Adsorption Dynamics and Self-Assembled L-cysteine on Au(100)

Engelbrekt, Christian; Nazmutdinov, Renat R.; Yan, Jiawei; Zinkicheva, T. T.; Mao, Bingwei; Ulstrup, Jens; Zhang, Jingdong

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Adsorption Dynamics and Self-Assembled L-cysteine on Au(100)

Christian Engelbrekt1, Renat R. Nazmutdinov2, Jiawei Yan1,3, T. T. Zinkichev1, Bingwei Mao3, Jens Ustrup1 and Jingdong Zhang1*

1 DTU Chemistry, Building 207, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
2 Kazan National Research Technological University, Republic of Tatarstan, Russian Federation.
3 State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, Fujian, China.

Contact: cheng@kemi.dtu.dk and jz@kemi.dtu.dk

As the only amino acid with a functional thiol group, L-cysteine offers a strong potential both for binding to gold and other metals, and for gentle immobilization of biomolecules. Binding to single-crystal, atomically planar surfaces offers the additional potential that bound L-cysteine can be structurally mapped at the single-molecule level. In this work, we have followed the adsorption of L-cysteine on single-crystal Au(100) by measuring the electrode potential dynamics during the adsorption process. In situ STM revealed the structure of the self-assembled ordered layers. The molecular assemblies were studied through simulated STM image contrast based on density functional theory (DFT) including solvent effects. The adsorption kinetics showed clearly a complex pattern with at least one intermediate state. The modelling disclosed details of the interaction of all functional groups with the Au(100)-substrate.

ELECTROCHEMISTRY

Cyclic voltammetry of the Au(100) electrode displays sharp anodic peaks characteristic for single-crystal Au(100). After adsorption of L-cysteine these features disappear and the capacitance increases due to the complete coverage of L-cysteine. At negative potentials the L-cysteine layer is described in a reduction process. Au(111) shows one very sharp peak at -0.7 V vs SCE. A second and dominating peak appears on Au(100) at -0.95 V because of drastically different adsorption modes and structure of the SAMs on the different Au surfaces.

IN SITU STM STUDY

Addition of L-cysteine to the pure electrolyte solution with a bare Au(100) electrode instantly causes the potential to drop almost 0.5 V before starting to increase. The kinetics reveal a complex process with at least one intermediate state. This behaviour is not observed when the Au(100) surface is already saturated with L-cysteine, where only a modest decrease in L-cysteine is detected. L-cysteine shows different adsorption behaviour on Au(100), Au(110) and Au(111) while no adsorption occurs on inert substrates such as basal-plane and edge-planespyrolytic graphite and Au(100) with pre-formed L-cysteine SAM.

MODELLING BASED ON DFT CALCULATIONS

The interactions between L-cysteine and the single-crystal Au(100) surface were investigated from a theoretical perspective using DFT. Periodical calculations (Figure 7) of different adsorption orientations of L-cysteine radicals showed that the orientation in C was most favourable though the energy difference between A, B and C was insignificant. It was noted that only the "vertical" orientation (A) provided sub-molecular resolution. Adsorbed L-cysteine in its zwitterionic form and "vertical" orientation is shown in Figure 8 was more stable than any radial forms considered due to lateral electrostatic interactions. The sub-molecular resolution was also found for the zwitterionic form. Dimers forming on the surface was also considered. Dimers of two L-cysteine radicals (Figure 9A) or two zwitterions (- -) led to different STM model images the radical form being most asymmetrical. Asymmetry was also found for mixed dimers of protonated and deprotonated species (C-D) and where hydrogen bonds formed and the protonated molecule being "brightest" in the STM image. The orientation in Figure 9C was preferred. The formation of dimers blocks the surface, slows down the adsorption process and cause the appearance of "stripes" and "zigzag" structures as seen with STM.

DFT methods. Periodical and molecular DFT versions were employed. Details are reported in our previous work (Langmuir, 2009, 25, 2223-2230). In molecular calculations, a ten-layer cluster Au(15+15) was used to describe the Au(100) surface. All calculations were performed using the Gaussian 09 and SIESTA program suites. The model STM contrasts were built in the framework of an original approach developed by us earlier (Langmuir, 2006, 22, 7565-7567).

CONCLUSIONS

The kinetics of the monolayer formation on Au(100) was studied by electrochemistry which suggests that adsorption proceeds by more than a single process. The reductive desorption of the monolayer showed two distinct adsorption modes. In situ STM demonstrated a non-trivial structure of the monolayers (chain-like features). This was confirmed by DFT calculations provides evidence of in favour of stable L-cysteine dimers adsorbed on the electrode surface.

ACKNOWLEDGMENT

Support from the Lundbeck Foundation (R03-A0097) and the EU FP7 Staff Exchange program PIRSES-GA-2012-318990 "ELECTRO-NANOMAT" is acknowledged.