforts in this research focused on proteolytic enzymes, the following chapter introduces this enzyme class. Proteolytic enzymes (also termed proteinases, peptidases or proteases) are enzymes which are capable of cleaving other proteins (amino acid chains) or even themselves in catalytic fashion. They make-up the largest single family of enzymes [100]. Through structural and functional diversity, proteases carry out a vast array of critical functions ranging from intracellular protein recycling to nutrient digestion, immune system cascade amplification, signal transduction and also blood coagulation [66].

4.1 Classification

Proteases are divided into broad groups according to their catalytic abilities. Each peptidase can be assigned to an Enzyme Commission number (EC number) [177]. The EC number is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze [177]. Proteases are classified into aminopeptidases, dipeptidases, dipeptidylpeptidases, peptidylidipetidases, carboxypeptidases and endopeptidases according to the reaction site [10]. Figure 4.1 gives an overview of the enzymatic reactions.

There are, however, several limitations to the EC number classification, since it does not reflect evolutionary relationships. Related peptidases can have identical substrate specificities [128]. The mechanism used to cleave a peptide bond involves making an amino acid residue that has the cysteine and threonine (proteases) or a water molecule (aspartic acid, metallo- and glutamic acid proteases) nucleophilic so that it can attack the peptide carboxyl group [128]. One way to make a nucleophile is by a catalytic triad, where a histidine residue is used to activate serine, cysteine, or threonine
Figure 4.1. Classification of peptidases by the catalyzed reaction. Beads represent amino acids, string the peptides bonds. Black arrows indicate the first cleavage and white arrows subsequent cleavages. For the first cleavage, the amino acid(s) to which specificity is mainly directed is shown in black and for subsequent cleavages in grey. Illustration adapted from Polaina and MacCabe [128].

as a nucleophile [128]. Threonine and glutamic–acid proteases were first assigned to its own family by 1995 and 2004, respectively [135, 136]. Rawlings and Barrett [135, 136] classified proteases within those broad groups into families of associated proteases. For instance the serine protease family proteases are assigned to a Sx label - where S describes the serine catalysis and x the corresponding family association, e.g. S1 stands for chymotrypsin. Table 4.1 summarizes the families and its most known representatives.

The most abundant resource for protease family classification is found in the MEROPS database\(^1\) that has been growing considerably within the last years. A 10-fold increase of deposited sequences has been observed within the last decade [136]. The database provides a hierarchical classifications in which homologous sets of peptidases and protein inhibitors are grouped into protein species, which are in turn clustered into families and into clans. Families are assigned on the basis of statistically significant similarities in amino acid sequence, and families which are homologous are clustered into clans [135, 136].

Table 4.1. Protease families, highlighted letters denote the Merops family [135, 136]. Amino acid (AA), active center (AC)

<table>
<thead>
<tr>
<th>Protease family</th>
<th>Funct. or AC</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic</td>
<td>Aspartic acid</td>
<td>Pepsin, Chymoepsin</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cysteine</td>
<td>Papain, Cathepsin K, Caspase</td>
</tr>
<tr>
<td>Glutamic</td>
<td>Glutamic acid</td>
<td>scytalidoglumatic peptidase</td>
</tr>
<tr>
<td>Metallo</td>
<td>coordination complex</td>
<td>Collagenase, Carboxypeptidase A and B</td>
</tr>
<tr>
<td>AsparagiNe</td>
<td>Asparagine</td>
<td>virus Lyases and Coat proteins</td>
</tr>
<tr>
<td>Serine</td>
<td>Serine</td>
<td>Trypsin, Plasmin, Thrombin</td>
</tr>
<tr>
<td>Threonine (Mixed/P)</td>
<td>-</td>
<td>DmpA aminopeptidase</td>
</tr>
<tr>
<td>Unknow</td>
<td>-</td>
<td>Collagenase</td>
</tr>
</tbody>
</table>

4.2 Proteolytic enzymes in the industry

Proteases, their substrates and inhibitors are of great relevance to biology, medicine and biotechnology and are oftentimes used in industrial setups. They are particularly sought after their hydrolyzing peptide bond capabilities in aqueous environments and also the peptide bond synthesis in non-aqueous biocatalysis. A selection of applications is shown in Table 4.2.

Table 4.2. Industrial applications of proteases [191, 87]

<table>
<thead>
<tr>
<th>Industry</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detergent</td>
<td>Protein stain removal (laundry and dish wash)</td>
</tr>
<tr>
<td>Starch and fuel</td>
<td>Protease (yeast nutrition fuel)</td>
</tr>
<tr>
<td>Food</td>
<td>Flavor, milk clotting, infant formulas (low allergenic)</td>
</tr>
<tr>
<td>Pulp and paper</td>
<td>Biofilm removal</td>
</tr>
<tr>
<td>Leather</td>
<td>Unhearing, bating</td>
</tr>
</tbody>
</table>

Proteolytic enzymes are already estimated to account for more than 60% of the total sales on the enzyme market worldwide with an annual sales worth of about 1.5 – 1.8 billion US dollars [76, 176]. Detergent proteases alone, with an annual market of about 1 billion US dollars account for the largest protease application segment [176]. The demand for proteolytic enzymes is still rising; the compound annual growth rate (CAGR) is estimated at 7.2% from
2013 to 20181.

Thus, proteases are a profitable class of enzymes to be studied, especially sequences originating from extreme environments. Next generation sequencing technologies are useful tools to access these environments. The concept of next generation sequencing and its applications are described in Chapter 2.

1http://www.prweb.com/releases/protease-leads-feed/enzyme-market-phytase-nsp/prweb10754350.htm, accessed 10. September 2013
Part II

Methods
Chapter 5

From Sequencing Reads to Sequence Assembly

Sequence assembly is an essential step when analyzing sequencing data from for example metagenomes or transcriptomic studies. The primary goal of a sequence assembly lies in the construction of contigs which are longer than the sequencing reads provided from a sequencer. Prior to an assembly process or any kind of sequence data analysis, it is common practice to pre-process the provided sequencing data.

5.1 Pre–Processing of Sequencing reads

Raw sequencing data is usually delivered in FASTQ format as shown in Figure 5.1.

A FASTQ sequence block consists of four distinct lines starting with a header denoted by @ followed by the raw read sequence in the next line. The third line, which is indicated with +, is an optional Illumina header. FASTQ

![Example of a FASTQ formatted file](image)

Figure 5.1. Example of a FASTQ formatted file
formatted sequencing reads are accompanied by ASCII character probability scores in the fourth line. The probability score is the so called Phred quality score and is a non-negative integer that describes the error probability of a base call to be wrong [30, 45, 46]. The error score Q can be written as the following:

\[
Q_{\text{phred}} = -10 \log(err) / \log(10)
\]

err: probability of a wrong base call

(5.1)

For instance, to allow for an error probability of <0.01, a minimum Q score of 20 is required. Even though a Q score of 20 is mostly used, a 1% error in millions of base pairs still adds up to a considerable amount of errors. For most applications an error probability of <0.01 is sufficient. To assure correct base calling, the Phred scores are used to determine an accumulated cutoff where the trailing part of the read sequence is trimmed as the base qualities decrease towards the end of the read.

The maximum sequencing read length of for example the Illumina HiSeq 2000 sequencer are commonly 2 x 100 base pairs when running in paired-end mode\(^1\). A detailed overview of sequencing technologies and generated read lengths is provided in Table 2.1. However, erroneous nucleotides in the sequence have to be accounted for. The tool FastQC [144] is normally used for quality assessment.

We used a custom python script to trim raw reads of the polar marine metagenomes and the RNA-seq data from the Venus flytrap, so that the minimum Phred score cutoff for individual bases and average read score were set to 20. Reads with a minimum length of 35 nucleotides were used for further processing. To assure consistency within sequencing datasets, it is also good practice to investigate for deviating GC content, overrepresented sequences and k-mers. However, k-mer correction (k-mers are sub-sequences with a fixed length k; the concept of k-mers is explained in more detail in Section 5.2) in metagenomic datasets is not as trivial as in single genome datasets (commonly done with Quake [84]) as it discards low coverage data detected as low-abundance k-mers. No separate error correction step was included in the analysis of the polar marine metagenomic samples (Manuscript II and III) as the assembly method used can correct for reads in regions with high depth. Furthermore, no error correction was applied on the transcriptome data of the Venus flytrap (Manuscript IV) as at the time of analysis no appropriate tool was available which improved assembly quality. However, designated methods for RNA-seq error correction are being established, such as the HMM-based correction tools SEECER [94], which could improve downstream analysis in the future.

To avoid contamination in sequencing reads it is common practice to remove obvious contamination source DNA, e.g. human DNA. In the presented

5.2 De novo Assembly

As stated in Chapter 2, next generation sequencing technologies generate a vast amount of short-read sequences. However, making sense out of these short snippets of DNA proves to be challenging. The interest in sequence and genome assembly is ever increasing, especially the need for computationally efficient computing techniques. Furthermore, sequencing applications, such as gene expression analysis, discovery of genomic variants and metagenomic studies, have different requirements for genome assemblies. This section summarizes the de Bruijn graph principle, common assembly tools and their applications.

The de Bruijn Graph Principle

De novo assembly encompasses the need of reference genomes and annotations for genome assembly. Most assembly methods are based on the de Bruijn graph method. This approach considers sequencing reads not as an entity but as a string comprised of multiple k-mers [26]. The nucleotide string in Figure 5.2 is cut in 3-mers (k=3) where each consecutive k-mer frame is moved to the right. The sequence is then represented as k-mers (Figure 5.2 A) with nodes and branches. The path through the graph is then condensed around the node sequences (colored in red). Therefore, redundancies within the overlaps are reduced and computation of the path is more feasible [31, 106]. Sequencing reads are assembled into contigs. Due to repeat regions or erroneous reads, many branches can be introduced in the de Bruijn graph especially when k is small (so called branching problem) [124]. Thus, choosing a proper k value is a crucial tradeoff as short k-mers lead to fewer gaps but more branches, while longer k-mers lead to fewer branches but more gaps [124].

Many assembly tools also take paired-end information into account during the assembly process [59, 124, 153]. Paired-end information makes it possible to close gaps between contigs. Contigs that can be connected with paired-end information are called scaffolds.

The reduced computational complexity as a result of decreased redundancy makes this approach the method of choice for various de novo assembly tools. Table 5.1 gives an overview of popular assembly tools for Illumina sequencing reads together with their scope of application.

Metagenomic assembly

Next generation sequencing reads of metagenomic samples comprise a vast selection of different species. Reference based assemblies [58], where the reads are mapped to a known genome are not applicable since a high fraction of species in the samples are unknown [182]. Further complications with
Figure 5.2. Schematic illustration of the de Bruijn graph principle in genome assembly (k=3); (A) the nucleotide sequence is represented as *k*-mers, (B) condensed graph representation around the nodes (red). Illustration modified from Chaisson et al. [26].

<table>
<thead>
<tr>
<th>Tool</th>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABysS</td>
<td>metagenome/genome</td>
<td>153</td>
</tr>
<tr>
<td>Allpaths-LG</td>
<td>(large) genome</td>
<td>59</td>
</tr>
<tr>
<td>Cufflink</td>
<td>transcriptome</td>
<td>137</td>
</tr>
<tr>
<td>Meta-IDBA*</td>
<td>metagenome/genome</td>
<td>124</td>
</tr>
<tr>
<td>MetaVelvet</td>
<td>metagenome</td>
<td>117</td>
</tr>
<tr>
<td>Oases**</td>
<td>transcriptome</td>
<td>145</td>
</tr>
<tr>
<td>SOAPdenovo2</td>
<td>metagenome/genome</td>
<td>105</td>
</tr>
<tr>
<td>Trinity</td>
<td>transcriptome</td>
<td>60</td>
</tr>
<tr>
<td>Trans-ABysS</td>
<td>transcriptome</td>
<td>138</td>
</tr>
<tr>
<td>Velvet**</td>
<td>genome</td>
<td>190</td>
</tr>
</tbody>
</table>
metagenomic assembly arise from genomic variance in natural populations [141, 180], poor community coverage [182] and also the risk of chimeric sequence creation [27, 109, 127]. Additionally, the use of repetitive reads appear to be counter-intuitive [71]. It is advised to remove repetitive reads from the assembly of clonal genomes as the de Bruijn graph construction is hindered (e.g. Abyss, Velvet). When assembling metagenomes, however, repetitive reads are likely to originate from dominant species and are advised to be assembled together [164]. Hence, to obtain the best possible assembly, it is important to optimize the assembling process before proceeding with the downstream analysis. More accurate and longer contigs would improve the study of metagenomic datasets such as binning, gene prediction or functional annotation [124]. There are designated metagenome assemblers available, such as MetaVelvet [117] and IDBAs metagenome assembler [124]. All of these tools are based on the de Bruijn graph principle as described earlier [126]. For the analysis of the arctic marine environment metagenomes (Manuscript II and III), the gold standard at that time was the Meta-IDBA metagenome assembler. In addition, Meta-IDBA outperformed SOAPdenovo in terms of assembly quality. The 26 metagenomic samples were individually assembled with Meta-IDBA using the paired-end mode. The sample assemblies were run with varying \(k \)-mers. Instead of using a singular threshold, Meta-IDBA runs multiple depth-relative thresholds to delete suboptimal \(k \)-mers in regions with low and high depth. This technique of local assembly with paired-end information is used to solve the branching problem of low-depth short repeat regions [124]. Commonly, metagenomic assemblies do not have full coverage of all organisms in the environment, since sequencing rarely produces all the sequences required for a complete assembly. Therefore, it is important to keep in mind that the observed diversity in metagenomic datasets is not a 100% representation of the full environment.

Transcriptome assembly

Sequencing RNAs or so called RNA-seq has made a big impact on the field of transcriptomics [16, 175]. However, reference genomes required in \textit{ab initio} methods, are not available for numerous organisms [38, 77, 114, 160, 166, 187], e.g. the Venus flytrap. Thus, \textit{de novo} assembly methods were used to achieve assembly of these novel organisms (Manuscript IV). In contrast to metagenomic assemblies, RNA-seq assemblies of clonal eukaryotic organisms do not face the problem of multi-species samples. The extracted RNA is amplified as cDNA and sequenced (see Figure 2.3 in Chapter 2) and it can be assumed that after removing contamination from pre-processed sequencing reads, only target cDNA is present. Detection of splicing variants is the major challenge in transcriptome assemblies as multiple copies of a gene are transcribed with a varying exon pattern [23, 61, 65]. Designated RNA-seq assembly methods are available with options for splicing variant calling. Table 5.1 gives a short overview of popular
assembly tools.
The de novo assembly tool Velvet/Oases [145] was chosen for the Venus flytrap analysis as it was the method of choice at the time of analysis. Pre-processed sequencing reads are provided to a multi \textit{k-mer} assembly done by Velvet. Oases handles transcription variants (isoforms of a transcript) by solving branching points in the de Bruijn graph as loci.

5.3 Assembly assessment

To distinguish between poor and well assembled genomes it is important to get a measure of the assembly quality. However, the quality of assemblies can vary greatly from single genome assemblies to metagenomic assemblies and transcriptome assemblies. When assembling single genomes, one aims for a closed genome, i.e. one contig per chromosome or plasmid, to reach the standard of a High-Quality Draft [25]. This is difficult to achieve when assembling metagenomes due to the fragmented data and the numerous organisms in the samples. Assemblies of cDNA would in the best case result in full-length transcripts.

In order to get a sense of the assembly, various measures are calculated. The \textit{N50} measure is the most widely used measure for assessing the assembly quality. The \textit{N50} is a statistical measure of average length of a set of sequences\(^1\). It can be explained as following: contig or scaffold \textit{N50} is a weighted median statistic such that 50\% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value [139, 174]. Thus, the greater the \textit{N50} value, the better the assembly. However, the number of contigs or scaffolds in the assembly and length of the longest contig or scaffold is also an important indicator for the assembly quality. The "asemblathon stats" script was used to calculate assembly metrics\(^2\) after each assembly in projects presented in this thesis.

Assessing transcriptome assemblies

In transcriptome assemblies, sizes of cDNAs vary and sizes of transcripts are not as long as chromosomes. Therefore, the \textit{N50} measurement is not as good a measure for transcriptome assemblies. It is important to assess the assembly quality by identifying full-length cDNAs [60]. Another measure can be the alignment of transcripts to reference databases [185] such as RefSeq [130] or Ensembl [50, 72].

The transcriptome assembly of the Venus flytrap (Manuscript IV) was analyzed with TargetIdentifier [112] and the assembled transcripts were aligned to RefSeq sequences of other members of the plant kingdom.

Chapter 6

Gene finding and \textit{ab initio} prediction

In computational biology gene finding or gene prediction refers to the process of assigning coding regions to genomic sequences. This process is crucial for analyses of genomes and metagenomes as it provides access to the encoded genomic information for further processing. Conventional \textit{ab initio} gene finding algorithm employ probabilistic algorithms describing genomic sequences containing protein and noncoding regions. Gene prediction accuracy critically depends on precision of the estimation of model parameters that are genome specific [192]. Most gene prediction algorithms are based on Hidden Markov Models. However, other approaches are available, such as dynamic programming [73] or Support Vector Machine approaches [148, 149]. One might also choose to identify genes by aligning the sequence to a database. Various tools are available for \textit{ab initio} gene prediction and evidence based gene predictions. A short overview of popular gene finder tools is shown in Table 6.1.

\textbf{Hidden Markov models and Dynamic Programming in gene prediction}

Hidden Markov models (HMMs) – proposed in the late 1960s [13] – are statistical models which can be considered to be the simplest dynamic Bayesian networks [40]. HMM models are applicable on genomic sequences due to their intrinsic order, i.e. ordered string of nucleotides. The model assumes that future states are independent of the past under the present state [40]. In other words, the present state only depends on the previous state and the probability of moving from the previous state to the present one. A
Table 6.1. Selection of gene finding tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Target</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUGUSTUS</td>
<td>Eukaryote gene predictor</td>
<td>[157, 158]</td>
</tr>
<tr>
<td>GeneMark</td>
<td>Prokaryotes and eukaryotes</td>
<td>[192]</td>
</tr>
<tr>
<td>GLIMMER</td>
<td>finding genes in microbial DNA</td>
<td>[35]</td>
</tr>
<tr>
<td>MetaGeneMark</td>
<td>Metagenome gene finder</td>
<td>[192]</td>
</tr>
<tr>
<td>mGene</td>
<td>Eukaryote gene predictor</td>
<td>[148, 149]</td>
</tr>
<tr>
<td>Prodigal</td>
<td>prokaryotic gene finding</td>
<td>[73]</td>
</tr>
</tbody>
</table>

trained HMM tool can answer the question of what is the most probable path generated for a given sequence uncovering “hidden states” which could be coding/noncoding regions, splicing sites (intron/exon regions) and more [40]. Simply speaking, the model describes how likely is this sequence to be comprised of a coding or noncoding region. The assignment is dependent on a model-specific intrinsic threshold [40]. Gene finding programs such as GLIMMER [35], MetaGeneMark [192] and AUGUSTUS [157, 158] are based on the HMM principle.

Dynamic Programming (DP) – formalized in the early 1950s – is not a standardized model as HMMs. It is a term for solving complex problems by breaking them down into simpler subproblems [39]. In gene prediction, this can be done by acquiring bitwise information about the sequence, e.g. hexamer statistics [73]. The statistics are then employed to predict if a given sequence fulfills open reading frame requirements. Prodigal applies DP for gene prediction [73].

Sequence alignment based gene finding

Alignments based gene assignment does not fall into the typical gene finding or prediction category. This approach comprises a simple sequence alignment with alignment tools such as BLAST (or translated BLAST) [4] or UBLAST [42] to databases, e.g. RefSeq [130], ENSEMBL [50, 72] or other public databases (NCBI [142, 178] or SwissProt/TrEMBL [18]). The hit sequence is used as a template and the coding region is inferred.

6.1 Gene finding in metagenomic datasets

Sequences encoding mostly undetected homologs are abundant in new metagenomic dataset since the majority of organisms’ in the environment are uncultured (described in Chapter 2). Therefore, tools which are able to identify genes with low similarity to existing database sequences are important for metagenomic studies [192]. Metagenomic gene finders are designed to fulfill this task. In the analysis of the metagenomes of the polar marine environment (Manuscript II and Manuscript III) this method was helpful in
detecting such "undetectable" proteins. The metagenomes were scanned with the two gene finding methods, (1) Prodigal (dynamic programming based [73]) and (2) MetaGeneMark (HMM based [192]) to increase the range of predicted sequences as it has been shown that MetaGeneMark had a higher precision and Prodigal a higher recall rate when calling genes in metagenomic datasets\(^1\).

6.2 Gene finding in eukaryotes

While analyzing single genomes it is important to assign coding regions as specific for the organism’s clade as possible, because for example plant genomes are different from animal genomes. This can be achieved with evidence based gene finding approaches [102, 123, 157, 158]. These methods incorporate prior knowledge about the organism such as known proteins, full-length cDNAs or expressed sequence tags (ESTs) [102]. Thus, the AUGUSTUS [157, 158] tool was used for identifying genes in the donkey genome (Manuscript I).

Chapter 7

From Sequence to Function and Taxonomy

7.1 Functional Annotation of Coding Regions

Gene annotation is the process of associating biological information to a sequence. It marks the next step after identifying coding regions in genomes and metagenomes. Making sense out of coding regions in single genome data, metagenomic data and RNA-seq studies gives access to the functional space of a single organism or a metagenomic community. Functional descriptions make it possible to set the genetic composition into a bigger perspective where genes and pathways can be linked to the respective environmental traits [95, 152, 167].

Annotation schemes and databases

Several annotation schemes have been proposed and are extensively used. An overview of the most used annotation designs is shown in Table 7.1. The most commonly used annotation scheme is Gene Ontology (GO) [63] for describing genes in functional categories. It provides a hierarchical, controlled vocabulary of terms that can be used to annotate gene products at varying levels of specificity [63]. The vocabulary is defined in three ontologies: molecular function, biological process, and cellular component. A gene product may be a component of one or more parts of a cell or part of the extracellular environment. A condensed vocabulary of high-level GO terms (GO Slim) can be applied to replace specific GO terms with a limited number of general-purpose ancestor terms [22]. Orthologous Group (OG) annotation is another annotation scheme. OGs
were derived by comparing protein sequences encoded in complete genomes, representing major phylogenetic lineages [161]. Each OG consists of individual proteins or groups of paralogs from at least three lineages and thus corresponds to an ancient conserved domain [161]. eggNOG [115] is one of the databases where OGs can be accessed. It includes subgroups, such as COG (Clusters of Orthologous Groups) for bacterial annotation and KOG for eukaryotic annotation [162] and non-supervised orthologous groups (NOGs) [115].

The KEGG annotation scheme on the other hand focuses on pathway descriptions [82]. It consists of pathway maps, which are collections of diagrams representing the information of pathways of interacting molecules or genes [82]. KEGG contains all known metabolic pathways and a limited, but increasing, number of regulatory pathways and molecular assemblies.

Pfam annotates proteins by domains, thus it is useful to view a protein’s domain architecture. It is a collection of multiple-sequence alignments and Hidden Markov models (explained later in the chapter) of common protein domains and families [155].

Most annotation schemes are accessible through databases from which the annotation can be inferred. The UniProt database provides cross-references to most of the mentioned annotation schemes, making it an extensive resource for functional annotation [8].

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO</td>
<td>Gene Ontology</td>
<td>[63]</td>
</tr>
<tr>
<td>COG</td>
<td>Clusters of Orthologous Groups</td>
<td>[162]</td>
</tr>
<tr>
<td>NOG</td>
<td>Non-supervised Orthologous Groups</td>
<td>[115]</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopedia of Genes and Genomes</td>
<td>[82]</td>
</tr>
<tr>
<td>Pfam</td>
<td>Protein families</td>
<td>[12]</td>
</tr>
</tbody>
</table>

Alignment based annotation

As mentioned above, the function of a gene or a protein (translated genes) can be inferred from a database. Most commonly, the sequence is aligned to the database with BLAST [4] or other alignment tools (e.g. the fast BLAST alternative UBLAST [42]). The thresholds are commonly set to an E-value cutoff of 10^{-5} and/or 50% alignment similarity over a minimum of 50% of the sequence length (“50/50 rule” [74]). This method was used in Manuscript I, to infer GO annotation to genes of the donkey genome from the UniProt database. Figure 7.1 illustrates the most abundant GO annotation categories in the assembled genome.

It can be seen that the annotation descriptions vary from detailed to generic, e.g. membrane or nucleus. Many GO terms can only be assigned
to a high level node in the GO hierarchy\footnote{\url{http://www.geneontology.org/GO.ontology.structure.shtml}, accessed 2. November 2013.} which makes it difficult to find specific functional targets when analyzing mixed genome samples.

An alignment based annotation was also used to annotate genes from the polar marine metagenomic samples (Manuscript II and III). The annotation, however, was inferred by aligning the genes to the eggNOG database [115] for functional annotation. Based on the experience of annotating the Donkey genome, the COG and NOG annotation scheme is more extensive and less generic than the GO annotation scheme. Furthermore, the translated genes were aligned to the Swiss–Prot database via BLASTP with a 90% coverage. The EC numbers and MEROPS flags were inferred from the best hit.

Hidden Markov model based annotation

Hidden Markov model based annotation is a more directed annotation approach as it takes the active site positions into account [48, 49]. Thus,
a single sequence can be assigned to multiple annotations. An alignment based approach, e.g. assigning GO annotations from UniProt, might not pick up a multi-domain sequence as the database annotation is not sufficient. HMM based annotations can be very specific and customizable. The Pfam annotation is based on HMMs [12]. The HMMs are based on Protein families for which individual alignments and models are precomputed [12]. An approach similar to the Pfam HMMs was used in Manuscript III for creating protease specific models to scan the polar marine metagenomes for novel sequences. The HMMs were created for protease specificity. A more elaborate description of the HMM construction is provided in Chapter 8.3.

Functional annotation of sequences can also be done by integrative software, such as InterProScan [188]. InterProScan combines several protein signature recognition methods into one resource. With this method one can scan multiple databases or HMMs for various annotations, such as Pfam and GO annotations. However, to run InterProScan on millions of genes is computationally quite expensive. InterProScan was used to identify GO annotations in Manuscript IV.

7.2 Taxonomic Annotation of Metagenomes

Metagenomic samples contain a mixture of multiple organisms (explained in Chapter 2) and their analysis mostly addresses the question of "Who is in there?". In order to find the composition of organisms in the metagenome, the processed reads (Pre-processing of sequencing raw reads was described in Chapter 2) are commonly mapped (with e.g. BWA [97] or Bowtie [92]) to target databases.

Taxonomic annotation of the metagenomes in Manuscript I and III was done by mapping to multiple databases one at a time. After mapping to the first database, unmapped reads are mapped to the next database. The reads were mapped to the following databases from top to bottom:\footnote{1all databases can be accessed through http://www.ncbi.nlm.nih.gov/}

1st Microbial complete genomes
2nd Microbial draft genomes
3rd Viral complete genomes
4th Fungal complete genomes
5th Nucleotide database

The hit to a genome strongly depends on the mapping parameters and the mapping tool. Furthermore, a strain or species level annotation can rarely be achieved with this approach as reads can map to different genomes with the same mapping score.

In the analyses for Manuscript I and III, the lowest common taxonomy was assigned to give an overview of the metagenomic community. Therefore, representation of the environments’ diversity was kept at a phylum or order
level. The composition was represented as pie-charts, such as the taxonomic assignment of reads from the Middle Pleistocene horse sample from Thistle Creek which was analyzed in Manuscript I (Figure 7.2) [120].

![Pie chart showing taxonomic distribution](image)

Figure 7.2. This is an example of taxonomic assignment of sequencing reads. The pie chart shows numbers of reads positively mapped to bacterial order groups. The taxonomy assignment revealed that over 92% of the reads from the old Middle Pleistocene horse sample from Thistle Creek belong to the order of Pseudomonadales. Illustration adapted from Manuscript I.
7.3 Manuscript I

In 2003, a metapodial horse sample was recovered at the Thistle Creek site in west-central Yukon Territory, Canada. The sample was dated to be approximately 560 – 780 thousand years old. This study represents the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (*Equus ferus caballus*), a Przewalski’s horse (*E. f. przewalskii*) and a donkey (*E. asinus*) were sequenced. It was suggested that the Equus lineage gave rise to all contemporary horses, zebras and donkeys.

I was responsible for initial mapping of Illumina and Helicos reads and the taxonomic annotation of the Middle Pleistocene horse sample metagenome from Thistle Creek. Furthermore, I provided *ab intio* prediction of the donkey genome and the *de novo* detection of Y-chromosome scaffolds in the assembled donkey genome.

The extensive 200 page long supplement was not included in the thesis. The complete supplementary information can be accessed through nature publishing group. Supplementary section 4 describes the analyses of the Middle Pleistocene horse sample metagenome and the donkey genome annotation.

\[^1\]http://www.nature.com/nature/journal/v499/n7456/full/nature12323.html#supplementary-information
Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse

Ludovic Orlando1,4, Aurélien Ginolhac*4, Guojie Zhang5,6, Duane Froese3, Anders Albrechtsen7, Mathias Stiller1, Mikkel Schubert1, Enrico Cappellini1, Bent Petersen6, Ida Moltek1,2, Philip L. F. Johnson5, Matteo Fumagalli7, Julia T. Vlstrup6, Maanas Raghavan1, Thorfinn Korneliusen1, Bertil Samuelsson8, Malin Djurendal, Josefin Hagelberg9, Lars Pedersen9, Susanne Fellenberg9, Anna Brinkman10, Philip Skoglund11, Emil Benjour9, Henry Anfelt10, Erik Pärn6, Charles G.R. Larsson10, Henrik Mattiace11, Mikael Hovseth11, Philipp Schubert11, Ulf Skoglund11, Thomas Sicheritz-Ponten4,12,13, Lars Juhl Jensen11, Johannes V. Petersen11, Michael Hofreiter12, Rasmus Nielsen11, Beth Shapiro12, Jun Wang12,23,29,30 & Eske Willerslev1

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560–780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0–4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus4.10. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38–72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction through horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.

In 2003, we recovered a metapodial horse fossil at the Thistle Creek site in west-central Yukon Territory, Canada (Fig. 1a). The fossil was from an interglacial unit associated with the Gold Run volcanic ash, dated to 735 ± 88 kyr BP11 (Fig. 1b). Relict iced wedges below the unit indicate persistent permafrost since deposition (Supplementary Information, section 1.1), whereas the organic unit, hosting the fossil, indicates a period of permafrost degradation, or a thaw unconformity12,13, during a past interglacial as warm or warmer than present1, and rapid deposition during either marine isotope stage 19, 17 or 15. This indicates that the fossil dates to approximately 560–780 kyr BP. The metapodial shows typical caballine morphology, consistent with Middle rather than the smaller Late Pleistocene horse fossils from the area (Fig. 1c and Supplementary Information, section 1.2). This age is consistent with small mammal fossils from this unit indicating a Late Irvingtonian, or Middle Pleistocene, age14, and infinite radiocarbon dates15. Theoretical and empirical evidence16 indicates that this age approaches the upper limit of DNA survival. So far, no genome-wide information has been obtained from fossil remains older than 110–130 kyr11. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) on the ancient horse bone revealed secondary ion signatures typical of collagen within the bone matrix (Fig. 2a and Supplementary Table 7.1), and high-resolution tandem mass spectrometry sequencing17 revealed 73 proteins, including blood-derived peptides (Supplementary Information, section 7.4). This is consistent with good biomolecular preservation, suggesting possible DNA survival. Therefore, we conducted larger-scale destructive sampling for genome sequencing.

We used Illumina and Helicos sequencing to generate 12.2 billion DNA reads from the Thistle Creek metapodial. Mapping against the horse reference genome yielded ~1.12x genome coverage. We based the size distribution of ancient DNA templates on collapsed Illumina
Several observations support genome sequence authenticity. First, a 348-bp mitochondrial control region segment was replicated independently (Supplementary Fig. 2.2 and Supplementary Information, section 4.1d). Endogenous read content was lower for Illumina than for Saqqaq Palaeo-Eskimo (0.47%) than Helicos (4.21%) using standard single-strand template preparation procedures. This is probably due to 3' ends available at nicks, resistance of undamaged modern DNA contaminants to denaturation, and Helicos ability to sequence short templates. Fourth, we found signs of contamination contamination. Third, a 77.5 base pairs (bp) mitochondrial control region segment was replicated independently (Supplementary Fig. 6.40 and Supplementary Table 6.1) and protein deamination levels (Fig. 3a and Supplementary Figs 8.1–8.4). Despite this, endogenous DNA content was >16.6-20.0-fold lower than for Saqqaq Palaeo-Eskimo and Denisovan specimens, both sequenced to high depth.

Several observations support genome sequence authenticity. First, a 348-bp mitochondrial control region segment was replicated independently (Supplementary Fig. 2.2 and Supplementary Information, section 2.4). Second, phylogenetic analyses on data obtained with two sequencing platforms in different laboratories are consistent (Supplementary Fig. 8.4), ruling out post-purification contamination. Third, autosomal, Y-chromosomal and mitochondrial DNA analyses place the Thistle Creek specimen basal to Late Pleistocene and modern horses (Fig. 3a and Supplementary Figs 8.1–8.4). Fourth, we found signs of severe biomolecular degradation, including levels of cytokine deamination at overlaps considerably higher than observed in 28 younger permafrost-preserved fossils from the Late Pleistocene (Fig. 2c, Supplementary Fig. 6.40 and Supplementary Table 6.1) and protein deamination levels2,14 (Fig. 2b and Supplementary Information, section 7.5) greater than those reported for younger permafrost-preserved bones.

We additionally sequenced genomes of a 43-kyr-old (pre-domestication) horse (1.8X coverage), a modern donkey (16X; Supplementary Fig. 4.1), 5 modern domestic horses (Arabian, Icelandic, Norwegian fjord, Standardbred and Thoroughbred; 7.9X–21.1X) and one modern Przewalski’s horse (9.6X; Supplementary Table 2.1), considered to possibly represent the last surviving wild horse population. We used this data set to address fundamental questions in horse evolution: (1) the timing of the origins of the genus Equus; (2) the demographic history of modern horses; (3) the divergence time of horse populations forming the Przewalski’s and domestic lineages; (4) the extent to which the Przewalski’s horse has remained isolated from domestic relatives; (5) the timing of gene expansions within the horse genome; (6) the identification of genes potentially under selection during horse evolution.

As no accepted Equus fossils exist before 2.0 Myr BP22 (Supplementary Information, section 9.1d), the date of the last common ancestor that gave rise to extant horses versus donkeys, asses and zebras remains heavily debated. Proposed dates extend as early as 4.2–4.5 Myr BP on the basis of palaeontological estimates to over 6.0 Myr BP according to molecular analyses. We addressed this issue by taking advantage of the established age for the Thistle Creek horse. As a sample cannot be older than the population it belonged to, we explored a full range of possible calibrations for the Equus most recent common ancestor (MRCA) and calculated the divergence time between the populations of the ancient Thistle Creek horse and modern horses (Supplementary Information, section 10.1). Calibrations resulting in divergence times younger than the Thistle Creek bone age were rejected, providing a credible confidence range for the MRCA of Equus. We found rates consistent with the Equus MRCA living 3.6–5.8 Myr BP to be compatible with our data (Fig. 3b and Supplementary Figs 10.1–10.3). We also found support for slower mutation rates in horse than human (Supplementary Information, section 8.4 and Supplementary Table 8.5), implying a minimal date of 4.07 Myr BP for the MRCA of Equus (Supplementary Figs 10.1–10.3). We therefore propose 4.0–4.5 Myr BP for the MRCA of all living Equus, in agreement with recent molecular findings and the oldest palaeontological records for the monodactyle Plesippus simplicidens, which some consider the earliest fossil of Equus. Our result indicates that the evolutionary timescale for the origin of contemporary equid diversity is at least twice that which commonly accepted.

Second, we reconstructed horse population demography over the last 2 Myr. The pairwise sequential Markovian coalescent (PSMC) approach shows that horses experienced a population minimum approximately 125 kyr BP, corresponding to the last interglacial when environmental conditions were similar to now throughout their range. The population expanded during the cold stages of marine isotope stage (MIS) 4 and 3 as grasslands expanded. A peak was reached 25–50 kyr BP and was followed by an approximately 100-fold collapse, probably resulting from major climatic changes and related grassland contraction after the Last Glacial Maximum. A similar demographic history was inferred from Bayesian skyline reconstructions using 23 newly characterized ancient mitochondrial genomes (Supplementary Fig. 9.6). These results support suggestions that climatic changes are major demographic drivers for horse populations. PSMC analyses also revealed two earlier demographic phases (Fig. 4b and Supplementary Figs 9.4–9.5), with population sizes peaking 190–260 kyr BP and 1.2–1.6 Myr BP, respectively, followed by 1.7-fold and 8.1-fold collapses. Extremely low population sizes were inferred approximately 500–800 kyr BP, a time period
that covers the divergence time of the Thistle Creek and contemporary horse populations. This result may relate to population fragmentation when horses colonized Eurasia from America, in agreement with the earliest presence of horses in Eurasia 750 kyr BP.

We next investigated whether Przewalski’s horse indeed represents the last survivor of wild horses. Native to the Mongolian steppes, this horse was listed as extinct in the wild (IUCN red list) but has been reasigned to endangered after successful conservation and reintro-duction. Using maximum likelihood phylogenetic analyses and topological tests (Supplementary Information, sections 8.2–8.3), we found that the Przewalski’s horse genome falls outside a monophyletic group of domestic horses. The MRCA of Przewalski’s and domestic horse lineages diverged (Fig. 3a). This specimen belonged to a population that diverged from that leading to modern horses approximately 89–167 kyr BP (Supplementary Figs 10.1–10.3 and Supplementary Table 10.5), providing a maximal boundary for the younger divergence between Przewalski’s and domestic horses.

Using quartet alignments and D statistics (Supplementary Information, sections 12.1–12.3) we found no evidence for admixture between the Przewalski’s horse and the individual horse breeds investigated in this study using either the donkey or the ancient Thistle Creek genome as out-group (Supplementary Tables 12.1–S12.3). Scanning the Prze-

Figure 2 | Amino acid, protein and DNA preservation of the Thistle Creek horse bone. a, Amino acid signatures. Secondary ions, characteristic of five amino acids over- or under-represented in collagen, were detected by TOF-SIMS (Supplementary Information, section 7.1). The size of secondary ion maps is 500 × 500 μm² with a resolution of 256 × 256 pixels. b, Glutamine deamination. The observed distribution of glutamine deamination levels (Supplementary Information, section 7.5) is blue for the Thistle Creek (TC) horse bone and green for a 43-kyr-old Siberian mammoth bone. c, Post-mortem DNA damage. Maximum likelihood estimates of cytosine deamination at 5’ overhangs were estimated for 29 permafrost-preserved horse bones, including the Thistle Creek bone (Supplementary Information, section 6.3). Mitochondrial and nuclear estimates are provided in red and blue, respectively. Calibrated radiocarbon dates (bc) are provided when available (Supplementary Tables 2.3–4). Error bars refer to 2.5% and 97.5% quantile values, estimated following convergence of the maximum likelihood procedure.
are still present in the endangered Przewalski’s horse population, with levels of allelic diversity that can support long-term survival of captive breeding stocks despite descending from only 13–14 wild individuals.

The sequencing of the horse reference genome showed increased paralogous expansion rates in horses compared to humans and bovines.

Figure 3 | Horse phylogenetic relationships and population divergence times. a, Maximum likelihood phylogenetic inference. We performed a supermatrix analysis of 5,359 coding genes (Supplementary Information, section 8.3a, 100 bootstrap pseudo-replicates) and estimated the average age for the main nodes (88s semi-parametric penalized likelihood (PL) method, Supplementary Information, section 8.3c; see Supplementary Table 8.3 for other analyses). Asterisk indicates previously published horse genomes. b, Population divergence times. We used ABC to recover a posterior distribution for the time when two horse populations split over a full range of possible mutation rate calibrations (Supplementary Information, section 10.1). The first population included the Thistle Creek horse; the second consisted of modern domestic horses. A conservative age range for the Thistle Creek horse is reported between the dashed lines (560–780 kyr).

Figure 4 | Horse demographic history. a, Last 150 kyr BP. PSMC based on nuclear data (100 bootstrap pseudo-replicates) and Bayesian skyline inference based on mitochondrial genomes (median, black; 2.5% and 97.5% quantiles, grey) are presented following the methodology described in Supplementary Information, section 9. The Last Glacial Maximum (19–26 kyr BP) is shown in pink. b, Last 2 Myr BP. PSMC profiles are scaled using the new calibration values proposed for the MRCA of all living members of the genus Equus (4.0 Myr, blue; 4.5 Myr, red), and assuming a generation time of 8 years (for other generation times, see Supplementary Figs 9.4 and 9.5).
possibly related to domestication. These regions include genes for the K1T ligand critical for haemopoiesis, spermatogenesis and melanogenesis, and myopalladin involved in sarcomere organization. Our study has pushed the timeframe of paleohorsematics back by almost an order of magnitude. This enabled us to readaid a range of questions related to the evolution of Equus—a group representing textbook examples of evolutionary processes. The Thistle Creek genome also provided us with direct estimates of the long-term rate of DNA decay, revealing that a significant fraction (6.0-13.3%) of short (25-bp) DNA fragments may survive over a million years in the geosphere (Supplementary Fig. 6.42). Thus, procedures maximizing the retrieval of short, but still informative, DNA may provide access to resources previously considered to be much too old. Methods have recently been developed for increasing the sequencing depth of ancient genomes but do not increase the percentage of endogenous sequences retrieved. Overcoming this technical challenge with whole-genome enrichment approaches, and lower sequencing costs, will make retrieval of higher coverage genomes from specimens with low endogenous DNA content practical and economical.

METHODS SUMMARY

Ancient horse extracts and DNA libraries were prepared in facilities designed to analyse ancient DNA following standard procedures1,4,11. Protein sequencing was performed using nano-flow liquid chromatography tandem mass spectrometry29. DNA sequencing was performed using Illumina and Helicos sequencing platforms23,24. Reads were aligned to the horse reference genome20. DNA sequencing was performed using Illumina and Helicos sequencing platforms23,24. Reads were aligned to the horse reference genome20. DNA sequencing was performed using Illumina and Helicos sequencing platforms23,24. Reads were aligned to the horse reference genome20.

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank T. Brand, the laboratory technicians at the Danish National High-throughput DNA Sequencing Centre and the Illumina sequencing platform at SciLifeLab-Uppsala for technical assistance; J. Clausen for help with the de novo assemblies; J.-O. Alves for nanopore sequencing samples. S. Raess is thanked for help with morphological analysis. S. Jensen, A.-S. Midtiby, and P. Madsen are thanked for discussions involving the re-sequencing of the horse reference genome; and S. Sawyer for providing published ancient horse data. This work was supported by the Danish Council for Independent Research, Natural Sciences (FNU); the Danish National Research Foundation; the Novo Nordisk Foundation; the Lundbeck Foundation (RS5-A5062); a Marie-Curie Career Integration Grant (FP7-CIG-290843); the National Science Foundation ARC-0904954; National Science Foundation (DBI-0906041); the Searle Scholars Program; King Saud University Distinguished Scientist Fellowship Program (DSFP); National Science and Engineering Research Council of Canada; the US National Science Foundation DMR-0930936; and a grant RC2 HG005598 from the National Human Genome Research Institute (NHGRI). A.-G. was supported by a Marie-Curie Intra-European Fellowship (FP7-IFE-299176). M.F. was supported by EMBO Long-Term Post-doctoral Fellowship (ALTF 213-2011). A.-S.M. was supported by a fellowship from the Swiss National Science Foundation (SNSF). M.S. was supported by the Lundbeck Foundation (RS8-5062).

Author Contributions L.O. and E.W. initially conceived and headed the project; G.J. and L.O. headed research at BGI; L.O. and E.W. designed the experimental research project set-up, with input from B.S. and R.N.; D.F. and G.D.Z. provided the Thistle Creek sample, stratigraphic and palaeoecological context, and topographical information; with input from K.K.; H.K.R., B.S., K.G., D.C.F., D.F.A., K.A.S.-A.R. and M.F.B. provided samples; L.O., J.T.V., M.A., M.H., C.M. and J.S. did ancient and modern DNA extractions and constructed Illumina libraries for shotgun sequencing; J.I.M. did the independent replication in Oxford; M.A. did ancient DNA extractions and generated target enrichment sequence data; J.I.M. and X.W. did illumina libraries on donkey extracts; K.M., C.M. and A.S.-O. performed Illumina sequence mapping and the donkey genome at BG; J.F.T. headed true Single DNA Molecule Sequencing of the Middle Pleistocene genome; A.G. and L.O. did the mapping analyses and generated genome alignments, with input from L.O. and A.K.; J.V. and T.S.-P. did the metagenomic analyses, with input from A.G., B.P. and L.O.; Jo.V. and T.S.-P. did the ab initio prediction of the donkey genes and the identification of the Y chromosome scaffolds, with input from A.G. and M.S.; L.O., A.G. and P.L.F.J. did the damage analyses, with input from I.M., A.G. did the functional SNP assignment; A.M.V. and L.O. did the PCA analyses, with input from O.R.; B.S., the phylogenetic and Bayesian skyline reconstruction, and mitochondrial data; M.T.P.G. did the phylogenetic and divergence dating based on ancient data, with input from L.O.; the PSMC analyses data using data generated by C.J. and L.A.; L.O. and A.G. did the population demographic change analyses, with input from J.C.-P. and R.N.; and M.F. and L.O. did the selection scans, with input from A.-S.M. and R.N.; A.A. and L.O. did the admixture analyses, with input from R.N.; L.O. and A.G. did the analysis of paralogues and structural variation; J.A. and A.D. did the amino-acid composition analyses; E.C., C.D.K., D.S., I.J.J. and J.V.O. did the proteomic analyses, with input from M.T.P.G. and A.M.V.; L.O. and V.E. performed the morphological analyses, with input from D.F. and G.D.Z.; L.O. and E.W. wrote the manuscript, with critical input from M.H., B.S., Jo.M. and all remaining authors.

Author Information All sequence data have been submitted to Sequence Read Archive under accession number SRA082085 and are available for download, together with final BAM and VCF files, de novo donkey scaffolds, and proteomic data at http://genetics.ku.dk/publications/middle-pleistocene-omics. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to L.O. (lorandoi@snm.ku.dk), J.U.W. (wujian30@dong.com) or E.W. (erik.wipers@snm.ku.dk).

©2013 Macmillan Publishers Limited. All rights reserved.
METHODS

Genome sequencing. All fossil specimens were extracted in facilities designed to analyse ancient DNA using silica-based extraction procedures34,35 (Supplementary Information, sections 3.1.d and 3.1.e). A total number of 16 and the horse extracts were built into Illumina libraries (Supplementary Information, section 2) and shotgun-sequenced at the Centre for GeoGenetics (Supplementary Tables 2.3 and 4.9). The full mitochondrial genome of a total number of 16 ancient horse specimens was captured using MYSelect in-solution target enrichment kit (Supplementary Information, section 3.3b) following library construction36, and sequenced at Penn State/UCSC (Supplementary Information, sections 4.1.1 and 4.1.2). The combination of shotgun sequencing and capture-based sequencing performed in those two laboratories resulted in the characterization of 23 novel pseudo-complete ancient horse mitochondrial genomes (Supplementary Table 8.1). Additional sequencing was compatible with the characterization of draft nuclear genomes of two ancient horse specimens (Supplementary Tables 4.9 and 4.11): that of a Middle Pleistocene horse from Thistle Creek (560-790 kyr BP), and that of a Late Pleistocene horse from the Taymyr Peninsula (CGG10022, cal. 42,012-40,094 kyr BP; Supplementary Table 2.3). The Thistle Creek horse draft genome was characterized using Illumina (11,593,288,435 reads, Supplementary Table 3.2; coverage = 0.74×, Supplementary Table 4.11) and Helicos sequence data (654,292,583 reads, Supplementary Table 3.5; coverage = 0.38×, Supplementary Table 4.11). Ancient specimens were radiocarbon dated at Belfast 14C/Chrono facilities (Supplementary Tables 2.3 and 2.4). The Middle Pleistocene Thistle Creek horse bone is associated with infinite radiocarbon dates.

Modern equine genomes from five modern horse breeds (Arabian, Icelandic, Norwegian fjord, Standardbred, Thoroughbred), one Przewalski’s horse individual and one domestic horse were characterized using Illumina paired-end sequencing (Supplementary Information, sections 3.1.b.3–3.1.b.4). DNA was extracted and prepared into libraries (Supplementary Information, section 2.2) in laboratories located in buildings physically separated from ancient DNA laboratory facilities. Modern horse genomes were sequenced at the Danish National High-Throughput DNA Sequencing Centre whereas the donkey genome was characterized at BGI, Shenzhen (Supplementary Information, 3.1). Trimmed reads were aligned to the horse reference genome EquCab2.0 (ref. 26), excluding the mitochondrial genome and chrUn, using BWA 0.7.12 (Supplementary Information, section 4.2). We generated a draft de novo assembly of the donkey genome using de Bruijn graphs as implemented within SOAPdenovo37 (Supplementary Information, section 4.1.a), built gene models using Augustus38 and SpylPhy1 (Supplementary Information, section 4.1.b), and identified candidate scaffolds originating from the X and Y chromosomes (Supplementary Information, sections 4.1.c and 4.1.d). Sequence reads were also aligned against de novo assembled donkey scaffolds (Supplementary Information, section 4.2). For all genomes characterized in this study, we estimated that overall error rates were low (Supplementary Information, section 4.4.a), with type-specific error rates inferior to 5.3 × 10⁻⁴, except for ancient genomes where post-mortem DNA damage inflated the GC→AT mis-incorporation rates (Supplementary Table 4.12). Metagenomic assignment of all reads generated from the Thistle Creek horse bone was performed using BWA mem and mapping against a customized database, which included all bacterial, fungal and viral genomes available (Supplementary Information, section 4.3).

Genomic variation. SNPs were called for modern genomes using the mpileup search engine from SAMtools (0.1.18)39 and bcftools, and were subsequently filtered using vcfutils varFilter and stringent quality filter criteria (Supplementary Information, section 5.2). We compared overall SNP variation levels (Supplementary Information, sections 5.2.b and 11.2) present in 362 horse individuals belonging to 14 modern domestic breeds and 9 Przewalski’s horses40. The combination of shotgun sequencing and capture-based sequencing performed in those two laboratories resulted in the characterization of 23 novel pseudo-complete ancient horse mitochondrial genomes (Supplementary Table 8.1). Additional sequencing was compatible with the characterization of draft nuclear genomes of two ancient horse specimens (Supplementary Tables 4.9 and 4.11): that of a Middle Pleistocene horse from Thistle Creek (560-790 kyr BP), and that of a Late Pleistocene horse from the Taymyr Peninsula (CGG10022, cal. 42,012-40,094 kyr BP; Supplementary Table 2.3). The Thistle Creek horse draft genome was characterized using Illumina (11,593,288,435 reads, Supplementary Table 3.2; coverage = 0.74×, Supplementary Table 4.11) and Helicos sequence data (654,292,583 reads, Supplementary Table 3.5; coverage = 0.38×, Supplementary Table 4.11). Ancient specimens were radiocarbon dated at Belfast 14C/Chrono facilities (Supplementary Tables 2.3 and 2.4). The Middle Pleistocene Thistle Creek horse bone is associated with infinite radiocarbon dates.

Modern equine genomes from five modern horse breeds (Arabian, Icelandic, Norwegian fjord, Standardbred, Thoroughbred), one Przewalski’s horse individual and one domestic horse were characterized using Illumina paired-end sequencing (Supplementary Information, sections 3.1.b.3–3.1.b.4). DNA was extracted and prepared into libraries (Supplementary Information, section 2.2) in laboratories located in buildings physically separated from ancient DNA laboratory facilities. Modern horse genomes were sequenced at the Danish National High-Throughput DNA Sequencing Centre whereas the donkey genome was characterized at BGI, Shenzhen (Supplementary Information, 3.1). Trimmed reads were aligned to the horse reference genome EquCab2.0 (ref. 26), excluding the mitochondrial genome and chrUn, using BWA 0.7.12 (Supplementary Information, section 4.2). We generated a draft de novo assembly of the donkey genome using de Bruijn graphs as implemented within SOAPdenovo37 (Supplementary Information, section 4.1.a), built gene models using Augustus38 and SpylPhy1 (Supplementary Information, section 4.1.b), and identified candidate scaffolds originating from the X and Y chromosomes (Supplementary Information, sections 4.1.c and 4.1.d). Sequence reads were also aligned against de novo assembled donkey scaffolds (Supplementary Information, section 4.2). For all genomes characterized in this study, we estimated that overall error rates were low (Supplementary Information, section 4.4.a), with type-specific error rates inferior to 5.3 × 10⁻⁴, except for ancient genomes where post-mortem DNA damage inflated the GC→AT mis-incorporation rates (Supplementary Table 4.12). Metagenomic assignment of all reads generated from the Thistle Creek horse bone was performed using BWA mem and mapping against a customized database, which included all bacterial, fungal and viral genomes available (Supplementary Information, section 4.3).

Genomic variation. SNPs were called for modern genomes using the mpileup search engine from SAMtools (0.1.18)39 and bcftools, and were subsequently filtered using vcfutils varFilter and stringent quality filter criteria (Supplementary Information, section 5.2). We compared overall SNP variation levels (Supplementary Information, sections 5.2.b and 11.2) present in 362 horse individuals belonging to 14 modern domestic breeds and 9 Przewalski’s horses40. Genotype and the breed/population of origin were converted into PLINK map and ped formats41 and further analysed using the software Smartps of EIGENSOFT 4.0 (ref. 40). PCA plots were generated using R 2.12.2 (ref. 41) (Supplementary Figs 5.6–5.14). Filtered SNPs that passed our quality criteria (Supplementary Information, section 5.2.a) were categorized into a series of functional and structural genomic classes using the Perl script variant_effect_predictor.pl version 2.5 (ref. 42) available at Ensembl and the EqCab2.0 annotation database version 65 (Supplementary Information, section 5.2.b). We also screened our genome data for a list of 36 loci present in ref. 27 to recover direct estimates of DNA survival rates from next-generation sequence data (Supplementary Information, section 6.4). We restricted our analyses (1) to the distribution of templates showing sizes superior to the modal size category; and (2) to collapsed pair-end reads, as the size of the latter corresponds to the exact size of ancient DNA fragments inserted in the DNA library.

Amino acid and proteome analyses. A sample of the Middle Pleistocene Thistle Creek horse bone was embedded in Epothin resin under sterile conditions, cut and polished until chemical analysis of the sample surface could be performed with a time-of-flight secondary ion mass spectrometer (TOF-SIMS) instrument (Supplementary Information, section 7). We also performed high-resolution mass spectrometry (MS)-based shotgun proteomics analysis using two fragments from the Middle Pleistocene Thistle Creek horse bone (weighing 86 and 78 mg, respectively) in order to retrieve large-scale molecular information. The overall methodological approach follows the procedure that was previously applied to survey the remains of the bone proteome from three mammoth specimens living approximately 11–43 kyr ago42, although with significant improvements (Supplementary Information, sections 7.2–7.3). Strict measures to avoid contamination and exclude false-positive results were implemented at every step, allowing to confidently profile 73 ancient bone proteins (from the attribution of 659 unique peptides based on 13,030 spectra). Raw spectrum files were searched on a local workstation using the MaxQuant algorithm version 1.2.2.5 (ref. 46) and the Andromeda peptide search engine47 against the target/reverse list of horse proteins available from Ensembl (EqCab2.64.pep.all), the IPI v.3.37 human protein database and the common contaminants such as wool keratins and porcine trypsin downloaded from UniProt. The spectra were also searched against the Uniprot protein database, taxonomically restricted to chordates, and non-horse peptides were identified and eventually removed. Proteomic data were further compared to similar information already generated from fossil specimens collected in Siberian permafrost and temperate environments. Proteome-wide incidence of degradation was estimated in relation with protein recovery to further assess the molecular state of preservation of ancient proteins.

Phylogenetic analyses. The CDSS of protein-coding genes were selected from the Ensembl website, keeping the transcripts with the most exons in cases where multiple records were found for a single gene. We then extracted corresponding genomic coordinates, filtered for DNA damage/sequencing errors, and aligned each gene using MAFFT G-INS-i ('ginsi')48,49 (Supplementary Information, section 8.3a). Phylogenetic analysis was carried out using a super-matrix approach. First RAxML v7.3.210 was run to generate the parsimony starting trees. The final tree inference was performed using RAxML-Light v1.1.111 and one GTR+GAMMA model of nucleotide substitutions for each gene partition (codon positions 1 and 2, versus 3). Node support was estimated using 100 bootstrap pseudo-replicates. The consensus was obtained in the last iteration with 95% bootstrap support. We used the Newton (TN) algorithm, with a smoothing value of 1,000 (ref. 52), or using the Langley–Fitch (LF) method (Supplementary Information, section 8.3.c). The date of the root node was constrained to 4.0–4.5 Myr, the date of CGG10022 was fixed to 43 kyr, and the date of the Thistle Creek specimen was constrained to 560–780 kyr RF. We also performed phylogenetic analyses of whole mitochondrial
genomes (Supplementary Information, section 8.1.1). Y chromosome (Supplementary Information, section 8.2) and a series of topological tests using approximately unbiased tests as implemented in the CONSEL maker program[34] (Supplementary Information, section 8.3b).

Demographic reconstructions. Past population demographic changes were reconstructed from whole diploid genome using the pairwise sequen-
tially Markovian coalescent model (PMSC)[35] and excluding sequence data origin-
ating from sex chromosomes and scaffolds (Supplementary Information, section 9). For low coverage genomes (<20x), we applied a correction based on an empirical uniform false-negative rate. Three different generation times of 5, 8 and 12 years were considered in agreement with the range of generation times reported in the literature[36–38]. Mutation rates were estimated using quartet genome alignments where the donkey was used as out-group (Supplementary Information, section 10.1c). We also reconstructed past horse population demographic changes by means of Bayesian skyline plots using the software BEAST v1.7.2 (refs 57, 58) (Supplementary Information, section 9.2). Complete mitochondrial genomes were aligned and partitioned as described in Supplementary Information, section 8.1b, and a strict clock model was selected. We ran two independent MCMC chains of 50 million iterations each, sampling from the posterior every 5,000 iterations. We discarded the first 10% of each chain as burn-in, and after visual inspection in Tracer v1.5[39] to ensure that the replicate chains had converged on similar values, combined the remainder of the two runs.

Population split. We followed the method presented in ref. 20 to estimate the population divergence date of ancient and modern horses (Supplementary Information, section 10.1). This method was also applied to date the population divergence of Przewalski's horse and domestic horses (Supplementary Information, section 10.2), as both our phylogenetic analyses and admixture tests supported those as two independent populations (Supplementary Information, sections 8.3 and 12). In this method, we focus on heterozygous sites in one of the two popula-
tions and randomly sample one of the two possible alleles (ancestral or derived) in the individual belonging to the first population. The number of times a derived allele is sampled (F statistics) can be used to recover a full posterior distribution of the population divergence time using (serial) coalescent simulations and approximate Bayesian computation (ABC) (Supplementary Information, section 10.1). For dat-
ing the divergence time between the Przewalski’s horse population and domestic breeds, we also performed coalescent simulations using ms[40] assuming different divergence times in order to compute the expected relative occurrences of 4 geno-
type configurations (Supplementary Information, section 10.2b). We assumed that no gene flow occurred after the population split, in agreement with the absence of detectable levels of admixture. The divergence time was then estimated by mini-
mizing the root mean square deviation (r.m.s.d) between observed and expected genotype configurations. We minimized the r.m.s.d using a golden search algo-
rithm. We repeated the minimization from different starting values to ensure convergence.

Selection scans. We used quartet alignments including the donkey as out-group, one ancient horse and two modern horses to scan for genomic regions where the two modern horses shared unusual accumulation of derived alleles (Supplemen-
tary Information, section 11.1). We used a sliding window approach on the entire genome, with a window size of 200 kb and calculated an unbiased proxy for selection using the 'delta technique’ (see for example ref. 61). We then used an outlier approach to identify candidate loci with a conservative false-positive rate of 0.01. We further retrieved transcript IDs from the different genomic regions identified and performed functional clustering analyses in DAVID[42]. We esti-
mated genetic diversity (theta Watterson) within the Przewalski’s horse popu-
lation and among modern horse breeds using sliding windows of 50 kb. For this, we estimated the population scaled mutation rate and used an empirical Bayes method where we took the uncertainty of the data into account by using genotype likelihoods instead of calling genotypes. We computed the genotype like-
hoods assuming a model similar to that of SAMtools version 0.1.18 (ref. 37) (Supplementary Information, section 11.2). Genomic windows showing excessive proportions of segregating sites with regards to species divergence (>30%) or cov-
erage <90% were discarded. We estimated Tajima’s D following the same proce-
dure and identified genomic regions showing minimal Tajima’s D values and low genetic diversity among breeds but not in the Przewalski’s horse population as a conservative set of gene candidates for positive selection among modern horse breeds. Finally, we scanned modern horse genomes for long homozygosity tracts, which could be indicative of selective sweeps[43]. We used 2-Mb sliding windows and ignored regions inferior to 2 Mb. This resulted in the identification of 456 outlier regions within 8 modern horse genomes.

Admixture analyses. In order to investigate if there was evidence for gene flow between the Przewalski’s horse population and four modern horse domestic breeds (Arabian, Icelandic, Norwegian fjord and Standardbred), we performed ABRA-BABA tests[44,45]. To avoid introducing bias due to differences in sequencing depth we based the tests on data achieved by sampling one allele randomly from each horse at each site. First we used the domestic donkey as out-group, then the Middle Pleistocene Thistle Creek horse. When using the Thistle Creek horse as out-group we removed all sites showing transitions to avoid spurious patterns resulting from nucleotide misincorporations related to post-mortem DNA damage. We estimated the standard error of the test statistic using ’delete-m’ Jackknife for unequal m with 10-Mb blocks[46] (Supplementary Information, sec-
tion 12.1). We also scanned genome alignments to record the proportion of shared SNPs between Przewalski’s horse to each horse breed (Supplementary Informa-
tion, section 12.6), a proxy for recent admixture events that are expected to result in the introgression of alleles from the admixer to the admixed genome and long tracts of shared polymorphisms. Finally, we compared our Przewalski’s horse individual to other individuals with different levels of admixture in their pedigree. We extracted genotype information from the Przewalski’s horse genome for SNP coordinates already genotyped across 9 Przewalski horse individuals[47]. Genotypic information from two Mongolian horses was added as out-group. We next selected the best model of nucleotide substitution using modelgenerator v0.85 (ref. 65) and performed maximum likelihood phylogenetic analyses using PhyML 3.0 (ref. 66) (Supplementary Information, section 12.5). We further confirmed the phylogen-
etic position of our Przewalski’s horse individual together with Rosa (KB3385), Basí (KB7413) and Roland (KB3063), three individuals for which no admixture with domestic horses could be detected in previous studies[48] by means of Approximate-Unbiased (AU) and Shimodewa-Hasogawa (SH-) tests, as implemented in CONSEL[49].

Morphological analyses. We measured the metapodial of Thistle Creek Middle Pleistocene bone for 6 dimensions, despite incomplete preservation of its distal end (Supplementary Information, section 1.2). These measurements were compared to 30 metatarsals of E. lambei, 9 metatarsals of E. cf. scotti of Klondike, Central Yukon, Canada (Supplementary Information, section 1.2) and to extant horses (Supplementary Information, section 1.3). Comparisons were made using Simpson’s ratio diagrams that provide a standard and accurate comparison of both size and shape, for a single bone or a group of bones (Supplementary Figs 1.2 and 1.3). We also measured taxonically informative morphometric features on the skull and post-cranial complete skeleton of the modern Przewalski’s horse spe-
cimen that was genome sequenced. We compared those to a collection of horse measurements available for hominid specimens for specimens of similar age and using principal component analyses (Supplementary Information, section 1.4).
Chapter 8

Analysis of polar marine environments

This chapter addresses the analyses of the polar marine metagenomes. Figure 8.1 illustrates a general workflow of the involved steps. After assembling the metagenomes, genes were identified (described in Chapter 5 and 6 respectively) and a non-redundant gene catalogue was created. Proteolytic enzymes were identified from the nonredundant gene catalogue. Sequencing reads were remapped to the gene catalogue to generate the abundance matrix for further analysis.

8.1 From Genes to Abundance matrix

The non-redundant gene catalogue of the marine environment

A non-redundant gene catalogue can be created by pooling all identified genes from all samples and reducing sequence redundancies. Reducing redundancy in the polar marine gene catalogue was done with CD-Hit [101]. The basic principle of redundancy reduction lies within multiple sequence alignment and keeping the bin-representative gene (commonly the longest). The polar marine gene catalogue was binned with an identity cutoff of 95% over the shortest gene. Furthermore, cluster representatives shorter than 100 bp were removed. The number of genes was reduced from >13 million genes to ~5 million genes. The gene catalogue was used in the analysis of Manuscript II and III.

Abundance measure of metagenomes

Measuring the abundance of a given gene is important when comparing metagenomes. This can be done by aligning the sequencing reads to a non-
redundant gene catalogue of the metagenomes. The quality trimmed reads were remapped to the non-redundant catalogue with the Burrows-Wheeler aligner mapping tool BWA [97]. BWA is a read alignment package which is based on the backward search with Burrows-Wheeler Transform. Measuring abundance by remapping of reads singletons and paired-end reads have to be treated differently when assigning observations. An observation can be described as an observation count measure. If a singleton, a paired read or both paired reads mapped to a gene in the catalogue, the gene was observed once in the process. However, if a paired read was mapped to two different genes, both genes were observed once. Analyzing reads mapped to a reference is commonly done with samtools [98]. The sam format provides specific flags which can be specified with samtools to extract mapped reads from the bam formatted mapping file [98]. However, errors in BWA generated bam file flags were observed and therefore a customized perl script was used to read the alignment file line by line and determine the mapped gene and assign the gene observation count as described above. The gene observations were done sample-wise, resulting in a N x M abundance matrix (N: number of genes in the gene catalogue, M: number of samples).
For further analysis the gene catalogue was normalized for the overall read count in the metagenomes, i.e. size of the different samples. This means that the samples are downsized to the most low abundant sample (Equation 8.1).

\[a_{\text{downsized}} = a \ast \frac{A}{A_{\text{min}}} \]

\[a_{\text{downsized}}: \text{ downsized gene abundance} \]
\[a: \text{ gene abundance} \]
\[A: \text{ sample read count} \]
\[A_{\text{min}}: \text{ min sample read count} \] (8.1)

Downsizing, however, does impact the overall resolution of the abundance of samples which means that deeply sequenced samples will be downsized to a scale where small differences in abundance cannot be detect. This becomes most apparent with samples of varying sequencing depth. Unfortunately this was the case with the polar marine metagenomes. Excluding samples with lower sequencing depth would have reduced the sample size dramatically since only 26 samples were available. In studies with more samples [6, 131], however, this might very likely be a good option. For the functional analysis of the polar marine environment, only 25 samples were used as one sequencing lane was sequenced with a mixture of two individual samples and post separation of the samples was not possible. However, for the identification of proteolytic enzymes, all 26 samples were used.

The same principle of remapping reads to the non-redundant gene catalogue was used for creating rarefaction curves of the samples. Reads were randomly chosen and mapped to the catalogue with BWA [97]. Optimally the rarefaction curve reaches a plateau indicating that by adding more sequence information, no more genes from the gene catalogue can be detected in the specific sample.

8.2 Functional analysis – Finding the needle in the haystack

The 25 samples, which were used in the analysis of Manuscript II, were divided into groups, which represent surface (40 m – 100 m), medium (300 m – 400 m) and deep (2,000 m – 4,300 m) environments of true open ocean, where the deep samples were taken relative to the ocean bottom representing the whole water column. Moreover, the archipelago samples represent a coastal environment with varying depths (400 m – 1,500 m). In order to get a measure of similarity between the four environments, the Bray–Curtis dissimilarity\(^1\) measure was calculated between the samples using the abundance.

\(^1\)The non-metric Bray-Curtis dissimilarity [19] delivers robust and reliable dissimilarity results for a wide range of applications. It is a commonly applied measurement to express relationships in ecology and environmental sciences [17].
matrix.
Finding meaningful functions in metagenomic data is not a trivial task due
to the vast amount of data. The gene abundance matrix was translated to
COG and NOG functions according to the genes annotation. The resulting
abundance matrix had the dimension of ~5 million genes x >13 thousand
functions. The mean abundance for each COG/NOG function was plotted.
The Kruskal–Wallis test\(^1\) was applied on a subset of the new abundance ma-
trix to statistically compare the surface, medium and deep samples. Sample
subsets were compared by calculating the negative mean log-ratio for samples
of the same category. A cutoff was set to identify functions which were more
prominent in a sample category.
Statistical analysis narrowed down the number of functions to manually look
at. However, the identification of interesting functions, still required manual
curation.

8.3 Identifying proteolytic enzymes in the polar
marine environment

The non–redundant gene catalogue was used to identify proteolytic enzymes
in Manuscript III. All ~5 million genes were annotated with HMM models
created in collaboration with Novozymes. In total, 3,207 HMMs were con-
structed and used in the screen of the non–redundant gene catalogue.
These HMM models include all peptidases defined in MEROPS [136] and were
constructed based on individual peptidases in MEROPS (e.g. A02.063), using
nearby homologues in known sequence space (UniProt [8] and Novozymes’ in-
ternal protein database). Up to 500 nearby homologues were identified using
BLASTP [4] against the peptidase’s catalytic domain. A given protein could
only be assigned to the closest peptidase in MEROPS, and thus never used in
multiple models. The catalytic domain of each peptidase was extracted and a
multiple alignment was created using MAFFT [83]. The HMMs constructed
using HMMER3’s hmmbuild [41].
The identified proteases were further aligned to public databases (UniProt
[8]) and metagenomic datasets to identify novel sequences and narrow down
the number of novel targets for future expression trials. The metagenomes
were downloaded from CAMERA [150]. Moreover, signal peptides were iden-
tified with SignalP [125].

\(^1\)The Kruskal–Wallis test [89] compares the medians of two or more samples to deter-
mine if the samples originate from different populations. Adapted from Spurrier [156].
Part III

Manuscripts
Chapter 9

Manuscript II

9.1 The polar marine environment

Oceans cover ~70% of the Earth’s surface and contains 97% of the planet’s water. They play a pivotal role in many of the Earth’s systems including climate and weather\(^1\). The marine environment is considered to be on of the largest habitats on Earth with 2.9 x 10\(^{27}\) cells in deep water (below 200 m) to 3.6 x 10\(^{28}\) cells in surface water (above 200 m) accounting for 55% of all prokaryotes in aquatic habitats [179]. These numbers suggests that oceans account for one of the largest biomes on Earth. However, more than 95% of the underwater world remains unexplored [129, 179]. Interest in the marine environment has long been a subject of fascination due to its alien character compared to terrestrial environments. Especially the ever dark deep sea has been an interesting topic for research. The first scientific evidence for life in the deep seas was found in the late 1800s by the Challenger Expedition [54, 75, 79]. Since then numerous expeditions have been exploring the world’s seas to uncover the biological diversity, and microorganisms have been identified in niche environments such as hypothermal vents, deep sea, on whale carcasses and Arctic waters [79, 154, 179]. One of the most extensive marine sampling expedition was conducted in 2007 – 2009 known as the Global Ocean Sampling Expedition [122, 140] where up to 400 liters of water were sampled approximately every 200 miles. The metagenomes of the samples are publicly available providing a ”global map” of the microbial diversity throughout the globe.

Marine bacteria (and also archea) are an integral and important part in the biogeochemical cycles by steadily assimilating, storing, transforming, exporting and remineralizing the vast pool of organic carbon stored in oceans

The microbial composition is highly diverse and creates a very complex ecosystem, driving the main biological processes in the marine ecosystem and conducing various and diverse metabolic functions like photosynthesis, CO$_2$ fixation, heterotrophic processes and utilization of inorganic compounds [163, 186, 193]. The Arctic and Southern oceans are considered extreme environments due to low surface temperatures, general low nutrition and ice coverage. The global thermohaline circulation connects both oceans and it takes approximately 1,000 years for water masses to circle the globe through the deep current system [183]. A recent study [159] showed, however, that the polar microbial communities in the Arctic oceans and Southern oceans follow a bipolar distribution, i.e. similar species distribution at polar regions separated by the moderate zones.

In the Arctic oceans little temperature changes have been observed [24, 78]. However, various other environmental factors differentiate surface and deep water throughout the water column. One of the most prominent environmental changes is the sunlight penetration. The photic zone is roughly 200 meters deep and provides energy to organisms metabolizing inorganic compounds (primary producers) and photoheterotrophic organisms. Microbial growth is influenced by sunlight and it has a selective influence on the community structure [29]. Another differentiating factor along the water column is the organic matter influx described as dissolved organic matter (DOM) [86]. DOM is categorized in three groups varying along the depth gradient [86]. Labile DOM consist of proteins, free amino acids and sugars and exhibit a low concentration of < 1 µmol/L. The semi-labile DOM's concentration decreases from max. 30 µmol/L at the surface to zero at a depth of approximately 1,000 m [119]. The typical degradation time ranges from days to years and the processes involved are still unknown [119]. The refractory pool of DOM has a degradation time of over 1,000 years exceeding the deep water circulation and creates a constant concentration of 40 µmol/L. Particulate organic matter (POM) also play a prominent role in the ocean nutrition cycle because it enables nutritions to sink to deeper levels of the water column [69, 86]. Previous studies have shown that the depth gradient is important in shaping the microbial communities in the oceans [37, 57].

Here we present the functional analysis of water specimens sampled during the Galathea III and LOMROG II polar expeditions (Figure 9.1). DNA was extracted from 26 samples, sequenced and assembled. A non-redundant gene catalogue was created. All genes of the polar marine catalogue were assigned to their function. The functional stratification according to depth and north/south was investigated for 25 samples – one sample was excluded from the functional analysis as one sequencing lane was loaded with a mixed sample. We find that functional stratification occurs along the water column but to a lesser extend in the geographical orientation. The current version of the manuscript is appended.
Figure 9.1. Map of sampling site of the Galathea III and LOM-ROG II polar expeditions in the Arctic (top) and antarctic (bottom). Blue dots represent sample locations, red dots in the top represent test sampling sites which were not sequenced. Illustrations were modified from Hansen et al., unpublished.
9.2 Comparative functional analysis of Arctic marine metagenomes reveals strategies for deep sea persistence
Comparative functional analysis of arctic marine metagenomes reveals strategies for deep sea persistence

Josef Korbinian Vogt1*, Lea Benedicte Skov Hansen2*, Dhany Saptura1, Peter Nikolai Holmsgaard2, Lars Hestbjerg Hansen2, Søren Sørensen2, Thomas Sicheritz-Pontén1 and Nikolaj Blom1

1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby, Denmark
2Department of Biology, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
* Joint first authorship.

ABSTRACT – The global Ocean represents the worlds largest continuous ecosystem, however, little is known about the microbial functions present in the aphotic zone. The microorganisms that dwell in the deep dark waters are numerous and play key roles in the ocean carbon cycle, which is of special interest in connection to the global climate change. The polar oceans are highly affected by the temperature increase and this emphasizes the need for a better understanding of the biological processes present throughout the water column. The purpose of this study was to conduct a functional clustering of metagenome shotgun DNA libraries of samples from the Arctic Ocean and the Southern Ocean and through the water column reaching levels lower than 4,000 m. This dataset represents the deepest microbial samples from these oceans to date. Furthermore, a comparative analysis was conducted to infer the functional differences between the environments. The results indicated that the environmental factors differentiating through the first 300 m of the water column are deciding factors for shaping the functional community, rather than spatial dispersal. The mesopelagic samples were functional inseparable from the bathy- and abyssopelagic samples, indicating a highly homogenous environment in the aphotic part of the ocean. Functions characterizing the aphotic zone were iron uptake and utilization, phage and bacteria interactions, adhesion and motility and others, which in general indicated a selection for copiotrophs in the deeper ocean.

KEY WORDS – Metagenomics, polar marine environment, Arctic, Antarctic, deep–sea, functional analysis

1. Introduction

Approximately 70% of the Earth’s surface is covered by ocean and contains 97% of the planet’s water. The marine environment is considered to be one of the largest biomes on Earth with 2.9 x 10²⁷ cells in deep water (>200 m) to 3.6 x 10²⁸ cells in surface water (<200 m) [58]. However, more than 95% of the underwa ter remains unexplored [48, 58], even though these microorganisms play a pivotal role in the world’s carbon cycle. In connection to the global climate change, especially the polar oceans are undergoing environmental changes and this emphasizes the need for a better understanding of the biological processes conducted throughout the water column. The Arctic Ocean and the Southern Oceans can be described as extreme environments with low nutrition, low surface temperatures, ice coverage and 24 hour solar irradiation at summertime. Despite the similarities in environmental factors, both oceans exhibit geographical differences. The Southern Ocean encloses a continent and the Antarctic Circumpolar Current (ACC) isolates its water masses. The lack of freshwater inflow keeps the level of salinity constant throughout the water column [44]. The Lomonosov Ridge divides the Arctic Ocean into the Mesozoic Amerasian Basin and the Cenozoic Eurasia Basin. The ridge creates a natural barrier, which prevents the basins’ water to be mixed [10]. Moreover, the Arctic Ocean water is surrounded by Canadian, Russian and Greenlandic land masses and receives 10% of the world’s fresh water. This causes reduced salinity in the surface water layer. Despite the geographical isolation of the Arctic and Southern Oceans, they are connected by the global thermohaline circulation allowing for water circulation between the poles. This, however, takes up to 1,000 years [61].

The temperature of the arctic oceans varies little throughout the water column. However, other environmental elements change from surface to deep waters, such as light penetration and organic matter concentration. Primary producers are mostly present in the upper 200 m where
light penetrates the water and their presence promotes a general higher cell density compared to deeper environments [58]. Availability of sunlight directly influences microbial growth and has a selective impact on the community structure [9]. Organic matter in oceans are present at varying concentrations and compositions along the depth gradient. Labile dissolved organic matter (labile DOM), including free amino acids, sugars and proteins, is only present through the photic zone in low concentrations of $<1 \mu$mol/L. Semilabile DOM exhibit a decreasing concentration with maximum $<30 \mu$mol/L at the surface to zero at a depth of 1,000 m [42]. They can persist over 1,000 years, which exceeds the deep water circulation and creates a stable concentration of 40 μmol/L. Particulate organic matter (POM) also play a prominent role in the ocean nutrition cycle because it enables nutrition to sink to deeper levels of the water column [40]. Microbial community studies have shown a vertical zonation of microbial communities in oceans [12, 26, 62]. Taxonomic comparison of surface and deep water from the Arctic Ocean and Southern Ocean did reveal a bipolar distribution of bacteria (Hansen et al., unpublished) [18] by comparing the surface and deep samples of the Arctic and Southern oceans. Furthermore, previous studies of temperate oceans also suggest depth to be the determining factor for functional stratification [12, 26, 36, 56].

We hypothesize depth to be the determining factor for functional clustering of metagenomic samples of the Arctic Oceans and Southern Oceans. Furthermore, comparative functional analysis of metagenomes of the polar oceans reveals environmental strategies for the adaptation of the microbial community to the extreme environment. Water samples from the Arctic Ocean and the Southern Ocean were collected during the Galathea III expedition and LOMROG II polar expeditions at varying depth. The samples represent the whole water column ranging from 40 m to 4,300 m. Moreover, water was sampled at the archipelago in close proximity to the Antarctic Peninsula. These samples represent a coastal environment compared to the open ocean samples. With these samples it is possible to statistically investigate the functional stratification according to depth and Arctic Ocean versus Southern Ocean.

2. Results

To conduct a comparative metagenomic analysis of the marine environment at the arctic poles and throughout the water column, 25 arctic marine water samples were obtained (see Figure 1 and Table S1). In connection with the LOMROG II expedition in August, 2009, eleven different locations in the Arctic Ocean were sampled, which yielded sixteen samples. Both sides of the Lomonosov ridge were sampled to represent the Mesozoic Amerasian Basin and the Cenozoic Eurasia Basin [10]. Furthermore, all sample locations were maximum 350 kilometers apart and close to the North Pole. However the P20 sample was located near Svalbard and was more distant.

Five different locations were sampled in Southern Oceans during the Galathea III expedition in January, 2007, which yielded nine different samples. Two sample locations represented a true open ocean environment, where P10 was situated north from the ACC and P11 was positioned south from the current [44]. P12, P14 and P15 were all sampled within the archipelago near the Antarctic Peninsula.

The 25 samples represent different ocean environments, which are surface (40 m – 100 m), medium (300 m – 400 m) and deep (2,000 m – 4,300 m) of true ocean, where the deep samples were taken relative to the ocean bottom. Hence, the samples represent the whole water column. Furthermore, the archipelago samples represent a coastal environment with varying depths (400 m – 1,500 m).

The measured temperature and salinity correlate with the seasonally obtained data published in the World Ocean Atlas [3, 53]. The temperatures ranged between -2°C and 2°C, except the surface and medium samples of P10, located north from the ACC, which were around 7°C and 9°C respectively. The salinity of the arctic surface samples was highly affected by ice melting and fresh water inlet and displayed concentrations between 31 PSU and 33.5 PSU. All other samples displayed stable concentrations between 34 PSU and 35 PSU.

Metagenomic shotgun sequencing libraries of bacteria and archaea were obtained from the water samples by excluding larger eukaryotes and viruses with filtering. Libraries of paired-end sequences were obtained and the sizes ranged from 1.38 Gb to 25 Gb after quality trimming. However, the deep sample from P11 has been deeply sequenced which gave 37.71 Gb (Table S1). These libraries were assembled to contigs, which displayed an N50 between 774 and 40,444. The number of contigs ranged from around 1,000 up to 700,000. The sequencing statistics imply a connection between lower sequencing coverage, higher N50 and lower contigs and vice versa.

The metagenome shotgun sequences were used to assess the taxonomic distribution of bacteria and archaea in the samples. The results are displayed as pie charts in Figure 1, where the ten most abundant phyla in the individual samples are included. Proteobacteria were the most abundant phyla across the samples but also Actinobacteria, Firmicutes and Bacteroidetes were highly abundant and these phyla did not display any preferences for a specific depth or location except Actinobacteria, which showed a slight preference for deeper waters in the south. Thaumarchaeota and Chloroflexi showed a more clear tendency toward medium and deep water and Acidobacteria and Deinococcus-Thermus showed a preference toward deep and archipelago environments.
The data showed that a fairly large proportion of the assigned reads fall into the “other” category and this implied a long tail of rare phyla in the samples. Furthermore, between 19.56% and 85.01% of all sequences in the sample libraries could not be assigned to any phyla. This indicated that the samples were containing novel marine organisms that might also introduce a certain bias when assessing the taxonomic distribution.

Over 5 million genes were identified after assembling all 25 metagenomes, gene calling and clustering. All reads were remapped to the non-redundant gene catalogue to create the abundance matrix. Furthermore, the reads were rarified and remapped. Figure 2 displays a functional rarefaction analysis, where number of genes from the gene catalogue are displayed as a function of number of reads in the individual samples. Samples from all four sample types, surface, archipelago, medium and deep, almost reached a plateau at around 2 million genes, hence they showed similar functional diversity. All deep samples displayed a similar curvature, however, surface, archipelago and medium samples were deviant within sample groups. This divergence could be explained by lower functional diversity, however some samples also had a smaller library size and contributed less to the gene catalogue, resulting in less functional coverage of the sample. This was particularly evident for surface and medium samples from the south.

Approximately 3 million genes could be annotated to over 16,000 ortholog groups (OGs) [39] and the gene abundance matrix was rearranged to create a functional abundance matrix. The Bray-Curtis dissimilarity measure was calculated between the samples and the result is displayed in an NMDS ordination plot, see Figure 3A [7]. All samples clustered within close proximity to each other and displayed a low functional diversity between the samples. Surface samples showed larger diversity and were distinct from the tight cluster of medium and deep samples. Within the tight cluster, the medium and deep samples from the North Pole were functionally inseparable, the two southern deep samples diverged slightly from northern cluster and medium samples from south were clustering together with the surface samples. The archipelago samples clustered together with surface samples and these two environments did not separate from each other on a functional basis. Metadata, including depth, temperature, salinity and geographic location, was fitted as vectors onto the ordination plot. Depth and location affected the sample clustering in the NMDS plot with statistical significance (p-values of 0.00281 and 0.00195 respectively). Salinity also showed statistical significance (p-value of 0.02711), however to a lesser extend. Temperature seemed not to affect the ordination and was not statistically significant.

In order to compare the functional composition throughout the water column all OGs found in surface, medium and deep samples were displayed in a ternary plot (see Figure 3B). The distribution of the functions between the three environments created two broad clusters. One cluster moved vertically up through the middle of the plot towards the surface environment and a second cluster spread out across the bottom of the triangle. The vertical cluster in the plot represented many functions, which were shared between all three sample types. The cluster were slightly skewed towards the medium environment, hence surface samples displayed an environment more similar to the medium environment than the deep. However, only few OGs were uniquely shared between surface and medium. The upper corner of the triangle was populated by many data points and the associated functions displayed a unique preference for the surface environment.

To further investigate the functional diversification throughout the water column, OGs over 90% and less than 5% present in surface samples compared to medium and deep samples were extracted from the ternary plot and a statistical Kruskal-Wallis one way analysis of variance was utilized to identify statistic significantly different abundant OGs between surface, medium and deep [28]. Approximately 47% of the identified OGs, had no known function associated and were excluded from the dataset. In total, 176 diverse functions were identified and these are displayed in a heatmap, see Figure S1, where 26 OGs exhibited higher abundance in surface samples and 150 OGs displayed higher abundance in the medium and deep layers. Clusters of OGs that preferred either the medium or deep environment were not detected.

The OGs were divided into functional subgroups and three of the most prominent were iron uptake and utilization, phage and bacteria relations and adhesion and motility, which are displayed as heatmaps in Figure 4. Iron uptake and utilization seemed to be higher abundant in deeper samples (see Figure 4A). OGs like isochorismatase hydrolase (NOG138795) and TonB related proteins including the ExbD/TolR biopolymer transport protein (NOG121145, NOG243700 and NOG252395) were identified. The isochorismatase hydrolase conducts an important step in the siderophore synthesis [19]. These siderophores bind extracellular ferric iron and are then transported into the cell via the TonB transport system to provide the organism with vital ferric iron from depleted surroundings [41, 60]. Three different OGs with heme binding proteins were also identified (NOG74099, NOG118022 and NOG83915). Extracellular heme binding proteins bind heme molecules outside the cell and then enters the cytoplasm via an ABC transport system [37]. Furthermore, heme containing pro-
teins binds O2, NO, H2S and CO and are key players in respiration and signalling [37]. The identified protoporphyrinogen oxidase (NOG145956) and uroporphyrinogen-III decarboxylase (NOG72702) participate in the bacterial heme biosynthesis, which supplies the heme molecules for metalloproteins. Of other deeper metalloproteins, a hemerythrin HHE cation binding protein (NOG145840), Quinohemoprotein amine dehydrogenase (NOG73521) and a NADH-quinone oxidoreductase (NOG145840) were found. Hemerythrin have been shown to respond to NO and oxidative stress [8, 45, 50]. Furthermore, the quinohemoprotein amine dehydrogenase participates in degrading complex amines in the periplasm to provide electrons for energy production [17]. In general, iron-sulfur clusters are important participants in various metabolisms in cell. The identified NADH-quinone oxidoreductase contains eight or nine clusters and participates in electron transport chains. Also, a protein involved in iron sulfur cluster assembly (NOG242690) have been identified. Figure 4B displays OGS which have connections to phase and bacteria relations. The phase-related lysozyme (COG3772) was the only phase related function found significantly for the surface environment. These types of proteins are participating in the lytic cycle, where the phages lyses the host cell to release the newly synthesized phages [29]. In the deeper waters, functions pointing towards a lysogenic phase strategy were present. The Mu-like prophage FlMu protein gp28 (COG4373) indicated the presence of a Mu-type prophage, which integrates into bacterial genomes. This integration occurs through proteins involved in DNA integration (NOG10655) and transposases (COG5659, NOG247136, NOG149091 and NOG236938), however transposases participate in general lateral gene transfer of transposons and are not only connection to prophages. OGS that participate in bacteriophage defence systems were also identified in the medium and deep samples. To prevent phages from recognizing specific receptors on the bacterial cell wall, exopolysaccharides block the phage recognition sites, where capsular polysaccharide synthesis proteins (NOG14724) are responsible for producing these [29]. Furthermore, CRISPR-Cas systems associated functions (COG3513 and COG3649) were present in the deeper samples, which are identified as phage defence mechanisms [29]. Abortive infection proteins, represented by two OGS (NOG138780 and NOG10149), participate in a different defence mechanisms, where the proteins target crucial steps in the phage multiplication, which often leads to cell death [29]. One of the well known defence systems against bacteriophages are the restriction modification systems, where the host DNA is methylated by methylase/methyltransferase and recognized by endonucleases and restriction enzymes, which will degrade foreign non-methylated DNA [29]. Several methylases/methyltransferases, restriction enzymes and endonucleases (COG0827, COG1002, NOG83182, NOG246631, NOG45993, NOG81569, COG4797 and NOG09292) were identified in the medium and deep data. However, methylases/methyltransferases and endonucleases have various biological functions and could participate in other pathways than the restriction modification system.

OGs with connections to motility and adhesion also seem to be prominent in the deeper waters (see Figure 4C). Alpha integrin proteins (NOG146018) are well characterized adhesion mediators, which contain the extracellular FG-GAP repeat region acting as specific adhesion recognition sites [47, 52]. Proteins involved in biological adhesion and cell-cell adhesion (NOG149619 and NOG245115) also provide receptors directed towards specific adhesion. These receptors are often carbohydrate binding proteins (NOG85828), also called lectins, where the specific carbohydrate are the actual recognition site [2]. Furthermore, two potential membrane bound lipoproteins were identified (NOG76757 and COG1724). They can act as adhesins, however they possess many diverse biological functions [59]. The lipopolysaccharide kinase (NOG42907) and the proteins involved in positive regulation of lipoprotein lipase (NOG81106) are key enzymes in lipoprotein synthesis [38, 63]. Capsular polysaccharides proteins (NOG14724), mentioned earlier to be important in phage defence systems, also play a role in adhesion, where the extracellular polysaccharides act as receptors and as a sticky mass that will adhere to various surfaces [2]. Furthermore, adhesion molecules with a Ig like domain (NOG257069) have been shown to mediate intimin cell-cell adhesion [23]. In connection with motility, an OG for an anti-activator of flagellar biosynthesis, FliN (COG0455), has been identified in the deeper samples. This function has been shown to regulate polar flagella synthesis [11].

Besides functions connected to iron uptake and utilization, phage and bacteria relations and adhesion and motility, OGS associated to carbon source and energy metabolisms were identified (Figure S1). In the surface, OGS describing metabolisms of small sugar molecules like trehalose, maltose and lactose (COG1554 and NOG130892) were identified, whereas functions participating in degradation of larger polysaccharides like polygalacturonan, hemicellulose, cellulose, starch, pectin and alginate were found in medium and deep samples (COG5434, NOG70431, NOG147608, NOG71025, COG4692, NOG04112, COG3387, NOG45527 and NOG39328). Evidence of methanogens was also found in the deeper samples. The formylmethanofuran dehydrogenase (NOG1153) is a molybdenum binding iron-sulfur protein that participates in the reduction of autotrophic carbon dioxide [5]. Autotrophic lifestyle and energy production by sulfur oxidation was indicated by the oxidation protein, SoxZ (NOG19503) [16]. At last, the deeper samples contained many functions connected to DNA repair (COG2094, NOG39498, NOG135388, NOG09685, COG1669, COG3298 and NOG0929) and regulation and signaling (NOG71309, NOG237274, NOG252009, NOG631, NOG235513, NOG252472,
To our knowledge, this work represents the first study of the whole water column of the Arctic Ocean and also includes reference samples from the Southern Ocean using a metagenomic shotgun sequencing approach. A comparative analysis of functions that persisted in epipelagic, mesopelagic and bathy- to abyssopelagic zones of the Southern Ocean and Arctic Ocean revealed a diverse surface layer compared to a functional inseparable medium and deep environment at the north pole (Figure 3). Surface and deep samples from the two poles inseparable medium and deep environment at the north pole (Figure 3). Surface and deep samples from the two poles clustered together and indicated that the environmental factors through the water column decides the functional composition of these marine micro communities despite the large geographic separation. An enquiry of depth specific OGs revealed functional traits like photosynthesis in the surface but also information on iron uptake and utilization, phage and bacteria relations and adhesion and motility (Figure 4). The taxonomic distribution of microorganisms in the samples was investigated to reveal the composition and potential stratification through the water column and from pole to pole. All phyla identified in the taxonomic analysis are well known for their presence in ocean habitats and the data did not reveal any pole specific phyla [6, 12, 15, 36, 49]. The abundance of Actinobacteria, Thaumarchaeota, Chloroflexi, Acidobacteria in medium, deep and archipelago samples indicated a taxonomic stratification through the water column. These result correlated with the findings from the 16S rDNA gene amplicon analysis conducted on the same DNA samples (Hansen et al., unpublished). However, the 16S rDNA gene amplicon analysis revealed a higher resolution of a depth specific community structure in the Arctic Ocean, which is also confirmed by other studies [4, 18, 20]. The assessment of the taxonomic distribution from metagenomic data is highly dependent on the individual genome sizes as smaller genomes will contribute less to the abundance measured. Furthermore, no existing database covers all microbial genomes in the ocean and this is evident from the many unknown reads in the data (unknown reads made up 19.56% to 85.01% of the samples) and probably, the database is biased toward well researched phyla. Hence, these parameters might introduce bias in the abundance assessment. However, the metagenomic data identified phyla which were not reported by Hansen et al., unpublished, like Firmicutes, Spirochaetes, Fusobacteria, Denioccoccus-Thermus and Tenericutes, which indicate that the metagenomic classification of taxa circumvent the primer specificity bias introduced in a 16S rDNA gene amplicon analysis, however the abundance measure suffers from the sparse coverage of whole genome sequences of marine organisms.

The functional rarefaction analysis did not indicate any differences in functional richness between surface, archipelago, medium and deep samples. Even though the cell density in deeper water is ten times lower than at the sur-
face and nutrition is very sparse [42, 58], the organisms residing in the meso- to abyssopelagic zones display an equally complex metabolic composition within the sample as the surface community. All samples seem to saturate around 2.5 million genes per sample and this is evident by looking at the deeply sequenced P11D, which displays the same curvature as the other deep samples, however, with twice the sequence depth. Some archipelago, surface and medium samples saturates at lower gene counts and this is tightly connected to the genes called in the assembly and a higher curvature might be observed with deeper sequencing. This means that the resolution for these samples might be too low to observe all depth specific functions in the comparative analysis.

The NMDS plot indicated patterns of functional stratification through the water column (Figure 3A). The surface samples created a diverse cluster compared to the tight medium and deep cluster and the southern medium samples appeared in an intermediate zone between surface and deeper water samples. This suggests that the functional differentiation through the water column in the Arctic Ocean is most prominent the first 300 meters and only limited differentiation occurs between the mesopelagic and bathy- to abyssopelagic zone, regarding the survival and persistence strategies for marine microorganisms. This is also evident when observing the ternary plot, where only few functions show a unique preference for either the medium or deep samples (Figure 3B). Furthermore, the Southern Ocean surface and deep samples clusters with samples of the same depths from the Arctic Ocean and this suggest that environmental factors are the directing parameter for functional composition of a microbial community rather than dispersal distance.

Functional depth stratification is also found in more temperate oceans. citeDeLong2006, Konstantinidis2009b, Martin-Cuadrado2007b, Thureborn2013, however, a differentiation between the bathypelagic and mesopelagic layer was also observed [12]. Martin-Cuadrado et al. [36] finds bathypelagic samples from the warmer mediterranean sea to resemble subtropical Pacific Ocean mesopelagic samples and suggests temperature as the deciding factor for this functional clustering [12]. Since the temperature differences in the Arctic Ocean are limited, this might explain the clustering of the medium and deep samples.

The 16S rDNA gene amplification analysis by Hansen et al., unpublished showed a clear phylogenetic stratification through the water column. Combined with the current functional results, this indicates that deep or medium specific organisms display similar means of survival in the meso- to abyssopelagic zones. In general, the functional metagenomic data display a tighter clustering compared to the phylogenetic clustering (Hansen et al., unpublished). This indicates a core set of functions that are shared between the three environments and these are evident from the ternary plot, where many common functions can be observed. These common functions are well represented in the gene catalogue and with more sequencing depth, lower abundant functions might be revealed and a better differentiation between the samples might be observed.

The depth specific OGs were selected in a two step process, where differential abundance was ensured by calculating the mean abundance ratio between surface and deeper samples. Furthermore, a uniform presence over the samples and a statistical significant difference was calculated by the Kruskal-Wallis test, to exclude all OGs only present in few samples and not representative for the epipelagic or meso- to abyssopelagic environment. More OGs, which represent the medium and deep environment, were identified compared to unique surface OGs. The medium and deep samples represents a more homogeneous environment and this possible yielded more common OGs. Furthermore, many of the OGs identified in the metagenomes were of unknown functions, hence, the subgroups found in this data are not representing the whole picture of a deep sea lifestyle and many more mystery functions need to be resolved.

Not surprisingly, OGs of photosynthesis functions were characterizing the surface community. Otherwise, iron uptake and utilization seemed to be important characteristics for deeper environment. The dissolved iron profile of the Arctic Ocean separates from other oceans because it is highly affected by the freshwater inflow and the presence of continental shelves, which supplies the surface water with high iron concentrations [24]. However, the pronounced halocline prevents the ocean water from mixing and this creates a iron depleted environment in the deep sea, while the high amounts of iron resides in the upper layers [24, 25]. This dissolved iron stratification might explain the abundance of iron uptake apparatus in deeper samples.

Carbon is another growth limiting factor in the ocean and there is some evidence of autotrophic lifestyles, especially in the deeper samples. However, enzymatic functions involved in polysaccharide degradation were abundant in the deeper samples, whereas evidence of smaller sugar metabolism was identified in the surface. The presence of polysaccharide degrading enzymes in deep marine organisms indicates a copiotrophic lifestyle, where these enzyme are regulated according to the presence of nutrients [27]. In connection, many functions involved in signalling and regulation were abundant in the meso- to abyssopelagic zones, which also indicates the presence copiotrophs [31].

In the nutrition depleted deep ocean the carbon sources are thought to be marine snow, carcasses or other nutrition rich lumps, which create a heterogeneous environment with nutrition rich zones. The data suggest that deep marine organisms have developed the ability to move toward and adhere to potential nutrition pellets and otherwise stay in a dormant like state with low metabolic activity [31, 56].

The data analysis also revealed information about phage
and bacteria relations in the samples. Evidence of lytic phages was found in the surface, whereas deeper samples indicated the presence of lysogenic phages. This trend could be caused by the lower cell density generally found in deep ocean and this correlation between cell number, ocean depth and phage strategy in the ocean have been reported elsewhere [14, 54, 57]. Furthermore, phage defense mechanisms were more abundant in deeper samples. Lauro et al. [32] suggests the presence of more phage defense systems in copiotrophic bacteria compared to oligotrophic bacteria, which are less susceptible for phage attack due to the slow growth [55]. Hence, this further indicates an enrichment of a copiotrophic lifestyle in the meso- to abyssopelagic zones.

The ratio plot comparing the archipelago samples and southern true ocean samples revealed many OGs unique to the coastal environment. Many of these were of unknown or general functions and this result could be caused by a larger phylogenetic distance between the environments and differential community composition. An interesting observation for the coastal samples was the variety of abundant polysaccharide degrading enzymes, where many of them were acting on molecules connected to algae. The upwelling in coastal areas combined with larger algae blooms could explain the presence of the diverse algae degrading toolbox found near the coast [1]. Furthermore, the coastal upwelling can potentially create areas in the water with low oxygen levels and high presence of nitrogen sources and promote denitrification. This could explain the presences of functions involved in denitrification in the archipelago [13]. Anoxic environments could also promote bacteria involved in sulfur reduction and oxidation [51].

The aphotic part of the ocean is the largest ecosystem on the planet and is dominated by microorganisms. It displays highly similar environmental conditions like stable salinity and temperatures [43]. Looking at the taxonomic composition across the poles, the communities are diverging, however, to a less degree, than through the water column (Hansen et al., unpublished [18]. The functions found to differentiate the bathypelagic zones of the Southern Ocean and Arctic Ocean indicates that these differentiations are more related to the taxonomic composition and that the two locations are inseparable on a functional level. More samples would introduce a better statistic ground and higher resolution to compare the deep ocean of the North and South Pole.

4. Materials and Methods

Sequencing and assembly

The arctic ocean water samples were collected and the DNA was purified according to Hansen et al., unpublished. The metagenomic library preparation and sequencing were done according to Kampmann et al. [22]. In short, the water samples were obtained and microbes were collected on a 0.2 mm filter after a 2.0-mm pre-filtration. DNA was purified by phenol chloroform extraction and prepared for sequencing using the NEBNext Quick DNA Sample Prep. Master Mix 2 (New England BioLabs Inc., Ipswich, MA, USA). DNA was amplified by PCR and sequenced as 100 bp paired end on an Illumina HiSeq 2000 (Illumina, San Diego, CA, USA). The sequencing adaptors were removed and sequencing reads were trimmed with a custom script (trimming of 10 leading bases, minimum base quality 20, minimum average quality 20). Paired-end and singleton reads were assembled with Meta-IDBA [46] (mink=21, maxk=99, step size of 6) respectively, resulting in two separate assemblies for each metagenome.

Taxonomic annotation

The trimmed reads are aligned to different reference databases, one database after another, using BWA-MEM [33]. Reads were aligned to target organisms with 50% identity at any coverage percentages over 13 base-pairs of mapper scores which were calculated as the read length subtracted by the number of mismatches, insertions and deletions. Target organisms include (1) Microbial complete genomes (NCBI, August 2012) and (2) Microbial draft genomes (NCBI, September 2012). Remaining unmapped reads were mapped against the complete nucleotide database (NCBI, July 2012) using Bowtie2 [30]. If reads mapped to too many organisms, the organism with the biggest mapper-score, i.e. the least mismatches, insertions and deletions, is chosen. However, if various organisms entitle the highest mapper-score for a particular read, only one organism is chosen randomly. The lowest common ancestor on phylum level was selected for visualization.

Non-redundant gene catalogue

MetaGeneMark [64] (default parameters) and Prodigal (codon table 11) [21] were used for gene finding. All predicted genes of all metagenomes were pooled into one bin and homology reduced with CD-HIT-EST (-c 0.95, -n 8, -l 100, -aS 0.9) [35] to create the arctic marine environment gene catalogue. All reads of a metagenome were remapped to the gene catalogue with bwa [34] (default parameters) to create a gene abundance matrix. A mapped read pair to one gene was considered as one observation. If just one mate of a pair mapped to one gene, it was also considered as one observation. However, if each paired-end read mapped to different genes, the mapping was considered as two observations. Mapped singletons were always treated as one observation. Rarefaction steps were calculated as intervals from the remapping process described above. The number of mapped observations populates the abundance matrix with n columns (number of metagenomes) and m rows (number of genes). The
abundance matrix was normalized for the read abundance of the most low abundant metagenome (Equation 1).

\[a_{\text{downsized}} = \frac{a}{A} \frac{A}{A_{\text{min}}} \]

- \(a_{\text{downsized}}\): downsized gene abundance
- \(a\): gene abundance
- \(A\): sample read count
- \(A_{\text{min}}\): overall minimal sample read count

(1)

Gene catalogue annotation

All translated genes of the gene catalogue were aligned to the eggNOG database version 4 [39] including all curated orthologous groups (COGs) and non-curated orthologous groups (NOG) and their proteins with BLASTP E-value <1E-5. The best hits annotation was resumed. The annotation was transferred to the abundance matrix. Genes annotated to the same function were summed up. North vs south: Two samples of the north pole and south were selected according to sequence depth. All functions of the samples were selected from the functional gene catalogue and the mean -log2 ratio was calculated for each orthologous groups and plotted according to the ratio size. The same ratio was calculated for the 6 south samples and 3 archipelago samples.

Functional analysis

To create an ordination plot of the ocean samples, the normalized COG abundance matrix was log transformed and a Bray-Curtis dissimilarity was calculated between the samples and displayed in an NMDS plot [7]. To observed functional differences throughout the water column, the abundance of the COG functions were used to create a triangular plot of the surface, medium and deep samples. All unknown functions were excluded and a Kruskal-Wallis test between surface, medium and deep samples. All functions of the samples were selected from the functional abundance matrix and the mean -log2 ratio was calculated for each orthologous groups and plotted according to the ratio size. The same was done to infer the differences between the coastal and open ocean environment, the three archipelago samples were compared to the six true open ocean surface, medium and deep samples from the south. The ratio of the mean abundance of the OGs. Two samples of the Arctic Ocean (P10D and P11D) and two samples of the Southern Ocean (P22D and P23D) were selected according to sequence depth. All functions of the samples were selected from the functional gene catalogue and the mean -log2 ratio was calculated for each orthologous groups and plotted according to the ratio size. The same ratio was calculated for the six samples of the Southern Ocean (P10D, P11D, P10M, P11M, P10S and P11S) and the three Archipelago samples (P12, P14 and P15).

References

Figure 1: The figure represents metadata and taxonomic distribution of 25 water samples collected during the Galathea III and LOMROG II polar expeditions. The taxonomic distribution of each sample is indicated as pie-charts together with the temperature. Proteobacteria are the most abundant phyla across the samples. All sample temperatures range from -2°C to 2°C, except the surface and medium samples of location P10 (7°C and 9°C respectively). The positioning of the pie-charts represents the sampling depth. The blue background coloring scheme represents salinity ranging from 34 PSU to 35 PSU in most samples. The salinity of the arctic surface samples displayed concentrations between 31 PSU and 33.5 PSU.
Figure 2: Rarefaction curves for surface (A), medium (B) and deep (C) samples, reads were remapped to the non-redundant gene catalogue.
Figure 3: The figure presents the functional clustering of surface, medium, deep and archipelago samples. The NMDS plot displays functional correlation of all 25 samples (A). The triangular displays the relative abundance of functional annotation of genes annotated to eggNOG database (B). A cutoff of 5% and 90% relative to surface were chosen for further analysis.
Figure 4: Heatmap displaying OG abundance for three functional categories; A: Iron and other metals, B: phages, C: adhesion and motility. OGs were clustered with Euclidean distance (A and B) and Manhattan distance (C).
Figure 5: Log2 mean abundance ratio of archipelago versus Southern Ocean samples (A) and Arctic versus Southern Ocean samples (B). OGs with log-ratios >4 were classified as being higher abundant in true ocean and the OGs with log-ratios <-4 were classified as being higher abundant in coastal waters. OGs with a log-ratio >2 were classified as abundant in deep South Pole samples and log-ratio <-2 were classified as abundant in deep North Pole samples.
Figure S1: Heatmap displaying the OG abundance. 176 diverse functions were identified, the functions’ eggNOG identifiers are displayed. 26 OGs showed higher abundance in surface samples and 150 OGs displayed higher abundance in the medium and deep layers. Clusters of OGs that preferred either the medium or deep environment were not detected.
Table S1: Metadata of the 25 polar metagenomic samples collected during the Galathea III expedition in the Southern Ocean and LOMROG II expedition in the Arctic Ocean.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Type</th>
<th>Sampling depth [m]</th>
<th>Total depth [m]</th>
<th>Temperature [°C]</th>
<th>Salinity [PSU]</th>
<th>Volume [L]</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12P</td>
<td>South</td>
<td>Archipelago</td>
<td>400</td>
<td>1,116</td>
<td>-0.738</td>
<td>34.478</td>
<td>90</td>
<td>-63.54122</td>
<td>-61.38004</td>
</tr>
<tr>
<td>A14P</td>
<td>South</td>
<td>Archipelago</td>
<td>400</td>
<td>500</td>
<td>1.983</td>
<td>34.5411</td>
<td>60</td>
<td>-62.57909</td>
<td>-58.03619</td>
</tr>
<tr>
<td>A15P</td>
<td>South</td>
<td>Archipelago</td>
<td>1,500</td>
<td>1,956</td>
<td>-1.578</td>
<td>34.5411</td>
<td>330</td>
<td>-62.18498</td>
<td>-57.45811</td>
</tr>
<tr>
<td>D10P</td>
<td>South</td>
<td>Deep</td>
<td>4,200</td>
<td>5,376</td>
<td>0.361</td>
<td>34.7071</td>
<td>240</td>
<td>-53.17727</td>
<td>-173.02781</td>
</tr>
<tr>
<td>D11P</td>
<td>South</td>
<td>Deep</td>
<td>4,200</td>
<td>5,376</td>
<td>1.983</td>
<td>34.5411</td>
<td>240</td>
<td>-66.35371</td>
<td>-108.55849</td>
</tr>
<tr>
<td>D20P</td>
<td>North</td>
<td>Deep</td>
<td>2,500</td>
<td>2,650</td>
<td>-0.78</td>
<td>34.491</td>
<td>105</td>
<td>88.1284</td>
<td>59.4161</td>
</tr>
<tr>
<td>D22P</td>
<td>North</td>
<td>Deep</td>
<td>4,300</td>
<td>4,460</td>
<td>-0.638</td>
<td>34.491</td>
<td>168</td>
<td>88.1615</td>
<td>65.3502</td>
</tr>
<tr>
<td>D23P</td>
<td>North</td>
<td>Deep</td>
<td>4,300</td>
<td>4,457</td>
<td>0.638</td>
<td>34.491</td>
<td>168</td>
<td>88.1615</td>
<td>65.3502</td>
</tr>
<tr>
<td>D27P</td>
<td>North</td>
<td>Deep</td>
<td>3,850</td>
<td>3,912</td>
<td>-0.272</td>
<td>34.953</td>
<td>112</td>
<td>88.088</td>
<td>157.0739</td>
</tr>
<tr>
<td>D30P</td>
<td>North</td>
<td>Deep</td>
<td>3,885</td>
<td>3,934</td>
<td>-0.268</td>
<td>34.953</td>
<td>112</td>
<td>88.3581</td>
<td>-175.3815</td>
</tr>
<tr>
<td>D32P</td>
<td>North</td>
<td>Deep</td>
<td>2,000</td>
<td>3,490</td>
<td>-0.494</td>
<td>34.931</td>
<td>84</td>
<td>88.2713</td>
<td>-129.2037</td>
</tr>
<tr>
<td>D36P</td>
<td>North</td>
<td>Deep</td>
<td>2,800</td>
<td>2,863</td>
<td>-0.739</td>
<td>34.926</td>
<td>140</td>
<td>88.4374</td>
<td>-58.2728</td>
</tr>
<tr>
<td>M10P</td>
<td>South</td>
<td>Medium</td>
<td>400</td>
<td>5,376</td>
<td>6.891</td>
<td>34.3421</td>
<td>60</td>
<td>-53.17727</td>
<td>-173.02781</td>
</tr>
<tr>
<td>M11P</td>
<td>South</td>
<td>Medium</td>
<td>400</td>
<td>5,376</td>
<td>-1.568</td>
<td>34.1226</td>
<td>60</td>
<td>-66.35371</td>
<td>-108.55849</td>
</tr>
<tr>
<td>M22P</td>
<td>North</td>
<td>Medium</td>
<td>350</td>
<td>4,460</td>
<td>1.17</td>
<td>34.859</td>
<td>28</td>
<td>88.1284</td>
<td>59.4161</td>
</tr>
<tr>
<td>M25P</td>
<td>North</td>
<td>Medium</td>
<td>300</td>
<td>1,258</td>
<td>1.068</td>
<td>34.848</td>
<td>70</td>
<td>88.3292</td>
<td>133.1607</td>
</tr>
<tr>
<td>M30P</td>
<td>North</td>
<td>Medium</td>
<td>300</td>
<td>3,934</td>
<td>0.873</td>
<td>34.838</td>
<td>28</td>
<td>88.3581</td>
<td>-175.3815</td>
</tr>
<tr>
<td>M31P</td>
<td>North</td>
<td>Medium</td>
<td>300</td>
<td>3,898</td>
<td>0.978</td>
<td>34.845</td>
<td>42</td>
<td>88.5069</td>
<td>-156.1645</td>
</tr>
<tr>
<td>S10P</td>
<td>South</td>
<td>Surface</td>
<td>40</td>
<td>5,376</td>
<td>9.811</td>
<td>34.3698</td>
<td>60</td>
<td>-53.17727</td>
<td>-173.02781</td>
</tr>
<tr>
<td>S11P</td>
<td>South</td>
<td>Surface</td>
<td>100</td>
<td>4,460</td>
<td>-1.568</td>
<td>34.1226</td>
<td>60</td>
<td>-66.35371</td>
<td>-108.55849</td>
</tr>
<tr>
<td>S22P</td>
<td>North</td>
<td>Surface</td>
<td>50</td>
<td>4,460</td>
<td>-1.802</td>
<td>33.515</td>
<td>28</td>
<td>88.1284</td>
<td>59.4161</td>
</tr>
<tr>
<td>S26P</td>
<td>North</td>
<td>Surface</td>
<td>50</td>
<td>1,198</td>
<td>-1.544</td>
<td>32.596</td>
<td>105</td>
<td>88.2465</td>
<td>150.0963</td>
</tr>
<tr>
<td>S28P</td>
<td>North</td>
<td>Surface</td>
<td>50</td>
<td>2,725</td>
<td>-1.507</td>
<td>32.565</td>
<td>49</td>
<td>88.4266</td>
<td>158.5342</td>
</tr>
<tr>
<td>S30P</td>
<td>North</td>
<td>Surface</td>
<td>50</td>
<td>3,934</td>
<td>-1.481</td>
<td>32.018</td>
<td>28</td>
<td>88.3581</td>
<td>-175.3815</td>
</tr>
<tr>
<td>S32P</td>
<td>North</td>
<td>Surface</td>
<td>50</td>
<td>3,490</td>
<td>-1.484</td>
<td>31.783</td>
<td>84</td>
<td>88.2713</td>
<td>-129.2037</td>
</tr>
</tbody>
</table>
Table S1 continued: Assembly statistics and number of genes called from the metagenomic samples collected during the Galathea III expedition in the Southern Ocean and LOMROG II expedition in the Arctic Ocean.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of bp</th>
<th>bp after trimming</th>
<th>% bp used</th>
<th>N50</th>
<th># Contigs</th>
<th># Genes MetaGeneMark</th>
<th># Genes Prodigal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12P</td>
<td>6,752,312,700</td>
<td>5,370,616,035</td>
<td>0.80</td>
<td>2410</td>
<td>12,407</td>
<td>16,264</td>
<td>9351</td>
</tr>
<tr>
<td>A14P</td>
<td>14,107,389,100</td>
<td>10,463,542,337</td>
<td>0.74</td>
<td>864</td>
<td>116,172</td>
<td>132,094</td>
<td>58,636</td>
</tr>
<tr>
<td>A15P</td>
<td>22,875,763,680</td>
<td>17,276,666,926</td>
<td>0.76</td>
<td>1419</td>
<td>77,680</td>
<td>106,1644</td>
<td>59,5502</td>
</tr>
<tr>
<td>D10P</td>
<td>19,242,853,504</td>
<td>13,918,759,303</td>
<td>0.72</td>
<td>936</td>
<td>44,111</td>
<td>520,346</td>
<td>25,1312</td>
</tr>
<tr>
<td>D11P</td>
<td>38,990,413,280</td>
<td>37,713,389,214</td>
<td>0.97</td>
<td>957</td>
<td>59,135</td>
<td>141,7200</td>
<td>69,7542</td>
</tr>
<tr>
<td>D20P</td>
<td>11,963,483,868</td>
<td>8,350,865,051</td>
<td>0.70</td>
<td>1070</td>
<td>246,335</td>
<td>294,250</td>
<td>152,218</td>
</tr>
<tr>
<td>D22P</td>
<td>13,211,062,872</td>
<td>8,612,117,894</td>
<td>0.65</td>
<td>1044</td>
<td>36,901</td>
<td>46,0604</td>
<td>227,579</td>
</tr>
<tr>
<td>D23P</td>
<td>27,619,036,592</td>
<td>14,181,863,965</td>
<td>0.51</td>
<td>1099</td>
<td>58,052</td>
<td>69,168</td>
<td>350,537</td>
</tr>
<tr>
<td>D27P</td>
<td>36,173,321,156</td>
<td>24,488,207,580</td>
<td>0.68</td>
<td>1006</td>
<td>35,574</td>
<td>421,894</td>
<td>210,799</td>
</tr>
<tr>
<td>D30P</td>
<td>15,804,345,536</td>
<td>11,074,851,937</td>
<td>0.70</td>
<td>1010</td>
<td>162,273</td>
<td>188,181</td>
<td>94,492</td>
</tr>
<tr>
<td>D32P</td>
<td>9,953,652,632</td>
<td>4,931,200,759</td>
<td>0.50</td>
<td>798</td>
<td>18,590</td>
<td>194,363</td>
<td>87,265</td>
</tr>
<tr>
<td>D36P</td>
<td>9,441,133,996</td>
<td>4,772,110,910</td>
<td>0.51</td>
<td>839</td>
<td>167,400</td>
<td>188,501</td>
<td>82,162</td>
</tr>
<tr>
<td>M10P</td>
<td>3,702,547,996</td>
<td>2,422,291,751</td>
<td>0.65</td>
<td>892</td>
<td>47,965</td>
<td>54,185</td>
<td>25,076</td>
</tr>
<tr>
<td>M11P</td>
<td>5,772,477,144</td>
<td>4,559,972,170</td>
<td>0.79</td>
<td>1274</td>
<td>243,81</td>
<td>30,587</td>
<td>15,622</td>
</tr>
<tr>
<td>M22P</td>
<td>15,518,491,884</td>
<td>10,243,146,369</td>
<td>0.66</td>
<td>774</td>
<td>45,921</td>
<td>481,995</td>
<td>219,583</td>
</tr>
<tr>
<td>M25P</td>
<td>16,606,058,252</td>
<td>10,373,370,228</td>
<td>0.62</td>
<td>957</td>
<td>45,369</td>
<td>530,494</td>
<td>256,746</td>
</tr>
<tr>
<td>M30P</td>
<td>10,728,299,708</td>
<td>7,586,418,205</td>
<td>0.71</td>
<td>1233</td>
<td>97,178</td>
<td>126,105</td>
<td>65,354</td>
</tr>
<tr>
<td>M31P</td>
<td>14,667,415,588</td>
<td>7,816,420,744</td>
<td>0.53</td>
<td>865</td>
<td>35,929</td>
<td>402,010</td>
<td>188,463</td>
</tr>
<tr>
<td>S10P</td>
<td>5,806,809,288</td>
<td>4,468,634,960</td>
<td>0.53</td>
<td>2276</td>
<td>106,13</td>
<td>12,472</td>
<td>6213</td>
</tr>
<tr>
<td>S11P</td>
<td>1,794,302,384</td>
<td>1,381,477,855</td>
<td>0.77</td>
<td>12422</td>
<td>1069</td>
<td>5,473</td>
<td>46,20</td>
</tr>
<tr>
<td>S22P</td>
<td>11,254,647,320</td>
<td>7,862,736,245</td>
<td>0.70</td>
<td>781</td>
<td>45,589</td>
<td>491,061</td>
<td>219,735</td>
</tr>
<tr>
<td>S26P</td>
<td>8,459,648,316</td>
<td>6,430,473,986</td>
<td>0.76</td>
<td>4815</td>
<td>97,39</td>
<td>10,822</td>
<td>60,88</td>
</tr>
<tr>
<td>S28P</td>
<td>18,308,070,116</td>
<td>12,604,143,340</td>
<td>0.69</td>
<td>1238</td>
<td>50,378</td>
<td>652,496</td>
<td>351,093</td>
</tr>
<tr>
<td>S30P</td>
<td>11,280,164,560</td>
<td>7,838,826,568</td>
<td>0.69</td>
<td>821</td>
<td>59,386</td>
<td>115,692</td>
<td>49,790</td>
</tr>
<tr>
<td>S32P</td>
<td>10,813,050,500</td>
<td>8,004,356,894</td>
<td>0.74</td>
<td>40444</td>
<td>2022</td>
<td>5,305</td>
<td>4489</td>
</tr>
</tbody>
</table>
Figure S2: P-value distribution of Kruskal-Wallis test between surface, medium and deep samples on functions that were more than 90% (left) and less than 5% (right) present in surface samples. A p-value cutoff of 0.001 was chosen for OGs less than 5% present and a cutoff of 0.01 was chosen for samples more than 90% present.
Chapter 10

Manuscript III

10.1 Proteolytic enzymes of the polar marine environment - Patent application

Psychrotrophic bacteria are known to produce various proteases that differ in optimal pH and temperature compared to proteases isolated from moderate environments [93]. The arctic environment is a unique habitat, where the bacterial flora has been adapted to grow at low temperatures. However, few research articles have been published on proteases from the arctic marine environment [36, 108, 170, 189]. Exploiting the natural resources of the polar marine environment still has a high potential for bioprospecting and identification of novel proteases. Proteases with their annual sale worth of 1.5 – 1.8 billion US dollars are a valuable product for the industry [76, 176]. They find applications in industries such as leather manufacturing, food processing, detergents, pharmaceuticals and bioremediation (described more extensively in Chapter 4).

The industrial demand for novel enzymes prompted us to search for proteases, which have adapted to the extreme environments of the polar oceans. Here we describe a comprehensive in silico metagenomics screen where we analyze 26 metagenomes from the polar marine environment sampled at depths between 40 m and 4300 m. The presented bioinformatic study aims to find proteases with the focus on identifying novel candidate sequences. We compare HMM and alignment based protease identification methods for dataset screening. We present the distribution of proteolytic enzymes across all families and subfamilies, which might be potential candidates for expression trials. 2,707 novel protease sequences were identified that cannot be found in public databases or metagenomes, including the Global Ocean Sampling Expedition [140].

This work provides a pivotal step toward identification of proteases with
novel catalytic activities from polar marine environments. We anticipate that our findings can bridge exploratory science with novel biotechnological processes and innovations. Due to the commercial potential of the unique dataset, we filed a patent application at DTU (the patent application is appended later in the chapter). Negotiations between DTU and interested industrial partners are still ongoing to reach an agreement of the data usage. Thus, no sequence information has been provided and the manuscript will not be published in the near future to avoid public access to raw data.
Anmeldelse af opfindelse gjort ved DTU

Titel på opfindelse

Proteolytic enzymes of the polar marine environment

Interne DTU-opfindere

(Der er plads til yderligere opfindere til slut i dokumentet. Husk at det kun er DTU-ansatte, som skal anmelde på dette skema. I forbindelse med indlevering af patentansøgning på opfindelser til de amerikanske og internationale patentmyndigheder er det et krav, at man oplyser opfindernes privatadresser og nationaliteter. Disse oplysninger bedes derfor anført nedenfor. Ydermere skal DTU orienteres om eventuelle adresseændringer)

<table>
<thead>
<tr>
<th>DTU Opfinder 1 (Kontaktperson)</th>
<th>Institut: DTU Biosustain</th>
<th>Andel af opfindelsen (%)</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td>Nikolaj Blom</td>
<td>Stilling:</td>
<td>Seniorforsker</td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>blom@cbs.dtu.dk</td>
<td>Tlf. (arbejde):</td>
<td></td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Dansk</td>
<td>Dato og underskrift:</td>
<td></td>
</tr>
<tr>
<td>Privat adresse: (newline: Shift+Enter)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTU Opfinder 2</th>
<th>Institut: DTU Systembiologi</th>
<th>Andel af opfindelsen (%)</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td>Thomas Sichritz-Pontén</td>
<td>Stilling:</td>
<td>Professor</td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>thomas@cbs.dtu.dk</td>
<td>Tlf. (arbejde):</td>
<td></td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Østrigisk</td>
<td>Dato og underskrift:</td>
<td></td>
</tr>
<tr>
<td>Privat adresse:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTU Opfinder 3</th>
<th>Institut: DTU Systembiologi</th>
<th>Andel af opfindelsen (%)</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td>Josef Korbín Vogt</td>
<td>Stilling:</td>
<td>Phd studerende</td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>josef@cbs.dtu.dk</td>
<td>Tlf. (arbejde):</td>
<td></td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Tysk</td>
<td>Dato og underskrift:</td>
<td></td>
</tr>
<tr>
<td>Privat adresse:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTU Opfinder 4</td>
<td>Institut: DTU Biosustain</td>
<td>Andel af opfindelsen (%)</td>
<td>25</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Fulde navn:</td>
<td>Henrik Marcus Geertz-Hansen</td>
<td>Stilling:</td>
<td>PhD studerende</td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>[hmgh@cbs.dtu.dk]</td>
<td>Tlf. (arbejde):</td>
<td></td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Dansk</td>
<td>Dato og underskrift:</td>
<td></td>
</tr>
<tr>
<td>Privat adresse:</td>
<td>[Redacted]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTU Opfinder 5</th>
<th>Institut:</th>
<th>Andel af opfindelsen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td></td>
<td>Tlf. (arbejde):</td>
</tr>
<tr>
<td>Nationalitet:</td>
<td></td>
<td>Dato og underskrift:</td>
</tr>
<tr>
<td>Privat adresse:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTU Opfinder 6</th>
<th>Institut:</th>
<th>Andel af opfindelsen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td></td>
<td>Tlf. (arbejde):</td>
</tr>
<tr>
<td>Nationalitet:</td>
<td></td>
<td>Dato og underskrift:</td>
</tr>
<tr>
<td>Privat adresse:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ekstern opfinder 1</th>
<th>Andel af opfindelsen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td></td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>Tlf. (arbejde):</td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Privat adresse:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ekstern opfinder 2</th>
<th>Andel af opfindelsen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td></td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>Tlf. (arbejde):</td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Privat adresse:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ekstern opfinder 3</th>
<th>Andel af opfindelsen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulde navn:</td>
<td></td>
</tr>
<tr>
<td>Email (arbejde):</td>
<td>Tlf. (arbejde):</td>
</tr>
<tr>
<td>Nationalitet:</td>
<td>Privat adresse:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Underskrift Institutdirektør/Patentansvarlig</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato</td>
<td>Underskrift</td>
</tr>
</tbody>
</table>

Danmarks Tekniske Universitet
Anker Engelunds Vej 1
Bygning 101 A
2800 Kgs. Lyngby
Tlf. 45 25 25 25
Fax 45 88 17 89
patentadm@adm.dtu.dk
Teknologien
(I denne sektion skal opfindelsen beskrives sammen med udviklingsstadiet)

Beskriv opfindelsen
(Beskriv opfindelsens hovedtræk og det teknologiområde, opfindelsen angår, på en alment forståelig måde. Kopier gerne figurer og grafer ind, vedhæft gerne yderligere materiale og udvid skrivefeltet hvis nødvendigt)

The invention consists of novel DNA sequences encoding peptide-cleaving enzymes, proteases, that function at low temperature (below 25 C).

The sequences were obtained under the research project "DNA of the Polar Seas". This includes water samples collected at two Danish marine research expeditions: The 2006-2007 Galathea3 expedition and the 2009 LOMROG-II expedition. The samples were collected in international waters close to either Antarctica or the geographic North Pole.

Large volumes of water (50-300 liters) were filtered for microorganisms (between 0.2 – 2.0 microns in size), DNA was extracted and sequenced using a shot-gun metagenome approach.

Sequence reads were assembled

Beskriv udviklingsstadiet
(Er der f.eks. en fungerende prototype, er nogle delelementer blevet testet, eller hvilke indikationer er der på, at dette ville kunne fungere)
Beskriv det kommende års forventede resultater inklusiv forventede udfordringer
(Hvilket forsknings- og udviklingsarbejde forventes at gøres som styrker opfindelsen teknisk eller kommercielt, og hvor ser I de største udfordringer?)

In the coming year we expect to team up with a strong experimental partner that can test some of the identified proteases in relevant assays. This will require expertise in gene cloning, expression and purification and running assays testing the function of the enzymes at various temperatures.

The biggest challenge will be to find a partner where all of the expertise mentioned above is present and running routinely. If a single, strong partner is not identified, it will be difficult to manage testing as the inventors have little activity in the laboratory.
10.2 Exploiting the polar marine environment for bioprospecting: novel protease discovery
Exploiting the polar marine environment for bioprospecting: novel protease discovery

Josef Korbinian Vogt1, Henrik Marcus Geertz-Hansen1,2,3, Lea Benedicte Skov Hansen4, Søren Sørensen4, Jesper Salomon3, Thomas Sicheritz-Pontén1,2 and Nikolaj Blom1,2

1 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby, Denmark
2 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, DK-2970 Horsholm, Denmark
3 Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
4 Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark

ABSTRACT – Proteases with an annual sale worth of 1.5 – 1.8 billion US dollars are a valuable resource for the industry. They find applications in industries such as leather manufacturing, food processing, detergents, pharmaceuticals and bioremediation.

The industrial demand for novel enzymes prompted us to search for proteases, which have adapted to the extreme environments of the polar oceans. Here we describe a comprehensive in silico metagenomics screen where we analyze 26 metagenomes from the polar marine environment sampled at depths between 40 m and 4300 m. We present the distribution of proteolytic enzymes across all families and subfamilies, which might be potential candidates for expression trials. This work provided a pivotal step toward identification of proteases with novel catalytic activities from polar marine environments. We anticipate that our findings can bridge exploratory science with novel biotechnological processes and innovations.

KEY WORDS – metagenomics, enzymes, proteases, bioprospecting, deep-sea, polar oceans

1. Introduction

Microorganisms are essential in today’s efforts to produce secondary metabolites [18, 26] and enzymes [5, 8]. In this context the term bioprospecting has been coined for the systematic search for these products in environmental samples.

In the search for new enzymes, much effort has been directed towards extremophiles. These microorganisms inhabit environments characterized by extreme physical or chemical conditions and consequently have evolved enzymes with correspondingly extreme properties [5]. The arctic deep-sea environment can be described as extreme due to its obvious characteristics, such as constant low temperature, depletion of light and almost famine conditions. This habitat is a fertile ground for bioprospecting as its natural resources are abundant and have not been fully exploited for extremophilic enzymes. The industrial applicability and high value of proteases has increased the demand for discovery of proteases more adapted to the specific conditions of particular industrial processes.

This study focuses on proteolytic enzymes (proteases), which represent one of the most diverse enzyme classes with an estimated annual sale worth of 1.5 – 1.8 billion US dollars [12, 31]. Proteases find industrial applications within leather manufacturing, food processing, pharmaceuticals, detergents and bioremediation [1, 3, 10, 16, 19]. Detergent proteases, with an annual market of about 1 billion US dollars, account for the largest protease application segment [31]. Identification and expression of proteases from extreme environments have been reported [21, 29, 32]. There has only been one report of a marine metagenome derived protease, which involved isolation and characterization of a metalloprotease from deep-sea sediment metagenomic libraries [15]. To our knowledge no extensive in silico protease mining of polar marine (deep-sea) environments has been conducted to date. Here we present a workflow for identifying protease sequences across all families and subfamilies from metagenomic data. 26 metagenomes were obtained from environmental samples collected during the Galathea III and LOMROG II expeditions at a depth range of 40 – 4,300 m. The temperatures within those regions range from -2°C to 2°C. However, the medium sample taken north of the Antarctic Circumpolar Current (sample 10M) displays a warmer environment, with a measured temperature of 7°C. The concentrations were relatively stable between 34 PSU and 35 PSU, except in the surface samples from the North
Pole, which ranged from 31 to 33.5 PSU. Within those extreme environmental samples we identified 2,707 novel protease candidates, which cannot be found in public databases or metagenomic datasets.

2. Results

The study compasses 26 metagenomes, which were collected during the polar marine expeditions Galathea III and LOMROG II. Water samples at 16 different locations and also at varying depths were collected. The assembled metagenomes were scanned with the two gene prediction algorithms Prodigal and MetaGeneMark. Prodigal is optimized for microbial gene calling, whereas MetaGeneMark is designed for gene calling in metagenomes and novel prokaryotes. Combining the results of the two gene prediction algorithms yields a total of 13,919,017 predicted coding sequences in the 26 metagenomes. To quantify the gene contribution of each gene caller for each sample, the called genes were combined and clustered using CD-HIT (Figure 1). The sampled specific clustered gene count (Figure 1 blue bar) exceeds the number of genes called by Prodigal alone (Figure 1 red bar), but is generally lower than the number of genes called by MetaGeneMark. To remove gene redundancy between samples, the gene catalogue of >13 million genes was homology reduced using CD-HIT. The non-redundant polar marine metagenome gene catalogue consists of 5,218,922 genes in total when the longest gene of a cluster was used as representative. In this catalogue, 972,738 genes (18.6%) were called by Prodigal and 4,246,189 genes (81.4%) were called by MetaGeneMark. The translated genes were aligned to Swiss-Prot using BLASTp and the annotation of the best hit was resumed. 626,257 translated genes can be annotated to proteins in the Swiss-Prot database (Figure S1) out of which 16,278 (2.6%) are acting on peptide bonds (Figure 2A, plots were created using Krona [22]). Metallo, serine and cysteine family proteases are most abundant in the non-redundant gene catalogue. For targeted protease discovery, a proteases specific search workflow was applied; the non-redundant gene catalogue was searched with protease specific hidden Markov models (HMMs). A detailed procedure for creating the HMMs is provided in the methods section. The search led to the identification of 37,861 potential proteases of which 19,328 sequences (51%) originate from deep-sea samples, 8,694 sequences (23%) from medium depth samples and 9,839 sequences (26%) from surface samples. The HMM and BLASTp annotated proteases share a sequence overlap of 12,350 sequences. The HMM workflow is able to pick up most alignment based annotated sequences but also identifies potential targets which are not part of Swiss-Prot. To identify potential protease sequences that are unique to the polar marine environment samples collected for this study, the 37,861 candidate sequences were aligned to UniProt and assembled metagenomes obtained from CAMERA using BLASTp and tBLASTn. The parsing parameters were adjusted so that even weak sequence similarities were captured. This led to the removal of 35,154 sequences (92.8%) due to homology to the query databases and or datasets. A detailed overview of the aligned protease sequences is provided in Table 1.

3. Discussion

In silico mining for proteases in metagenomes has not been reported as extensively as the study we present. In general there are only few reports of proteases derived from metagenomic studies available [14]. Most bioprospecting efforts or screening for novel enzymes are driven by functional metagenomics [5, 6, 20, 34] and do not fully...
exploit the potential of sample sequencing. With functional metagenomic approaches one might not be able to express enzymes, which may be valuable for industrial processes. The presented workflow does not depend on prior protein expression for identifying target sequences and makes full use of the sequencing data by assembly and gene prediction. Already targeted sequences are more likely to be successfully expressed in an expression host. The HMM approach, which incorporates Novozymes internal database of characterized proteins, makes identification of proteases superior over alignment based annotation via BLAST. The HMM based protease finding yields 25,511 potential protease sequences more than a BLAST based approach. With our workflow we are able to find 12,350 sequences, which were also found by a BLAST alignment. However, the HMMs were not able to annotate 3,296 sequences, which the BLAST approach was able to identify. Furthermore, novelty enrichment ensures that these particular sequences have no known close homologues, neither in the public database UniProt nor in other metagenomes, including other marine metagenomes.

The polar marine environment is a resource, which has not fully been exploited for extremophilic proteases. To date, only one report of a marine metagenome-derived protease exists which is based on the isolation and characterization of a metalloprotease from a deep-sea sediment metagenomic library [15]. In our study we identified over 2,000 protease sequences of polar marine samples of depths up to 4,300 m. To our knowledge no specific in silico studies have been conducted to search for proteases in polar marine metagenomes of such depths. Applications of extremophilic proteases from the polar marine metagenomes could be high catalytically efficient enzymes at low temperature suitable for the detergent market. The detailed mapping on protease subfamily level presented here enabled us to identify a large variety of proteases including serine proteases, which may be important for the detergent industry.

Extracellular proteases catalyze the hydrolysis of large proteins to smaller molecules for subsequent absorption by the cell. The objective of cloning bacterial protease genes has mainly been the overproduction of enzymes for various commercial applications in food, detergent or pharmaceutical industries [27]. We were able to identify 687 of such protease sequences with an intrinsic signal peptide sequence. Excreted proteins are preferred targets for industrial scale expression as issues such as intracellular aggregation inclusion bodies can be avoided. However, intracellular proteases may still be of industrial interest as heterologous expression can be achieved through the design of fusion proteins or addition of heterologous signal peptides [9].

We anticipate that expression trials of sequences identified in our study would contribute to industrial processes which benefit from the adaptation of microbes to the polar marine environment. With our approach we are able to analyze the metagenomes in a resource efficient way to screen for potential industrial targets. The number of sequences can be narrowed to a manageable number to screen for proteolytic activity at small scale. Also enriching for novelty seems prudent to show the potential of the metagenome compared to already published data.

4. Conclusion

From our study we highlight the possibility of mining large metagenomic datasets for proteolytic enzymes, even at subfamily level. It makes it possible to computationally screen large amounts of data and identify potential protease sequence targets for laboratory heterologous expression trials. We also included novelty enrichment to ensure that this particular sequence cannot be found in public protein databases (UniProt) or other metagenomes. With this approach the costs for expression trials can be avoided until the suitable targets are identified.

5. Methods

Samples

Arctic Ocean samples were collected in August 2009 in connection with the LOMROG II expedition at various locations. The sample locations were situated on both sides of the Lomonosov Ridge close to the pole, hence the samples represent both the Mesozoic Amerasian Basin and the Cenozoic Eurasia Basin and were obtained beneath the multi year sea ice [4]. Furthermore, one sample (sample number 20) was collected closer to Svalbard. The samples represents three areas of the water column, surface (50 – 100 m), medium (300 – 400 m) and deep (2000 – 4,300 m), which represent the epipelagic, mesopelagic and bathypelagic to abyssopelagic zone respectively. The deep samples were collected relative to the total depth which range from 2650-4460 meters and give a full representation of the water column. The samples were denoted as S (surface), M (medium) and D (deep).

Eight samples were collected at five locations in January 2007 as part of the Galathea III expedition. The five sample locations cover three different geographical areas, where samples at location 10 were located in the South Pacific, north of the ACC, the location 11 samples in the Southern Ocean, south of the ACC and location 12, 14 and 15 were sampled near the Antarctic Peninsula [23]. The sample locations near the peninsula were situated in the northern archipelago and represents a coastal environment with sample depths ranging from 400 – 1,500 m. Samples from location 10 and 11 fall under the surface, medium and deep categories mentioned above.

Detailed methods descriptions are provided in the following section. An overview of the procedure is shown in
A total of 12 metagenomic assemblies were downloaded. ERA database [30], accessed March 2013, by tBLASTn.

The translated gene catalogue was aligned to Swiss-Prot release 2013_04 via BLASTp. The hits were parsed for 90% coverage over an alignment length of 50% of the query, bit score >50 and E-value <1e-05. The annotation of the best hit was resumed. The E.C. number was used for enzyme annotation and the MEROPS flag for protease annotation.

Gene finding and homology clustering
The 26 metagenomic samples were assembled with Idba-UD [24] respectively. MetaGeneMark with default parameters [33] and Prodigal [11] with the universal codon table 11 were used for gene finding. Full-length genes were translated with a custom Perl script. The predicted genes of all metagenomes were pooled into one bin and homology reduced with CD-HIT-EST [17] to create the arctic marine gene catalogue. The sequence identity was set to 0.95, word size of 8, minimum length of 100 and alignment coverage for the shorter sequence of 0.9.

Gene annotation
The translated gene catalogue was aligned to Swiss-Prot release 2013_04 via BLASTp. The hits were parsed for 90% coverage over an alignment length of 50% of the query, bit score >50 and E-value <1e-05. The annotation of the best hit was resumed. The E.C. number was used for enzyme annotation and the MEROPS flag for protease annotation.

Protease-specific hidden Markov models
Hidden Markov models (HMM) models were created based on peptidases defined in MEROPS, release 9.7 [28]. The MEROPS database groups peptidases into clans, families, and subfamilies. However, to create very specific HMM models, HMMs were constructed based on individual peptidases in MEROPS (e.g. A02.063), using nearby homologues in known sequence space (UniProt release 2012,11 [2] and Novozymes internal protein database). The up to 500 nearby homologues were identified using BLASTp against the peptidases catalytic domain, using a length-dependent E-value cut-off, with a preference for including Swiss-Prot proteins with a known enzyme classification. For typical 200 – 400 amino acid domains, the E-value cutoff will be around 1e-20. A given protein could only be assigned to the closest peptidase in MEROPS, and thus never used in multiple models. The catalytic domain of each peptidase was extracted and a multiple alignment was created using MAFFT [13], and the HMMs constructed using HMMER3s hmmbuild [7]. In total, 3207 HMMs were constructed and used in the screen of the non-redundant polar marine gene catalogue.

Alignment
The HMM annotated protease sequences were aligned to UniProt release 2013_04 [2] by BLASTp and publicly available metagenomic assemblies available from the CAM-ERA database [30], accessed March 2013, by tBLASTn. A total of 12 metagenomic assemblies were downloaded.

Blast hits were parsed with the following parameters; coverage >50%, bit score >50 and E-value <1e-05.

Family and Subfamily diversity
The protease target sequences identified by the specific HMM approach were divided into MEROPS families and the 10 most abundant MEROPS subfamilies. The families and subfamilies were homology clustered with CD-HIT. The word size was set to 3 for sequence identities of 0.5 and 0.6, and increased to 5 for sequence identities of 0.7 to 1.0. The same was done for the 2,707 sequences after novelty enrichment.

Extracellular expression
The novelty enriched protease sequences were analyzed for evidence of extracellular expression by running SignalP 4.1 [25]. Default threshold parameters were used for parsing.

References

Figure 1: Genes found across samples with the gene finding programs. Prodigal and MetaGeneMark. Genes were clustered using CD–HIT.
Figure 2: Swiss-Prot inferred annotation of the gene catalogue according to E.C. numbers (A) and protease HMM annotation of the translated gene catalogue (B). Sequence overlap is indicated in the middle.
<table>
<thead>
<tr>
<th>Database</th>
<th>Number of aligned protease sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Acid Mine Drainage Metagenome</td>
<td>1,241</td>
</tr>
<tr>
<td>Waseca County Farm Soil Metagenome</td>
<td>9,101</td>
</tr>
<tr>
<td>Global Ocean Sampling Expedition</td>
<td>33,125</td>
</tr>
<tr>
<td>Mediterranean Gutless Worm Metagenome</td>
<td>6,349</td>
</tr>
<tr>
<td>13 Healthy Human Gut Metagenomes</td>
<td>9,069</td>
</tr>
<tr>
<td>Moore Marine Microbial Sequencing</td>
<td>25,544</td>
</tr>
<tr>
<td>Moore Marine Phage/Virus Genomes</td>
<td>100</td>
</tr>
<tr>
<td>Mouse Gut Community</td>
<td>432</td>
</tr>
<tr>
<td>Termite Gut Metagenome</td>
<td>1,295</td>
</tr>
<tr>
<td>Washington Lake Metagenomes</td>
<td>14,139</td>
</tr>
<tr>
<td>Whale Fall Metagenome</td>
<td>12,160</td>
</tr>
<tr>
<td>Swiss-Prot</td>
<td>15,436</td>
</tr>
<tr>
<td>TrEMBL</td>
<td>30,795</td>
</tr>
</tbody>
</table>

Table 1: Number of aligned proteases to CAMERA metagenome assemblies and public databases
Figure 3: Sequence diversity: Sequence cluster count for sequence identity thresholds from 1 to 0.5. 37,861 HMM annotated protease sequences before and after novelty enrichment (A and B); 10 most abundant protease subfamilies before and after novelty enrichment (C and D)
Sequencing of 26 metagenomes
100,000,000 bp

Gene prediction
13,919,017 genes

CD-HIT clustering
5,218,92 genes

HMM-based protease prediction
37,861 sequences

Sequence novelty enrichment
2,707 sequences

Cloning, expression and characterization
5-10 sequences

Figure 4: Schematic workflow of the major steps of protease finding in 26 polar marine metagenomes
Figure S1: Polar marine gene catalogue annotation according to Swiss–Prot via BLASTp

Figure S2: Number of protease sequences, which did not align to public protein databases and metagenome assemblies downloaded from CAMERA according to protease family and the depth of origin.
Figure S3: Number of protease sequences which did not align to public protein databases and metagenome assemblies downloaded from CAMERA according to protease subfamilies and the depth of origin
Chapter 11

Manuscript IV

11.1 Carnivorous plants - the Venus flytrap

Carnivorous plants share a common ancestor (Figure 11.1) and the carnivory trait is thought to have evolved independently six times in five different orders of flowering plants [2, 44]. Carnivorous plants have adapted to grow in places where the soil is nutrient depleted and it has been suggested to be the reason of adapting to such an uncommon lifestyle among plants [1, 21]. The most popular member of the carnivorous plant family is the renowned Venus flytrap *Dionaea muscipula*, called as 'one of the most wonderful [plants] of the world’ by Charles Darwin [34]. The plant attracts insects to its brightly pigmented traps [52]. Trigger hairs need to be stimulated twice in a short succession to activate the very fast closing mechanism [52]. The plant excretes digestive fluids from glands at the inner wall into the trap to digest its prey, which are digested for up to 10 days [147]. The natural habitat of *D. muscipula* is damp pine savannas of southeastern North America, and is considered a relic species with a narrow and endangered distribution of less than 300 km² [21].

Numerous studies focused on the trap mechanism of the venus flytrap which is unique due to its motion sensor mechanism [15, 52, 91, 181]. However, no genome or mixed tissue transcriptome data have been available.
Figure 11.1. Phylogenetic relationships for the carnivorous plant genera in Caryophyllales inferred from parsimony analysis; Branch coloring represents trait: not carnivorous (dark gray), pitfall-traps (dashes), flypaper-traps (light gray), and snap-traps (solid black). Modified from Cameron et al. [21].
Schulze et al. [146] used transcriptome data to delineate the protein composition of the digestive fluid of *D. muscipula*. Their study showed that the digestive fluid system is similar to other carnivorous plants such as Nepenthes (a tropical pitcher plant [113]), however, the proteolytically active enzymes of Nepenthes and also vertebrates are predominantly aspartic proteases [7, 80, 146]. In the digestive fluid of the Venus flytrap, cysteine proteases are the most abundant class of proteases, followed by a serine carboxypeptidase and aspartic proteases [146].

In the present study, we sequenced the transcriptome of *D. muscipula*, using a mixed-tissue sample for cost-effective deep sequencing of a normalized cDNA library, complementing the selection of accessible transcriptome data. The transcriptome sequences were assembled into contigs. Functional annotation and gene ontology analyses were performed, and a large number of transcripts related to catalytic activities were identified. This is the first high throughput data publicly available for a member of the largest family of carnivorous plants (Droseraceae). Our data provide a public resource for unveiling mechanistic features of the carnivorous syndrome such as attraction, trapping and digestion. Moreover, to expand the list of genome size estimates of members of the carnivorous orders, we present the first genome size estimate of a member of the sundew family in the order Caryophyllales. The supplementary sequences can be found in the Appendix.

11.2 Transcriptome and genome analyses of the Venus flytrap (*D. muscipula*)
Transcriptome and genome analyses of the Venus flytrap
(Dionaea muscipula)

Michael Krogh Jensen1∗, Josef Korbinian Vogt2∗, Simon Bressendorff3, Andaine Seguin-Orlando3, Hamed El-Serehy4, Morten Petersen1, Khaled Al-Rasheid4, Thomas Sicheritz-Pontén2, John Mundy1

1Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
2Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby, Denmark
3National High-throughput DNA Sequencing Centre, ster Farimagsgade 2D, DK-1353 Copenhagen, Denmark
4Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
∗Joint first authorship.

ABSTRACT – Background: The Venus flytrap (Dionaea muscipula) is renowned from Darwins early studies on plant carnivory and the origins of species. A fascinating feature of D. muscipula is its rapid snap trapping movement triggered by mechanical stimulation of specialized sensory hairs. To provide tools to further analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library from mRNAs of snap traps and flowers, and assembled a basal transcriptome. As earlier studies identified great variation in genome size among members of a single carnivorous family, we also determined the genome size of D. muscipula.

Results: We sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler we assembled 79,165,657 quality trimmed reads into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method we estimate that the genome size of D. muscipula is ~3 Gb, almost 50 times larger than that of carnivorous Genlisea margaretae.

Conclusion: We present the sequencing, assembly and functional annotation of a normalized transcriptome of D. muscipula. We highlight the quality of normalized cDNA libraries to cost-effectively provide good coverage of both low and high abundant transcripts of Gb-sized genomes such as D. muscipula. Our genome and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations.

KEY WORDS – Venus flytrap, transcriptome, annotation, genome size

1. Introduction

Darwin was fascinated by the unusual adaptations of carnivorous plants during his often frustrating studies of the evolution of flowering plants which he referred to as an abominable mystery [13, 14]. Darwin published his treatise on insectivorous plants after roughly a decade of study [10]. In this work he noted that the Venus flytrap (Dionaea muscipula) was one of the most wonderful of the world. Studies of carnivorous plants have continued since Darwins time. Attention has focused on the biogeography and phylogenetics of the only two carnivorous species with snap traps, D. muscipula and the aquatic waterwheel Al-drovanda vesiculosa [5, 9, 23, 25]. The natural habitat of D. muscipula is damp pine savannas of southeastern North America, and is considered a relic species with a narrow and endangered distribution of less than 300 km² [9]. A. vesiculosa is also considered a relict earlier widely distributed in Europe, Africa, India, Japan, and Australia, yet now confined to fewer than 36 localities mostly in Europe and Russia [1]. Earlier molecular phylogenetic studies demonstrated that
carnivory occurs in several flowering plant lineages [3, 19], and it was thought that the snap traps of *A. vesiculosa* and *D. muscipula* may have evolved independently. However, their unique snap traps are not examples of convergent evolution, but share a common, old-world ancestor at least 65 million years ago [9, 21, 25]. More precisely, Cameron et al. [9] used sequences from nuclear 18S and plastid *rbcL*, *atpB*, and *matK* genes to show that *A. vesiculosa* and *D. muscipula* evolved as monotypic sister genera from a sundew-like ancestor. While the habitat of *A. vesiculosa* is similar to that of many aquatic carnivorous bladderworts (*Utricularia* spp.), the snap traps of *D. muscipula* and *A. vesiculosa* are unique in having a single evolutionary origin, and narrow ecological distributions [14].

Improved understanding of the molecular adaptations to plant carnivory has also been sought via genome size estimates. Interestingly, genome size varies more than 2,300-fold among angiosperms, from that of Paris japonica (2n = 12, 1C = 152.20 pg DNA or ~149 Gbp [22], to that of carnivorous *Genlisea* margaretae (2n = ~40, 1C = 0.0648 pg or ~63 Mbp [15]. The biological significance of this massive variation is puzzling. Carnivorous plants are found in at least five, genetically poorly described orders [12]. The lack of molecular tools and genetic information, however, has not hampered phenotypic and ecological studies of the orders with carnivorous members [2, 14], and comparative genomic analyses can clarify a number of their traits. Within the Lentibulariaceae, Greilhuber et al. [15] identified ~24-fold variation in genome sizes among *Genlisea* and other family members. Also, large variations in ploidy levels and chromosome sizes have been reported within the carnivorous Droseraceae [16], and Rogers et al. recently reported genome estimates for two carnivorous pitcher plants, Sarracenia purpurea and Sarracenia *psitticina*, to be larger than 3.5 Gb [26]. Thus, carnivorous plants seem to have an extreme plasticity in terms of genome content, and such large genomes tend to have many repetitive sequences and transposable elements [26].

An important complement to genome size analyses comes from transcriptome data. Both transcriptome and genome sequence data are needed to understand the physiological and genetic basis of the snap trap and to identify genes selected during its evolution [24]. To this end, deep sequencing is beginning to reveal certain aspects of the evolutionary origin of carnivory. Recently, transcriptome data for the bladderwort *Utricularia gibba* was published using next-generation sequencing [17], and Srirastava et al. [31] have reported the deep sequencing of two *Sarracenia* species, providing valuable information on the events of genome duplication and speciation within the genus *Sarracenia*. Finally, Schulze et al. [29] used transcriptome data to delineate the protein composition of the digestive fluid of *D. muscipula*. Such studies pave the way to understand the molecular physiology associated with features of the carnivorous syndrome.

Table 1. Statistics of transcriptome sequencing and assembly of *D. muscipula*

<table>
<thead>
<tr>
<th>Sequencing</th>
<th># of reads (93 bp single-end)</th>
<th>81,329,943</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bases</td>
<td>7.56 Gb</td>
<td></td>
</tr>
<tr>
<td># cleaned reads</td>
<td>79,165,657</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assembly</th>
<th># of contigs</th>
<th>80,806</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max contig length</td>
<td>7,545 bp</td>
<td></td>
</tr>
<tr>
<td>Min contig length</td>
<td>100 bp</td>
<td></td>
</tr>
<tr>
<td>Mean contig length</td>
<td>679 bp</td>
<td></td>
</tr>
<tr>
<td>N50 length</td>
<td>1,051 bp</td>
<td></td>
</tr>
</tbody>
</table>

In the present study, we sequenced the transcriptome of *D. muscipula*, using a mixed-tissue sample for a cost-effective deep sequencing of a normalized cDNA library. The transcriptome sequences were assembled into contigs. Functional annotation and gene ontology analyses were performed, and a large number of transcripts related to catalytic activities were identified. This is the first high-throughput data publicly available for a member of the largest family of carnivorous plants (Droseraceae), the renowned *D. muscipula*. Our data provide a public resource for unveiling mechanistic features of the carnivorous syndrome such as attraction, trapping and digestion. Moreover, to expand the list of genome size estimates of members of the carnivorous orders, we present the first genome size estimate of a member of the sundew family in the order Caryophyllales.

2. Results

2.1 Transcriptome Sequencing and Assembly of *D. muscipula*

To analyse the transcriptome of *D. muscipula*, a normalized library of mixed mRNAs from traps and flowers was sequenced using Solexa HiSeq2000 sequencing technology. A total of 81,329,943 single-end reads were generated with a read length of 93 bp (excluding Illumina barcode index). After removal of ambiguous nucleotides and low-quality sequences (Phred quality score < 20), a total of 79,165,657 cleaned reads (97.3%) were obtained. These raw transcriptome sequences in this study have been deposited in the NCBI SRA database (Accession number SRA091387), and recovered reads were assembled. As shown in Table 1, the transcriptome was assembled, combining 79,165,657 reads into 80,806 contigs, ranging from 100 to 7,545 bp in length. The average length was 679 bp, and the N50 length was 1,051 bp.

To quality assess contig assemblies and validate our normalization procedure, we selected 10 contigs for PCR-based validation. The contig were selected based on the
alignment annotation to putative low- and high-abundant transcript genes. For high-abundant mRNA transcripts this included actin and ubiquitin sequences, and for putative low-abundant mRNA transcripts it included transcription factor sequences. Primers were designed to target a range of contig sizes, and to span a range of putative mRNA abundances. Using an independent biological replicate cDNA template of D. muscipula traps and flowers, we validated transcript assemblies ranging from 247-1014 bp (Figure 1, and Supplemental file S1), including both putative low- and high-abundant transcripts. Expected amplicon sizes were obtained from all ten contigs, although no genomic amplicon was obtained for DmUCH-like (Supplementary file S1). In conclusion, this confirmed that the assembly using the Oases algorithm was reliable, and that our normalization procedure enabled identification of transcript abundances with an apparently large dynamic range.

2.2 Functional Annotation

The assembled contigs were aligned to the NCBI non-redundant (nr) protein database for functional annotation by BLASTx with an E-value cut-off of 1e-5. A total of 42,656 contigs had a significant hit, corresponding to 17,047 unique protein accessions in the nr protein database (Table 2). Gene ontology (GO) analysis was conducted on these 17,047 unique proteins using InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/) on integrated protein databases with default parameters. A total of 9,909 unique proteins were assigned to at least one GO term for describing biological processes, molecular functions and cellular components. The InterProScan output file was input to the BGI WEGO program and GO annotations plotted (http://wego.genomics.org.cn) (Figure 2). Briefly, in the cellular component division, genes related to cell parts and macromolecular complexes (2,588 (26.3%) GO:0044464 and 746 (7.6%), GO: 0032991, respectively) are highly represented. Interestingly, in contrast to other plants, D. muscipula also has genes related to a virion part (3 (0.1%), GO:0044423). For the molecular function division, a large abundance of genes are related to binding and catalytic activity (5348 (54.4%) GO:0005488 and 4847 (49.3%) GO:0003824, respectively). Also, antioxidant (56 (0.6%) GO:0016209) and electron carrier activities (184 (1.9%) GO:0009055) are represented. For the biological process division, genes involved in cellular (4,285 (43.6%), GO:0009987) and metabolic processes (5,136 (52.2%), GO:0008152) are highly represented, including the child term of establishment of localization (733 (7.4%), GO:0051234). In contrast, genes associated with developmental and multicellular organizational processes were lowly represented (6 (0.1%), GO:0003 2502; and 14 (0.1%) GO:0032501, respectively), compared to full-genome annotations for Arabidopsis (15% and 15.5%, respectively). This may well reflect the limited tissues and developmental stages sampled in this study. The complete GO annotation results are shown in Supplementary file S2.

2.3 Assessment of Transcriptome Assembly

The assembled transcript contigs were aligned to all RefSeq entries for a moss (Physcomitrella patens), and the angiosperms grape (Vitis vinifera), Arabidopsis thaliana, tomato (Solanum lycopersicum), Brachypodium distachyon, rice (Oryza sativa), maize (Zea mays), and the monotypic oil plant Ricinus communis using BLASTx with an E-value cutoff of 1e-5 (Table 2). Cross-species sequence similarity showed most hits identified in grapes, tomatoes, oil plants and Arabidopsis. When looking into unique protein hits, the D. muscipula transcriptome, originating from a normalized mixed-tissue cDNA library, targeted almost 60% of the tomato RefSeq entries, and more than 50% of the entire grape Refseq data. Likewise, almost 50% of the Brachypodium RefSeq data was uniquely aligned by individual D. muscipula contigs. For Arabidopsis, 13,469 unique protein hits were identified, covering more than one third of the total number of Arabidopsis Refseq protein entries. These numbers represent underestimates of the minimal number of D. muscipula genes found expressed in the two tissues used in this study, flowers and traps. Apart from tissue-specificity, it is possible that many D. muscipula unique protein hits could not be aligned to RefSeq hits because they represent untranslated regions (UTRs) and/or non-coding RNAs (ncRNAs). All together, the high numbers of unique protein hits aligned by D. muscipula contigs underscores the quality of the data obtained from our mixed-tissue and normalized library.

2.4 Full-Length cDNA prediction

Full-length cDNAs are important resources for many applications, including reverse genetic and evolutionary studies. To search for potentially full-length cDNAs with complete open-reading frames (ORFs) in the assembled D. muscipula transcriptome, all contigs were analyzed by TargetIdentifier [20]. A total of 15,547 full-length sequences were identified from the assembly. The size distribution of full-length sequences compared to the size distribution of our total 80,806 cDNA contigs is presented in Figure 3. In contrast to the size distribution of the total contig number, full-length sequences are biased towards those > 1 kb in length. This indicates that short full-length cDNA sequences may be underrepresented in our assembly and transcriptome data.
2.5 Genome Size Estimates

An intriguing observation from genome studies of carnivorous plants is the extreme size differences observed even among individual family members [15]. To expand the list of genome size estimates of members of the carnivorous orders, we estimated the genome size of D. muscipula. Using an improved protocol adapted from Bekesiova et al. [6], we obtained high-quality genomic DNA. Figure 4A shows an example of 200 ng DNA extracted using this method. We routinely obtained approx. 25 and 50 µg high quality (A260/280 > 1.8, and A230/260 > 2.0) genomic DNA per g fresh weight from traps and flowers, respectively.

To estimate the genome size of D. muscipula using the qPCT-based method of Wilhelm et al. [34], a DNA sample without significant RNA contamination is required. From purified gDNA, we targeted the amplification of a single-copy genomic region assembled and validated (see Figure 1) from our D. muscipula transcriptome sequencing. With this sequence as a query we used BLASTx to identify the closest homologue. This identified Arabidopsis ACTIN7 (ACT7) as the closest homolog, with total query coverage of 67% and maximum shared identity of 86% (Supplementary file S3). We therefore designated this target D. muscipula amplicon DmACT7. Using this amplicon, the genome size for D. muscipula was estimated to be 2956 Mbp (SEM= 210 Mbp, n=11), equivalent to 3.02 +/- 0.21 pg for the 1C haploid genome (Figure 4B, Table 3). As a control, we estimated the genome size of the model angiosperm A. thaliana using the ACTIN1 (ACT1) genomic region. This estimate of 173 Mbp (SEM= 21 Mbp, n=7; Figure 4B and Table 3) overlaps the well-documented value of the A. thaliana genome of 157 Mbp (0.16 pg: [4, 7]).

3. Discussion

To date, the highest diversification rates among angiosperms are found in the order Lamiales [37]. In particular, the apparent plasticity observed in the large Lentibulariaceae family has recently received attention [2, 15]. In this carnivorous family, three taxa exhibit significantly lower 1C-values than the 157 Mbp of Arabidopsis thaliana. These are Genlisea margaretae with 63 Mbp, G. aurea with 64 Mbp, and Utricularia gibba with 88 Mbp [15]. Our size estimate for the Droseraceae family member D. muscipula is 46-fold higher than that of the G. margaretae genome, and comparable to the genome size estimates for carnivorous pitcher plants [26]. Such estimates enable calculation of the minimum number of high-quality reads required for whole-genome sequencing of D. muscipula and other Gb-sized genomes from carnivorous plants. A good sequencing coverage should provide reliable information on the evolution of carnivory.

The estimated haploid genomes of 3-4 Gbp indicate that certain carnivorous plants have undergone dramatic genome evolution. An explanation for such massive proliferation of genome rearrangements, as observed in plastid genomes of Lentibulariaceae members, may be associated with increasingly relaxed functional constraints due to the heterotrophic lifestyle of carnivorous plants [21, 30, 33]. Another explanation is that high nucleotide substitution rates are linked to reactive oxygen species (ROS) generated from the increased respiratory rates needed for the oxidative phosphorylation of ADP to ATP upon movement of trapping devices in carnivorous plants [2, 18]. ROS is known to cause oxidation of nucleotide bases and generation of DNA strand breaks [8].

With respect to the D. muscipula transcriptome, D. muscipula shares the greatest sequence similarity to tomato (59.8%, Table 2). This is not a surprise, as tomato is the only species included from the asterids clade, to which D. muscipula also belongs. However, the assembled transcriptome of D. muscipula also shares large sequence similarities to the rosids clade member Vitis vinifera (53.8%, Table 2). The relatively strong sequence similarity between carnivorous species and grapes was also reported in a transcriptome study of the carnivorous pitcher plants, Sarracenia psittacina and Sarracenia purpurea [31]. Future sequencing data on more asterids and rosids members, including transcriptome comparisons with other carnivorous species [17, 29, 30] will aid the research community to delineate the intriguing phylogeny and molecular adaptation of carnivorous plants and their ecology.

We note that our cost-effective approach using a normalized library of mixed tissues from trap and flowers was only collected from adult plants. Our data therefore does not cover the whole D. muscipula transcriptome. Still, our data aligned almost 50-60% of the entire complement of RefSeq entries for several model and crop species. Future studies may address the identification of tissue and developmentally regulated genes by temporal and spatial sampling of tissues under different conditions. At present, our data may be mined for comparative studies and as an annotative tool for whole-genome sequencing and future de novo assembly of the D. muscipula genome.

4. Conclusion

In this study, the transcriptome of D. muscipula was sequenced, de novo assembled and functionally annotated. An ORF analysis was conducted and a large number of full-length cDNA sequences were identified. The D. muscipula transcriptome provides some insight into the molecular processes occurring in a Gb-sized carnivorous plant genome. Abundant representation of processes related to the expression of genes associated with binding, catalytic, antioxidant and electron carrier activities was observed.
Future uniform meta-analyses of short-read archives, including cDNA sequences from carnivorous Utricularia [17] and Sarracenia [31] species will aid future studies of carnivorous plants and their ecology. This underlines the importance of further expansion of sequence repositories, especially for non-model organisms, for improved understanding of molecular physiology and evolution related to Darwin's abominable mystery.

5. Methods

Plant material

For nuclear genome estimates, 1 g of freshly harvested flowers, petioles and traps were used from *D. muscipula* and *Arabidopsis thaliana* (Col-0). *D. muscipula* plantlets were purchased from Horticulture Lammehave A/S (Ringe, Denmark).

Genomic DNA extraction

DNA was extracted from *D. muscipula* and *A. thaliana* as described for *Drosophila rotundifolia* by Bekesi et al. [6] with modifications for extraction from the more succulent and recalcitrant *D. muscipula*. After tissue grinding, plant cells were lysed in 6 ml CTAB-buffered N-lauryl sarcosine (5%) with 2 ul 2-mercaptopethanol and 0.3 g polyvinylpyrrolidone (PVPP), (MW=360,000, Sigma) per ml lysis buffer, and incubated 1 hr at 65°C in a water bath. PVPP and 2-mercaptopethanol respectively bind to and remove polyphenols, polysaccharides and tannins from plant extracts. Following lysis, the lysate became more viscous as the solution was cooled at room temperature for 10 min before extraction with 1 x volume of chloroform:isoamoyl alchohol (24:1). The sample was then centrifuged at 13,000 RPM for 10 min at 4°C. A 5-ml pipette was used to gently transfer the upper aqueous phase to new tubes and the DNA was precipitated over-night at -20°C using 0.1 volumes of 3 M Na-acetate (pH 5.2) and 2.5 volumes ice-cold ethanol. The pellet was washed in 70% ethanol and centrifuged repeated. The pellet was gently washed in 70% ethanol and centrifuged repeated. The pellet was air-dried for 30 min at room-temperature and resuspended in TE (ph 7.5) or water. DNA purity and concentration was measured on a nanodrop 1000 (Thermo scientific). For pure DNA, the A260/280 ratio should be > 1.8.

mRNA isolation

Total RNA was extracted from 1.5 g fresh weight each of *D. muscipula* flowers and traps using an optimized urea-based protocol. For a single extraction, 0.1 g (approx. equivalent to 1 medium sized trap) plant material was flash-frozen in liquid nitrogen and ground together with 0.03 g of PVPP. Plant powder was then transferred to a pre-warmed (65°C) microcentrifuge tube containing 700 ul of RNA extraction buffer (2% CTAB (w/v), 2% PVP K25 (w/v), 100 mM Tris-HCl (pH 8.0), 25 mM sodium-EDTA (pH 8.0), 2.0 M NaCl, 2% (w/v) β-mercaptoethanol (add just before use)) and vigorously shaken. The suspension was then centrifuged for 2 min at 13,000 RPM to pellet plant debris, and the supernatant transferred to a new tube. Subsequent steps are all performed at 4°C. Total RNA was then extracted with 600µl of chloroform:IAA (24:1), and the phases separated by centrifugation (10,000 RPM, 10 min., 4°C). The top aqueous phase was transferred to a new microcentrifuge tube and extracted with 500µl of phenol:chloroform:IAA (25:24:1) using centrifugation (10,000 RPM, 10 min., 4°C). Transfer top aqueous phase to new tube and 0.25 volumes added (125 µl to 500 µl) of 10 M LiCl and gently mixed well. RNA was precipitated overnight at 4°C, and then pelleted by centrifugation (10,000 RPM, 20 min, 4°C). Dissolve RNA in 100 µl of DEPC-treated water. Samples are then re-precipitated by 250 µl precipitation mix (80% EtOH, 20% 1M sodium acetate (pH 5.2)) and incubated 1 hr at -70°C. Subsequently, RNA is centrifuged (10,000 RPM, 20 min., 4°C). The pellet was gently washed in 70% RNase-free EtOH, centrifuged (10,000 RPM, 20 min., 4°C) and resuspended in 30 µl DEPC-treated water. Subsequently, total RNA was RQ1 DNase treated (Promega), and mRNA isolated from 2-3 mg of trap and flower total RNA using PolyATtract (Promega), according to the manufacturers description.

cDNA library construction, sequencing and assembly

The MINT kit (Evrogen) was used for first-strand cDNA synthesis with 400 ng mRNA from each sample. Following evaluative PCR, a full-sized pre-saturation synthesis of ds-cDNA was prepared for both tissues using Encyclo PCR (Evrogen). cDNA was purified using QIAquick (Qiagen) and concentration measured using Qubit (Invitrogen). Samples were then pooled in a 1:4 ratio of...
The sequence has a start codon with a downstream stop codon or (2) the sequence has a stop codon and an in-frame start codon is detected prior to the 10th codon of the aligned subject sequence. For comparison of the D. muscipula open reading frames to other plant proteins, the contigs were aligned with BLASTx (standard parameters, E-value < 1e-5) to 8 RefSeq and Ensembl proteins, including Arabidopsis thaliana, Brachypodium distachyon, Oryza sativa, Physcomitrella patens, Ricinus communis, Vitis vinifera, Solanum lycopersicum and Zea mays. Hits were parsed with standard parameters and the best hit was resumed.

qPCR estimate of genome size

Sequencing of the transcriptome of traps and flowers of D. muscipula gave a total of 80,806 contigs. A long unique sequence with good coverage was chosen for primer design as shown in Supplementary file S3. The sequence had 86% identity to the Arabidopsis ACT7 gene (AT5G09810). Primers were from MWG Biotech (Ebersberg). The sequence and positions of primers are shown in Supplementary file S3. The qPCR-based analysis of genome size was performed according to Wilhelm et al. [34] using a Bio-Rad iCycler (Bio-Rad). The genome size, described as gametic nuclear DNA contents (C-values), either in units of mass (picograms, where 1 pg = 10\(^{-12}\) g) or in number of base pairs (where 1 pg DNA = 0.978 x 109 bp; [11]), was calculated by dividing the mass of sample DNA by the copy number determined for single copy genes.

Acknowledgements

JM, KAR, HE-S and MKJ were supported by the Distinguished Scientist Program of King Saud University, Riyadh, Saudi Arabia. No individuals employed or contracted by the funders, other than the named authors, played any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supporting Information

Supplementary file S1 (Sequences used for assembly validation) Supplementary file S2 (Complete GO annotation term summary) Supplementary file S3 (DmACT7 sequence, including primer locations)

Author Contribution

Conceived and designed the experiments: MKJ, SB, JM, MP, and TSP. Performed the experiments: MKJ, SB, AS-O, and JKV. Analyzed the data: MKJ, SB, JM, and JKV. Contributed reagents/materials/analysis tools: JM, MP, HE-S, and KAR. Wrote the paper: MKJ, JM, TSP, and JKV.
References

Figure 1: PCR assembly validation. Contigs assembled from 93 bp single-end reads were validated using standard PCR. A: genomic DNA, B: First-strand cDNA synthesis with reverse transcriptase, C: First-strand cDNA synthesis without reverse transcriptase. M: 100 bp O’GeneRuler. For primer and contig sequences see Supplementary file S1.

Table 1: Summary of BLASTx search results of *D. muscipula* transcriptome. From a total of 80,816 contigs, 42,656 have a RefSeq hit, corresponding to 17,047 unique protein entries. Total number and unique hits from a BLASTx against RefSeq entries for 8 other plant species is also presented. The percent of total unique proteins is based on the current number of RefSeq entries for the individual species.

<table>
<thead>
<tr>
<th>Database</th>
<th>D. muscipula hits</th>
<th>Unique protein hits</th>
<th>% of total unique proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr</td>
<td>42,656</td>
<td>17,047</td>
<td></td>
</tr>
<tr>
<td>Refseq/Ensembl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>41,422 (51.3%)</td>
<td>13,469</td>
<td>38.1% (13,469/35,378)</td>
</tr>
<tr>
<td>Brachypodium distachyon</td>
<td>39,962 (49.4%)</td>
<td>11,795</td>
<td>48.8% (11,795/24,689)</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>39,353 (48.7%)</td>
<td>11,506</td>
<td>40.1% (11,506/28,705)</td>
</tr>
<tr>
<td>Physcomitrella patens</td>
<td>34,084 (42.2%)</td>
<td>9,390</td>
<td>26.1% (9,390/35,936)</td>
</tr>
<tr>
<td>Ricinus communis</td>
<td>41,839 (51.7%)</td>
<td>12,279</td>
<td>39.1% (12,279/31,344)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>43,634 (53.9%)</td>
<td>12,837</td>
<td>53.8% (12,837/23,877)</td>
</tr>
<tr>
<td>Zea mays</td>
<td>35,229 (43.6%)</td>
<td>10,194</td>
<td>45.1% (10,194/22,588)</td>
</tr>
<tr>
<td>Solanum lycopersicum</td>
<td>42,489 (52.6%)</td>
<td>13,152</td>
<td>59.8% (13,152/26,408)</td>
</tr>
</tbody>
</table>
Figure 2: Gene Ontology (GO) categories of the unigenes. Distribution of the GO categories assigned to the *D. muscipula* transcriptome. Unique transcripts (unigenes) were annotated in three categories: cellular components, molecular functions, and biological processes.

Figure 3: Contig size distribution of all contigs (left) and predicted full-length contigs (right).
Figure 4: Genomic DNA purification and genome size estimate of D. muscipula. (A) Agarose gel showing a purified fraction of D. muscipula genomic DNA (1) using a modified CTAB procedure. M1: DNA ladder D2000 (Tiangen), M2: DNA ladder λ–Hind3 digest (Takara). (B) Genome size estimate of D. muscipula using a single–copy qPCR method with DmACT7 as amplicon. A. thaliana serves as a control, using ACTIN1 as amplicon.

Table 3: Summary of qPCR-based estimates of haploid genome sizes

<table>
<thead>
<tr>
<th>Target</th>
<th>Product length (bp)</th>
<th>Calibration curve</th>
<th>Genome size estimate +/- SEM (Mbp)</th>
<th>n</th>
<th>IC +/- SEM (pg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT1 (At2g37620)</td>
<td>116</td>
<td>-3.263X + 45.613 (0.995)</td>
<td>173 +/- 21</td>
<td>7</td>
<td>0.17 +/- 0.02</td>
</tr>
<tr>
<td>(A. thaliana)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT7 (D. muscipula)</td>
<td>185</td>
<td>-3.323X + 36.6 (0.994)</td>
<td>2956 +/- 210</td>
<td>11</td>
<td>3.02 +/- 0.21</td>
</tr>
</tbody>
</table>
Part IV

Epilogue
Chapter 12

Summary and Perspectives

12.1 Summary

Overall, the work presented in this thesis provides an extensive collection of methods and tools for both analyzing transcriptomic and metagenomic sequencing data for comparative functional analysis and a concept of how to tap into biological resources for potential commercial use. The polar marine environment is a unique ground for identifying novel proteases. Here we identify numerous candidate sequences for further screening analysis which will be achieved with industrial partners. Furthermore, unusual organisms such as the Venus flytrap might proof to reveal novel features in proteolytic enzymes for industrial applications such as the food industry.

This thesis elucidates the use of Next Generation sequencing (NGS) analysis in uncovering functional descriptions of the Venus flytrap Dionaea muscipula transcriptome and environmental samples of the polar seas. The research field of metagenomics and RNA-seq analysis are introduced as concepts of how to access genomic information and identify transcripts. Furthermore, it is described how tapping into biological resources can be performed to identify novel proteases for commercial use. The methods section provides an overview of how to process and analyze transcriptome and metagenome sequencing data, the latter was illustrated with aid of the taxonomic annotation of a middle Pleistocene horse metagenome and the donkey genome annotation (Manuscript I).

The polar marine samples were collected during the Galathea III and LOMROG II polar expeditions and the DNA was extracted and sequenced. To my knowledge, no other dataset of the polar regions including multiple locations from the Arctic and Southern oceans at depth up to 4,300 m is
publicly available, making this dataset a unique resource for identifying
the functional composition of the polar seas. The comparative functional
analysis revealed a functional stratification along the water column but a
lesser stratification between the arctic and southern oceans (Manuscript II).
Furthermore, strategies for deep sea persistence were revealed. This unique
dataset is a perfect subject for bioprospecting. 2,707 novel proteolytic en-
zyme sequences were identified by bioinformatic analysis (Manuscript III).
A patent application was filed at DTU and we are currently negotiating the
use of the study results and dataset with potential business partners. We
anticipate that these sequences exhibit novel properties which can be used
for commercial use. The collaboration of research institutions and compa-
nies is common. Despite the high interest in natural products, many large
companies were not expanding their in-house natural products programs,
but they were licensing in, or forming partnerships with small companies
and universities that aid in discovery research [90]. However, the advances
of metagenomics make collection of interesting dataset more cost-effective.
Companies such as Verenium are actively collecting datasets keeping large
in-house databases for screening tests1. While collecting the samples the
CBD has become the rule to follow. Although few companies were reported
to by-pass these standards2, companies do not consider genetic resources
freely available. Companies regard benefit-sharing and compliance to the
CBD as a necessary business practice. On the other hand, if national author-
ities set their demands of benefit-sharing too high, research opportunities
can be lost. This becomes apparent with the attempt to research the Ikka
column samples for bioprospecting. The samples could not be utilized due
to limitations set by the Greenlandic government.

The transcriptome of the Venus flytrap was sequenced with a cost-effective
approach using a normalized library of mixed tissues from trap and flowers
(Manuscript IV). To expand the list of genome size estimates of members of
the carnivorous orders, we present the first genome size estimate of a member
of the sundew family in the order Caryophyllales. The genome was estimated
to be 2,956 Mbp and exceeds the genome size of Arabidopsis thaliana with
a genome size of 157 Mbp by a factor of 20. The genome size is even higher
when compared to *Genlisea margaretae*, which exceeds the size 46-fold. In
connection with this project we also attempted to sequenced the genome of
the Venus flytrap, which could not be assembled to contigs with reasonable
length for further analysis. The assembly was affected by the high content
of repetitive regions. The transcriptome provides insight into the molecular
processes occurring in a Gb-sized carnivorous plant genome. The transcrip-
tome data and the genome size estimate expands the knowledge of this very
unique plant species. Future studies may address the identification of tissue

2adopted from the United Nations University’s report: Biological prospecting in
November 2013.
and developmentally regulated genes by temporal and spatial sampling of tissues under different conditions, such as comparison of expressed genes under starvation and digestion. Furthermore, the data can be used as an annotative tool for the future de novo assembly of the Venus flytrap genome. A completed genome will facilitate the identification of novel proteases which are secreted during the digestion of its pray. This example illustrates the limitations of Next Generation sequencing data of larger genomes with high ploidy and repetitive sequences. Longer sequencing reads would provide extra information for scaffolding to the de novo assembly. Newer technologies such as Single-molecule real-time sequencing (Pacific Bio\(^1\)) are promising to aid in closing that gap by providing longer sequencing reads.

Lastly, I would like to give perspectives on some parts of the presented research. 2,707 novel sequences were identified from the marine gene catalogue. Currently, negotiations with industrial partners are ongoing. We are working on settling an agreement, after which some of the sequences will be enzymatically screened. Furthermore, the gene catalogue provides an abundant resource also for mining of other classes of enzymes such as hydrolases. In recent years, research efforts has been subjected to identify glycosyl hydrolases [3, 9, 28, 56, 68, 99, 169] due to the demand for finding new enzymes which can be used in cost-effective processes to break down biomass as a source of renewable energy. Therefore, the gene catalogue of the polar marine environment possesses value for other classes of enzymes besides proteases. Metagomics is a relative new research field and the advances in methods facilitating the analysis of large datasets is progressing rapidly. Improved methods for binning of contigs will help in downstream analysis. The principle of metagenomic species (MGS) for example has been shown to aid in single genome assembly of bacteria in metagenomes with the aid of canopy clustering methods (Nielsen et al., unpublished). This is intriguing as it potentially leads to identification of novel organisms of the polar sea. The taxonomic annotation of the metagenomic samples revealed a high fraction of unassignable sequencing reads. Thus, extended databases with sequence information of hitherto unknown organisms can improve taxonomic annotation studies. Moreover, the MGS approach can be used to identify species that co-occur in a community or exclude each other. The same can be done for phages, plasmids and other genetic elements.

Moreover, we are planning to collaborate with researchers from University of Copenhagen to identify environmental DNA (eDNA) from the polar water samples. eDNA is free DNA in solution, in contrary to genomic DNA in cells. It has been shown that traces of fish DNA can be identified in fresh and sea water samples by sequencing eDNA [165]. After screening for fish sequences in the metagenomes, traces of fish DNA have already been found in the raw

sequencing data. This, however, has to be confirmed with fish specific PCR primers in the extracted DNA samples and in the filter remains. Such approaches might lead to mapping of not just bacterial communities but also multicellular organisms.
Bibliography

119

BIBLIOGRAPHY

Supplementary information: Manuscript IV
Supplementary file S1

>DmATP synthase Locus_396_Transcript_1/2_Confidence_1.000_Length_426
ATP synthase GI:109066521
atacgagatgtagaattcaagagcatcaacacaggtagatacagccaggttcagatctgccgggacaac
cagttggtcgcataaggagcgaaggtctgctgagccagggcggcggctgcttcgatcagcggcaac
taaatcggttgcagcgtggtaggtgaaccctttctctgttctgatcagctctgtaagccctcaagg
tcagtagcaggctaggcttgcttacctcacaacagagaatcacgcctcagcaacagcactctctctgag
ttagctgtggttaacgcggaaatatatgtgcaaatataaatagcagcagcttctctctcagcttacgggaat
tgttccagcagctcaagccgtagtaagcacacagggctcattctttgacccgtagagaagc
F: caggatagataccgagctc
R: tgctcgtgcccgttgtg
Amplicon: 359 bp

>DmATPase - Locus_14083_Transcript_1/2_Confidence_1.000_Length_1605
ATPase gi|108708096
AAGCAGTGGTATCAACGCAGAGTACGGGGGGCTTGGAAAGTGACGGACTTGAGTCATTGTGCATCAAGGGTCGTTAGAGAAAGGTTGAGGGT
AACAGATTTAAGCAGATACCGTACAACGGAAGGTTGAGGGTTACAGATTTACTGGGTCACATCATCGTTGGCACGATACATAGTAGGACCTCCTGAGAAGCAATTGATTG
ACGAAGCTCGCAGTGCAGCTGCACAAGAGTTTTGCTGCTAGAATGGAGGAGGGCTCTTCATTTCAGGTC
TTGACTTCAAGCCACTAATAGGGCCTTTTGGAGCCATGATAGATTTTCTAGTTACATGTTTGGCTTGCAGAGAGAGAACCTCAGAGAGAACCCGTGCAAGCAAGCAAGCCA
TAATTAGAAAAATGAAATTATTAGTAGGTGATTTGAATTTGCTGAGTATATGGAAGGAACCAGTAGTTCCTGCAGAGACTCAGCATCAGCATTCAGCATCTAGG
TTCCAGCAGAGCTACCTGGAAGAGCTCCACCTAGGCTAGGATCACTGCCAGACAGACTTCTAGGCTCTAGTCTCAGCATCAGGCTAGGATCACTGCCAGACAGACTTCTAGG
F: CCCATAACATGAGCGGTT
R: AGTTCCTACACCGCCTCCTT
Amplicon 356 bp

>Dm prot. bind. prot.
Locu_17081_Transcript_1/2_Confidence_1.000_Length_2089 protein
binding protein, putative GI:255558542
ATCTAAACGATTTGATCAACGCCAGAGATACCGTACAACGGAAGGTTGAGGGTTACAGATTTACTGGGTCACATCATCGTTGGCACGATACATAGTAGGACCTCCTGAGAAGCAATTGATTG
ACGAAGCTCGCAGTGCAGCTGCACAAGAGTTTTGCTGCTAGAATGGAGGAGGGCTCTTCATTTCAGGTC
TTGACTTCAAGCCACTAATAGGGCCTTTTGGAGCCATGATAGATTTTCTAGTTACATGTTTGGCTTGCAGAGAGAGAACCTCAGAGAGAACCCGTGCAAGCAAGCAAGCCA
TAATTAGAAAAATGAAATTATTAGTAGGTGATTTGAATTTGCTGAGTATATGGAAGGAACCAGTAGTTCCTGCAGAGACTCAGCATCAGCATTCAGCATCTAGG
TTCCAGCAGAGCTACCTGGAAGAGCTCCACCTAGGCTAGGATCACTGCCAGACAGACTTCTAGGCTCTAGTCTCAGCATCAGGCTAGGATCACTGCCAGACAGACTTCTAGG
F: CCCATAACATGAGCGGTT
R: AGTTCCTACACCGCCTCCTT
Amplicon 356 bp
CATAATGAGAGCCAGACTACGTTTTTCTATGTAAAAGGTCCA

F: GTGGGGCAGTTTTGTCTATGTG (249)
R: CCAATGTTGTTTCTACCAGCT (250)

Amplicon: 180 bp

>DmACT7_II 1394 bp
TCGTGATCTCTCCTGAGAGTTATATAGAGTCAGA
GTA

F: GTGGGGCAGTTTTGTCTATGTG (249)
R: CCAATGTTGTTTCTACCAGCT (250)

Amplicon: 180 bp

>DmUCH-like - Locus_34_Transcript_9/10_Confidence_0.462_Length_1720
UCH like GI:115447665
TCGTGATCTCTCCTGAGAGTTATATAGAGTCAGA
GTA

F: GTGGGGCAGTTTTGTCTATGTG (249)
R: CCAATGTTGTTTCTACCAGCT (250)

Amplicon: 180 bp
ACCTTCTCATGATGGATGGCCCTCGGAGGTTTTGCAGTCGAAATTGTGACGACAATGTCGATAGTGTTG
GTTCAGTTCCTCCTGAGCAGCCACACATATATTGTTCTTCTTGCCGTAAGTTTCAATTTATTCACAAAGCA
AACCTGCTCATATTAGAAAGGATAGGGTGATACCATGCTGCCAGAACAGGTGCTTCCGTG
ATCGGACCTGGGAGACGAGGAGGAAAGGCAGAGATCCAATTTGTAGACCTTTCCCCATAGCTAGTAGT ATATAGTTGAAAGAATATGGCAACCCCTTCCTTCCTGCTCCTACTGCAAGTCT

F: CTTTGGTTGCATCCTGCAATAAAG
R: AGCTTCGAGAGGAACGC

Amplicon: approx. 589 bp

>DmUBQ - Locus_4158_Transcript_3/4_Confidence_0.700_Length_1310 ubq
GI:102655942
AAAAGGGGAGAGAAGTACTACAGCTGCAGAACATTTATGCAAAACGCATTTGTAGGAGAAACCAGAAT TGAAACAAATTTAGTTGAGTAGAAGACACACTTTATTAAATCCCACAATATTGATGGACCCAACAAATTTGGA AAAGAGTAGCCTCATAAAACATGGGCTAAATCCACAATATACTGATAATATATACAGAGGTAAGGATAGAAAGACA TATAATAGCAATTTGCGCTGGGCTCAATCAAATTCCTGAGAAAATACCTCCACGACAGGGGAGGA GAATGAGAGGTGATTTGTAATAGTGGCGCTAGGGTTCGGCCATCTCCCAACTGCTTCCTCCGG CAAAGATGAGCCTCTCGCTGTCGGCAGAGATTTCTCCCTGCTGAAATTTGGACTTTCCAAATTACACAAGTCC TAGGACAGTGCTGTTCTCCCTGCTGAAATTTGGACTTTCCAAATTACACAAGTCC TAGGACAGTGCTGTTCTCCCTGCTGAAATTTGGACTTTCCAAATTACACAAGTCC

F: GTCTTCACAAAGATCTGCTGATACCACC
R: ATCTTTGTCAAGACCTTCACCTG

Amplicon: 247
Supplementary file S2. GO terms summary. The first number is the number of genes associated to the GO term. The float in ($) is the percentage of the associated gene number to the total number of accumulated go counts.

<table>
<thead>
<tr>
<th>Cellular Component</th>
<th>17 (2) GO:0005576 extracellular region</th>
<th>53(0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (0.1)</td>
<td>GO:0044046 apoplast</td>
<td>22466(73.6)</td>
</tr>
<tr>
<td>2588 (26.3)</td>
<td>GO:0005623 cell</td>
<td>22466(73.6)</td>
</tr>
<tr>
<td>3 (0.0)</td>
<td>GO:0019012 virion</td>
<td>0</td>
</tr>
<tr>
<td>3 (0.0)</td>
<td>GO:0044423 virion part</td>
<td>0</td>
</tr>
<tr>
<td>72 (0.7)</td>
<td>GO:0031974 membrane-enclosed lumen</td>
<td>627(2.1)</td>
</tr>
<tr>
<td>6 (0.3)</td>
<td>GO:0031970 organelle envelope lumen</td>
<td></td>
</tr>
<tr>
<td>66 (0.7)</td>
<td>GO:0043233 organelle lumen</td>
<td>929(3)</td>
</tr>
<tr>
<td>58 (0.6)</td>
<td>GO:0031975 envelope</td>
<td></td>
</tr>
<tr>
<td>8 (0.1)</td>
<td>GO:0030113 cell envelope</td>
<td></td>
</tr>
<tr>
<td>51 (0.5)</td>
<td>GO:0031867 organelle envelope</td>
<td></td>
</tr>
<tr>
<td>746 (7.6)</td>
<td>GO:0032991 macromolecular complex</td>
<td>2001(6.6)</td>
</tr>
<tr>
<td>312 (3.2)</td>
<td>GO:0030529 ribonucleoprotein complex</td>
<td>19(0.1)</td>
</tr>
<tr>
<td>426 (4.3)</td>
<td>GO:0043234 protein complex</td>
<td></td>
</tr>
<tr>
<td>1017 (10.3)</td>
<td>GO:0043226 organelle</td>
<td>17582(57.6)</td>
</tr>
<tr>
<td>25 (0.3)</td>
<td>GO:0013982 vesicle</td>
<td>17263</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological Process</th>
<th>132 (1.3) GO:0044085 cellular component biogenesis</th>
<th>1485(4.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (0.1)</td>
<td>GO:0032502 developmental process</td>
<td>457(15.0)</td>
</tr>
<tr>
<td>29 (0.2)</td>
<td>GO:0030003 reproduction</td>
<td>233(7.6)</td>
</tr>
<tr>
<td>201 (2.0)</td>
<td>GO:0016043 cellular component organization</td>
<td>321(10.5)</td>
</tr>
<tr>
<td>10 (0.1)</td>
<td>GO:0016265 death</td>
<td>508(1.7)</td>
</tr>
<tr>
<td>20 (0.2)</td>
<td>GO:0024414 reproductive process</td>
<td>228(7.5)</td>
</tr>
<tr>
<td>285 (2.9)</td>
<td>GO:0050806 response to stimulus</td>
<td>650(21.3)</td>
</tr>
<tr>
<td>14 (0.1)</td>
<td>GO:0032501 multicellular organismal process</td>
<td>4740(15.5)</td>
</tr>
<tr>
<td>85 (0.9)</td>
<td>GO:0010926 anatomical structure formation</td>
<td>1077(3.5)</td>
</tr>
<tr>
<td>22 (0.2)</td>
<td>GO:0051704 multilayer-organism process</td>
<td>1926(6.3)</td>
</tr>
<tr>
<td>733 (7.4)</td>
<td>GO:0051234 establishment of localization</td>
<td>3610(11.8)</td>
</tr>
<tr>
<td>17 (0.3)</td>
<td>GO:0022610 biological adhesion</td>
<td>960(3)</td>
</tr>
<tr>
<td>5136 (52.2)</td>
<td>GO:0008152 metabolic process</td>
<td>13755(45.1)</td>
</tr>
<tr>
<td>649 (6.6)</td>
<td>GO:0043473 pigmentation</td>
<td>5455(17.9)</td>
</tr>
<tr>
<td>753 (7.7)</td>
<td>GO:0051179 localization</td>
<td>3782(12.4)</td>
</tr>
<tr>
<td>4285 (43.6)</td>
<td>GO:0099877 cellular process</td>
<td>14749(48.4)</td>
</tr>
<tr>
<td>681 (6.9)</td>
<td>GO:0065007 biological regulation</td>
<td>6426(21.1)</td>
</tr>
</tbody>
</table>

Total: 17

<table>
<thead>
<tr>
<th>Molecular Function</th>
<th>184 (1.9) GO:0009055 electron carrier activity</th>
<th>525(1.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>86 (0.9)</td>
<td>GO:0060889 molecular transducer activity</td>
<td>2870(9.9)</td>
</tr>
<tr>
<td>212 (2.2)</td>
<td>GO:0030528 transcription regulator activity</td>
<td>1740(5.7)</td>
</tr>
<tr>
<td>128 (1.3)</td>
<td>GO:0030234 enzyme regulator activity</td>
<td>376(1.2)</td>
</tr>
<tr>
<td>4887 (49.3)</td>
<td>GO:0003824 catalytic activity</td>
<td>8800288</td>
</tr>
<tr>
<td>5348 (54.4)</td>
<td>GO:0005488 binding</td>
<td>11327(37.1)</td>
</tr>
<tr>
<td>56 (0.6)</td>
<td>GO:0016209 antioxidant activity</td>
<td>1340(4.6)</td>
</tr>
<tr>
<td>2 (0.0)</td>
<td>GO:0016530 metallochaperone activity</td>
<td>50(0.0)</td>
</tr>
<tr>
<td>14 (0.1)</td>
<td>GO:0045735 nutrient reservoir activity</td>
<td>670(2.1)</td>
</tr>
<tr>
<td>44 (0.4)</td>
<td>GO:0045182 translation regulator activity</td>
<td>144(0.5)</td>
</tr>
<tr>
<td>326 (3.3)</td>
<td>GO:0005198 structural molecule activity</td>
<td>550(1.8)</td>
</tr>
<tr>
<td>423 (4.3)</td>
<td>GO:0032515 transporter activity</td>
<td>130(4.8)</td>
</tr>
</tbody>
</table>

Total: 12

Total GO terms in three ontologies: 72

Total: 43
Supplementary file S3

> DmACT7_II 1394 bp

TCGTCATCTGACTCTGTCAAGGATAGAGATGACTGGATGGCGATGCTGCTGGAGATGGAAGGCTGGTGGATGGATTGCAGTGCTGCATTCTG

Inner forward primer: tctttgaagggatagac

Inner reverse primer: gcaatagctgggaacatagt

Outer forward primer: cattgtcaagactgggat

Outer reverse primer: aagcatatcagggcagacc