Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints

Baldacci, Roberto; Mingozzi, Aristide; Roberti, Roberto

Published in: European Journal of Operational Research

Link to article, DOI: 10.1016/j.ejor.2011.07.037

Publication date: 2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Invited Review

Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints

Roberto Baldacci a, Aristide Mingozzi b,*, Roberto Roberti c

a DEIS, University of Bologna, Via Venezia 52, 47521 Cesena, Italy
b Department of Mathematics, University of Bologna, Via Sarca 3, 47521 Cesena, Italy
c DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

A R T I C L E I N F O

Article history:
Received 19 January 2011
Accepted 22 July 2011
Available online 6 August 2011

Keywords:
Vehicle routing
Exact algorithms
Survey

A B S T R A C T

This paper provides a review of the recent developments that had a major impact on the current state-of-the-art exact algorithms for the vehicle routing problem (VRP). The paper reviews mathematical formulations, relaxations and recent exact methods for two of the most important variants of the VRP: the capacitated VRP (CVRP) and the VRP with time windows (VRPTW). The paper also reports a comparison of the computational performances of the different exact algorithms for the CVRP and VRPTW.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Vehicle routing problem (VRP) is a generic name given to a whole class of problems involving the design of optimal routes for a fleet of vehicles to service a set of customers subject to side constraints. The VRP is a central problem in the physical delivery of goods and services. In practice, several variants of the VRP exist, depending on the nature of the transported goods, the quality of service required, and the characteristics of customers and vehicles. Some typical complications are heterogeneous vehicles located at different depots, customers incompatible with certain vehicle types, customers accepting delivery within specified time windows, multiple-day planning horizons and vehicles performing multiple routes. In all cases, the objective is to supply the customers at minimum cost.

The simplest and most studied member of the VRP family is the capacitated VRP (CVRP). In the CVRP, a fleet of identical vehicles located at a central depot has to be optimally routed to supply a set of customers with known demands. Each vehicle can perform at most one route and the total demand of the customers visited by a route cannot exceed the vehicle capacity. The cost of a route is equal to the cost of the solution to the Traveling Salesman Problem (TSP) defined by the set of vertices visited within a specified time interval, called time window.

Several heuristics have been proposed for the CVRP and its variants in the literature. For surveys of both exact and heuristic methods for these VRPs up to 2002, the reader is referred to Toth and Vigo (2002).

In this paper, we survey the most effective exact methods proposed for the CVRP and the VRPTW in the literature in the last ten years. Section 2 reviews exact methods for the CVRP while Section 3 deals with exact methods for the VRPTW. Conclusions are reported in Section 4.

2. The capacitated vehicle routing problem (CVRP)

The CVRP can be described as follows. An undirected graph $G = (V,E)$ is given where $V = \{0, 1, \ldots, n\}$ is the set of $n+1$ vertices and E is the set of edges. Vertex 0 represents the depot, and the vertex set $V \setminus \{0\}$ corresponds to n customers. A nonnegative cost d_{ij} is associated with each edge $(i,j) \in E$. Each customer $i \in V$ requires a supply of q_i units of goods from depot 0 (we assume $q_0 = 0$). A set of m identical vehicles of capacity Q is stationed at the depot and must be used to supply the customers. A route is defined as a least-cost elementary cycle $R = (0,i_1,...,i_m,0)$ of graph G passing through the depot and such that the total demand of the customers visited does not exceed the vehicle capacity. The cost $c(R)$ of a route is equal to the cost of the solution to the Traveling Salesman Problem (TSP) defined by the set R of vertices.

The CVRP is to design m routes of minimum cost, one for each vehicle, so that all customers are visited exactly once; the CVRP is \mathcal{NP}-hard as it is a natural generalization of the TSP.

Many formulations have been proposed for the CVRP (see Achuthan and Caccetta, 1991; Toth and Vigo, 2002; Kara et al., 2004), but not all of them have been used to derive exact algorithms. Currently, the most successful exact methods for the CVRP are based on the two-index flow formulation, the two-commodity flow formulation...
proposed by Baldacci et al. (2004), and the set partitioning formulation proposed by Balinski and Quandt (1964). These algorithms are described in Sections 2.1 and 2.2. In Section 2.3, a comparison of the computational performances of these algorithms is reported.

2.1. Branch-and-cut algorithms

The branch-and-cut (BC) algorithms for the CVRP are based either on the two-index flow or the two-commodity flow formulation. Let \(S = \{S : S \subseteq V, |S| \geq 2\} \) and let \(q(S) = \sum_{(i,j) \in S} y_{ij} \) be the total demand of customers in \(S \in S \) and \(k(S) \) the minimum number of capacity \(Q \) needed to service all customers in \(S \). Moreover, let \(\delta(S) \) be the cutset defined by \(S \) (i.e., \(\delta(S) = \{(i,j) \in E : i \in S, j \notin S \) or \(i \notin S, j \in S \)).

Let \(x_{ij} \) be an integer variable that takes value in \(\{0,1\} \), for all \((i,j) \in E \) and value in \(\{0,1,2\} \), for all \((i,j), j \in V \), with \(x_{ij} = 1 \) when the edge \((i,j) \) is traversed and \(x_{ij} = 2 \) when the single customer route \((0, i, 0)\) is in the solution.

The two-index vehicle flow formulation of the CVRP is as follows.

\[
(F) \quad z(F) = \min \sum_{(i,j) \in E} \infty d_{ij} x_{ij} \quad \text{s.t.} \quad \sum_{(i,j) \in S} x_{ij} = 2, \quad \forall h \in V, \quad \sum_{(i,j) \in \delta(S)} x_{ij} \geq 2k(S), \quad \forall S \in S, \quad \sum_{j \in V} x_{ij} = 2m, \quad \forall i \in V, \quad x_{ij} \in \{0,1,2\}, \quad \forall (i,j) \in E \setminus \{(0,j) : j \in V\}, \quad x_{ij} \in \{0,1,2\}, \quad \forall (0,j) \in E, \quad (1)
\]

Constraints (2) are the degree constraints for each customer, and constraints (3) are the capacity constraints. Whenever \(k(S) \leq q(S)/Q \), constraints (3) are called fractional capacity inequalities. Constraint (4) states that \(m \) vehicles must leave and return to the depot.

The LP-relaxation of \(F \) can be strengthened if \(k(S) \) is computed as \(k(S) = [q(S)/Q] \), where \([x] \) denotes the smallest integer not less than \(x \). In this case, constraints (3) are called rounded capacity constraints. Several authors have proposed valid inequalities to reinforce the lower bound achieved by the LP-relaxation of \(F \). Some of these inequalities are derived by extending, to formulation \(F \), the successful results of polyhedral combinatorics developed for the TSP (see Grötschel and Padberg, 1985).

Augerat et al. (1995) were the first to describe an exact BC algorithm for the CVRP based on formulation \(F \) strengthened by valid inequalities such as the generalized capacity constraints, hypotour inequalities, comb inequalities, path-bin inequalities. The BC algorithm of Augerat et al. (1995) was able to solve, for the first time, a CVRP instance involving 135 customers. An improved version of the BC algorithm of Augerat et al. (1995) is described in Naddef and Rinaldi (2002).

Ralphs et al. (2003) described a BC algorithm based on the two-index formulation and on the addition of rounded capacity constraints in a cutting plane fashion.

Lysgaard et al. (2004) described a BC algorithm based on formulation \(F \), strengthened by valid inequalities, including the rounded capacity, generalized capacity, framed capacity, strengthened comb, multistar, partial multistar, extended hypotour inequalities, and Comonry mixed integer cuts. Their BC algorithm solved several instances not solved by Augerat et al. (1995).

Baldacci et al. (2004) proposed a two-commodity flow formulation of the CVRP which extends the TSP model introduced by Finke et al. (1984). This formulation requires, for each edge \((i,j) \in E \), a binary variable \(x_{ij} \) that is equal to 1 if the edge is in the solution, and two variables \(y_{ij} \) and \(y_{ji} \), representing the vehicle load and the empty vehicle space (i.e., \(y_{ij} = Q - y_{ji} \)) on edge \((i,j) \), whenever \(x_{ij} = 1 \). The resulting model involves \((2n + |E| + 3) \) constraints. It can be shown that (i) any solution \((x,y)\) of the LP-relaxation of this model is also a feasible solution of the LP-relaxation of \(F \) if \(k(S) = q(S)/Q \) is used in constraints (3), and (ii) \((x,y)\) satisfies the generalized multistar inequalities not implied by \(F \).

Baldacci et al. (2004) described a BC algorithm based on this model using only rounded capacity inequalities and reported computational results showing that their BC algorithm is competitive with the algorithm of Naddef and Rinaldi (2002).

2.2. Algorithms based on the set partitioning formulation

The Set Partitioning (SP) formulation of the CVRP was originally proposed by Balinski and Quandt (1964) and associates a binary variable with each feasible route. The Balinski and Quandt formulation is the following.

Let \(R \) be the index set of all routes. Let \(a_{ij} \) be a binary coefficient equal to 1 if vertex \(i \in V \) belongs to route \(\ell \in R \) and 0 otherwise (note that \(a_{ij} = 1, \forall i \in R \)). Each route \(\ell \in R \) has an associated cost \(c_{\ell} \) which is the sum of the costs of the edges traversed. Let \(\xi_{\ell} \) be a binary variable that is equal to 1 if route \(\ell \in R \) is in the optimal solution and 0 otherwise.

Model SP is as following:

\[
(SP) \quad z(SP) = \min \sum_{\ell \in R} c_{\ell} \xi_{\ell} \quad \text{s.t.} \quad \sum_{\ell \in R} a_{ij} \xi_{\ell} = 1, \quad \forall i \in V, \quad \xi_{\ell} \in \{0,1\}, \quad \forall \ell \in R. \quad (7)
\]

Constraint (8) requires that at most \(m \) routes are selected, and constraints (9) specify that each customer \(i \in V \) must be covered by one route.

In the following, we use \(R_{\ell} \) and \(E(R_{\ell}) \) to indicate the subset of vertices of graph \(G \) visited and the edges traversed by route \(\ell \in R \), respectively.

Formulation SP cannot be used directly to solve nontrivial CVRP instances because of the large number of potential routes. Model SP is very general and can take into account several route constraints (e.g., time windows) because the route feasibility is implicitly considered in the definition of the route set \(R \).

The optimal solution cost of the LP-relaxation of SP, called LSP, dominates the lower bounds provided by the LP-relaxation of formulation \(F \) when \(k(S) = q(S)/Q \) (see Baldacci et al., 2004) because any LSP solution implicitly satisfies a variety of valid inequalities that are not implied by the LP-relaxation of \(F \). In particular, Baldacci et al. (2004) have shown that LSP implies fractional capacity, generalized large multistar and knapsack large multistar inequalities. Letchford and Salazar González (2006) have shown that LSP implies some hypotour-like inequalities by projection.

Moreover, Baldacci et al. (2004) have shown that any SP solution \(\xi \) can be transformed into an \(F \) solution \(x \) by setting:

\[
x_{ij} = \sum_{\ell \in R} \eta_{ij} \xi_{\ell}, \quad \forall (i,j) \in E, \quad (11)
\]

where the coefficients \(\eta_{ij} \) are defined as follows: (i) if \(\ell \) is a single customer route \((0,h,0)\) then \(\eta_{ij} = 2 = \eta_{ji} \), \(\forall (i,j) \in E \setminus \{(0,h)\} \); (ii) if \(\ell \) is not a single customer route, then \(\eta_{ij} = 1, \forall (i,j) \in E(R_{\ell}) \) and \(\eta_{ji} = 0, \forall (i,j) \in E \setminus E(R_{\ell}) \).

Let \(F \) be the family of valid inequalities for model \(F \) that can be expressed in a general form as:
where each vertex corresponds to a route and the edge set obtained by lifting the rounded capacity constraints of 2.2.2. The exact algorithm of Baldacci et al. (2008) using the BC method of Lysgaard et al. (2004) or their BCP algorithm.

These inequalities are \(SP \) is a \((q,i)\)-path of cost, \(z_i \) is the reduced cost of route \(i \) with respect to \((u',v',g') \) and \(z_{UB} \) is a valid upper bound on the CVRP.

The effectiveness of this method relies on the quality of the dual solution \((u',v',g') \) achieved as the size of subset \(R \) depends on the gap \(z_{UB} - z' \).

The core of the algorithm of Baldacci et al. (2008) is the method for solving \(SP \). They propose to solve \(LSP \) using three CCG procedures, called \(H^1, H^2 \) and \(H^3 \), that produce three lower bounds \(LB_1, LB_2 \) and \(LB_3 \) (such that \(LB_1 \leq LB_2 \leq LB_3 \)) corresponding to the costs of three different dual solutions of \(LSP \). The three procedures are executed in sequence, and the dual solution produced by procedure \(H^k \) is used to generate the master problem of procedure \(H^{k+1}, k = 1, 2, 3 \).

The fist two procedures \(H^1 \) and \(H^2 \) ignore clique inequalities (15) and use rounded capacity constraints instead of strengthened capacity inequalities (14). \(H^3 \) replaces the route set \(R \) with the set of all \(q \)-routes whereas \(H^2 \) uses elementary routes instead of \(q \)-routes. The CCG method used by \(H^1 \) and \(H^2 \) differs from standard CCG algorithms based on the simplex as it uses a dual ascent heuristic to find a near-optimal dual solution of the master problem. \(H^3 \) is a CCG method based on the simplex to solve \(LSP \) including both inequalities (14) and (15), that inherits the master problem from \(H^2 \). In practice, \(H^3 \) is fast as it requires few iterations to converge to an optimal dual solution of \(LSP \).

A key component of the algorithm of Baldacci et al. (2008) is the procedure, called GENROUTE, that solves the pricing problem in \(H^2 \) and \(H^3 \) and generates the final reduced problem \(SP \).

Let \(P \) be the set of all elementary paths of minimum cost from the depot such that \(q(P) \in \{Q_2\} + q_{dep}, \forall P \in P \), where \(q(P) = \sum_{S \in \text{VRPTW}} q(S) \) and \(V(P) \) represent the load, the terminal customer and the subset of visited customers of path \(P \), respectively.

GENROUTE is a two-phase procedure based on the observation that every feasible route can be obtained by combining a pair of paths \(P, P' \in P \) such that: (a) \(\sigma(P) = \sigma(P') \); (b) \(V(P) \cap V(P') = \emptyset \); (c) \(q(P) + q(P') \leq q + q_{dep} \). GENROUTE uses bounding functions, based on the \(q \)-path relaxation, to limit the size of the path set \(P \), by avoiding the generation of paths that cannot be in any optimal CVRP solution and an algorithm for generating the routes which avoids the enumeration of all path pairs.

2.2.2. The exact algorithm of Baldacci et al. (in press)

Baldacci et al. (in press) extended the exact method of Baldacci et al. (2008) to solve the CVRP and VRPTW by means of the following improvements.

1. \(ng \)-route relaxation. The \(ng \)-route relaxation is a new state-space relaxation that improves the \(q \)-path and \(t \)-path relaxations proposed for the CVRP and VRPTW, respectively. This relaxation provides \(ng \)-routes, that are used as an alternative to \(q \)-routes in procedure \(H^1 \) and in computing better bounding functions used in procedure GENROUTE. The \(ng \)-path relaxation consists of partitioning the set of all possible \(q \)-paths ending at vertex \(i \) according to a mapping function that associates with each \(q \)-path a subset \(NG \) of the vertices visited that depends on the order in which they are visited.

Let \(N_i \subseteq V \) be a set of selected customers for vertex \(i \) (according to some criterion) such that \(N_i \supseteq \{i\} \) and \(|N_i| \leq |\Lambda(N_i)| \), where \(\Delta(N) \) is a parameter. For a given path \(P = \{0,i_1,\ldots,i_r\} \), let \(P(\mu) \) be the subset of \(V(P) \) containing customer \(i_{\mu} \) and every customer \(i_r, r = 1,\ldots,k-1, \) of \(P \) that belongs to all sets \(N_{i_1},\ldots,N_{i_r} \). An \(ng \)-path (\(NG,i \)) is a non necessarily elementary path \(P = \{0,i_1,\ldots,i_{k-1},i_k\} \) starting from the depot, visiting a subset of

\[
\sum_{y \in \mathcal{Y}} x_{i}^{\beta} \geq \beta^{\prime}, \quad t \in \mathcal{F}.
\] (12)

Thus, using Eq. (11), inequalities (12) become the following inequalities for the \(SP \) model:

\[
\sum_{y \in \mathcal{Y}} x_{i}^{\beta} \geq \beta^{\prime}, \quad t \in \mathcal{F}.
\] (13)
customers of total demand equal to \(q \) such that \(NG = \Pi(P) \), ending at customer \(i_w \), and such that \(i_w \notin \Pi(P) \), where \(P = (0, i_1, \ldots, i_k, 1) \). Let \(f(NG,q,i) \) the cost of a least-cost \(ng \)-path \((NG,q,i)\). Any \((NG,q,0)\)-path is called \(ng \)-route. Functions \(f(NG,q,i) \) can be computed using DP recursions.

2. Subset-Row (SR3) inequalities. Jepsen et al. (2008) introduced Subset-Row (SR3) inequalities for the VRPTW. SR3s represent a subset of clique inequalities. Let \(C \subseteq \{1,2,\ldots,n\} \) be the subset of all customer triplets and \(R(C) \) be the subset of routes serving at least two customers in \(C \). Subset-Row (SR3) inequalities are:

\[
\sum_{i \in R(C)} x_{iL} \leq 1, \quad \forall C \subseteq R \tag{16}.
\]

3. Weak Subset-Row (WSR3) inequalities. WSR3s are a weaker version of SR3s. Given \(C \subseteq R \), the route set \(R(C) \) contains only those routes traversing at least an edge \((i,j)\) with \(i, j \in C \). WSR3 dual variables can be easily considered in solving the pricing problem and in computing the bounding functions used by GENROUTE. The SR3s and, thus, the WSR3s are separated by complete enumeration. Both SR3s and WSR3s are used instead of clique inequalities.

4. A new pricing strategy involving multiple dual solutions. Baldacci et al. (in press) propose a new algorithm, more efficient than GENROUTE, to generate routes of negative reduced costs in \(H^2 \) that also uses the dual solution achieved by \(H^2 \) to eliminate routes that cannot be in any optimal solution. Such improvement stabilizes the CCG procedure based on the simplex and improves the final lower bound achieved by \(H^2 \).

2.3. Computational comparison of exact procedures for the CVRP

In this section, we report a computational comparison of the results obtained by Lysgaard et al. (2004) (hereafter called LLE), Fukasawa et al. (2006) (FLL) and the two algorithms of Baldacci et al. (2008) (BCM) and Baldacci et al. (in press) (BMR), on six well-known classes of CVRP instances from the literature, called A, B, E, F, M and P, and available at http://branchandcut.org/VRP/. The algorithm of BMR was run on an IBM Intel Xeon X7350 Server (2.93 GHz–16 GB of RAM). According to SPEC (http://www.spec.org/benchmarks.html), BMR machine is three times faster than the Pentium 4 2.6 GHz PC of BCM and the Pentium 4 2.4 GHz PC of FLL and 10 times faster than the Intel Celeron 700 MHz PC of LLE.

Table 1 reports, for each class, the name (Class), the number of instances (\(NP \)) and, for each exact method, the number of instances solved to optimality (\(Opt \)), the average percentage deviation of the lower bound (\%LB) and the average computing time in seconds (\(Time \)). For FLL, column Opt_acc reports the number of instances solved to optimality by using the BC of Lysgaard et al., and column Opt_acc reports the number of instances solved by their BCP. The last two lines of Table 1 report the total number of instances solved by each method and the averages of lower bounds and computing times.

BCM was not able to solve to optimality 3 instances solved by FLL and by BMR. Table 1 indicates that the lower bounds of BCM and BMR are on average superior to the lower bounds of FLL in all classes of instances considered. Notice that FLL solved 78 instances to optimality, but 29 of them were solved using the BC of Lysgaard et al. (2004). Table 1 indicates that BMR is, on average faster than the other methods.

3. The vehicle routing problem with time windows (VRPTW)

The VRPTW is defined on a complete digraph \(G = (V,A) \), where \(V = \{0,1,\ldots,n\} \) is the vertex set and \(A \) is the arc set. Associated with each arc \((i,j)\) included in \(A \) is a travel cost \(d_{ij} \) and a travel time \(t_i \), where \(t_i \) includes the service time at vertex \(i \). It is assumed that matrices \(d_{ij} \) and \(t_i \) satisfy the triangle inequality. Associated with each vertex \(i \) included in \(V \) is a demand \(q_i \) and a time window \([e_i,l_i]\) within which the depot, visiting vertices \(V(R) = \{0,i_1,\ldots,i_k\} \), \(V(R) \subseteq V \), and such that the following holds:

(i) The total demand of visited customers does not exceed the vehicle capacity \(Q \).

(ii) The vehicle leaves the depot 0 at time \(e_o \), visits each customer in \(V(R) \) within its time window, and returns to the depot before \(l_o \).

(iii) If the vehicle arrives at \(i \in V(R) \) before \(e_i \), the service is delayed to time \(e_i \).

The cost of route \(R \) is equal to the sum of the travel costs of the arc set, \(A(R) \), traversed by route \(R \). The VRPTW consists of designing at most \(m \) routes of minimum total cost such that each customer is visited exactly once. As the VRPTW reduces to the CVRP if \(e_i = 0 \) and \(l_i = \infty \), \forall i \in V \), the VRPTW is \(NP \)-hard. Indeed, it is strongly \(NP \)-complete to find a feasible solution for the VRPTW if \(m < n \).

Several exact algorithms have been presented for the VRPTW. A review of the exact methods up to 2002 is reported in Cordeau et al. (2002) and Kalléhauge (2008). The best exact methods recently published on the VRPTW are based on model \(SP \), described in Section 2.2, where the route set \(R \) contains any least-cost route satisfying time windows constraints.

Model \(SP \) can be strengthened by any valid inequality studied for the CVRP, as discussed in Section 2, and by the \(k \)-path inequalities introduced by Kohl et al. (1999). The Kohl et al. strategy can be defined as follows.

Let \(k(S) \) be the minimum number of routes needed to service the customer subset \(S \subseteq \mathcal{K} \). Kohl et al. (1999) called \(k \)-path inequalities the following generalization of the rounded capacity constraints:

<table>
<thead>
<tr>
<th>Class</th>
<th>NP</th>
<th>BMR</th>
<th>BCM</th>
<th>FLL</th>
<th>LLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>22</td>
<td>22</td>
<td>99.9</td>
<td>30</td>
<td>118</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>20</td>
<td>99.9</td>
<td>67</td>
<td>20</td>
</tr>
<tr>
<td>E-M</td>
<td>12</td>
<td>9</td>
<td>99.8</td>
<td>303</td>
<td>8</td>
</tr>
<tr>
<td>P</td>
<td>24</td>
<td>24</td>
<td>99.8</td>
<td>85</td>
<td>22</td>
</tr>
<tr>
<td>Avg</td>
<td>81</td>
<td>77</td>
<td>99.9</td>
<td>92</td>
<td>72</td>
</tr>
<tr>
<td>Tot</td>
<td>78</td>
<td>78</td>
<td>99.7</td>
<td>323</td>
<td>29</td>
</tr>
</tbody>
</table>
with time windows (TSPTW) for the set
that the algorithm consists of solving a VRPTW where only the customers in S
be minimized the number of vehicles used. For this reason, most
in finding a number of VRPTW routes of negative reduced cost with
the key component of these algorithms is the
either branch-and-price (BP) or BCP algorithms to find an optimal
VRPTW use CCG methods for computing the lower bound and
Other valid inequalities, related to
where

\[\sum_{i \in R} b_i(S)^j \geq k(S), \quad \forall S \in \mathcal{S}. \]

(17)

which \(b_i(S) = \{(i,j) \in A(R_i) : i \in V, S_j \in S \} \). These inequalities can be
lifting by defining \(b_i(S) = 1 \) if \(V(R_i) \cap S \neq \emptyset \), and \(b_i(S) = 0 \) otherwise.

The separation algorithm consists of solving a VRPTW where
only the customers in S need to be serviced and the objective is to
minimize the number of vehicles used. For this reason, most
researchers considered the 2-path inequalities that consist of finding
any subset \(S \in \mathcal{S} \), such that \(|q(S)| = 1 \) and in solving a TSP
with time windows (TSPTW) for the set \(S \cup \emptyset \). When the TSPTW is infeasible, then \(k(S) = 2 \) provides a valid 2-path inequality for \(S \). Other valid inequalities, related to k-path inequalities and called
Reachability cuts, have been investigated by Lysgaard (2006).

The exact algorithms for solving the resulting SP model of the
VRPTW use CCG methods for computing the lower bound and either branch-and-price (BP) or BCP algorithms to find an optimal
integer solution. The key component of these algorithms is the method for solving the pricing problem. This algorithm consists of
finding a number of VRPTW routes of negative reduced cost with
respect to the duals of the SP constraints (8), (9) and of the different
inequalities separated during the previous iterations. This
problem is solved using different DP strategies to find either non-
empty or elementary routes.

The main difficulty faced by both BP and BCP algorithms is how
to take into account the duals of the different cuts in solving
the pricing problem. The duals of inequalities (8), (9) (say \(u_0 \)
and \(u_i \in \mathcal{R}, i \in V \)) and the duals of inequalities defined according to
expressions (13) (say \(w_t, t \in \mathcal{F} \)) can be associated with the arcs of a route. Thus, it is easy to observe that the reduced cost \(c_i \) of a route
\(i \in \mathcal{R} \) is equal to \(\sum_{j \in \mathcal{R} \cup R} d_{ij} \) by defining the modified arc
costs \(d_{ij} \) as \(d_{ij} = d_{ij} - \frac{1}{2}(u_i + u_j) \). The
 modification is more complex to solve the pricing problem when
considering set partitioning inequalities such as clique, subset row,
lifted versions of rounded capacity and k-path inequalities. A possible way is to associate a binary state variable for each of
these inequalities in the DP algorithm where each variable represents the dual of the associated inequality in the reduced cost of
the emerging path. Unfortunately, the size of the resulting state-
space graph grows and the resulting DP algorithm becomes computationally slow.

Kohl et al. (1999) described a BP algorithm which improves the
BP of Desrochers et al. (1992) by adding 2-path inequalities to
LP-relaxation of the SP

\[f(t,i) \] for a given \(e_0 \leq t \leq l_i \), is defined as the \((t,0)-\)path of cost \(f(t,0) \). Functions
\(f(t,i) \) can be computed using DP (see Christofides et al., 1981).

A \((NG,t,i)-\)path is a unnecessarily elementary path, without 2-ver-
tex loops, starting from the depot at time \(e_0 \) visiting a set of customers
(even more than once) within their time windows, and ending at vertex \(i \) at time \(e_i \leq t \leq l_i \).

Let \(f(t,i) \) be the cost of a least-cost \((t,i)-\)path. A t-route, for a given
\(e_0 \leq t \leq l_0 \), is defined as the \((t,0)-\)path of cost \(f(t,0) \). Functions
\(f(t,i) \) can be computed using DP (see Christofides et al., 1981).

A \((NG,t,i)-\)path is a unnecessarily elementary path \(P = (0,i_0, \ldots, i_{k-1}, i_k) \) starting from the depot at time \(e_0 \) visiting a subset of customers (even more than once) within their time
windows such that \(NG = \Pi(P) \), ending at customer \(i_k \) at time \(e_k \leq t \leq l_k \), and such that \(i_k \notin \mathcal{F}, P = (0,i_1, \ldots, i_{k-1}) \).

Let \(f(NG,t,i) \) be the cost of a least-cost \((NG,t,i)-\)path. The
routines for the VRPTW corresponds to the \((NG,t,0)-\)path \(e_0 \leq t \leq l_0 \), \(NG \subseteq V, \) of cost \(f(NG,t,0) \). Capacity constraints are ignored in both
\((t,i)-\)path and \((NG,t,0)-\)path relaxations.

3.1. Computational comparison of exact algorithms for the VRPTW

In this section, we report the computational comparison of the exact methods of Jepsen et al. (2008) (hereafter called JSPS),
Desaulniers et al. (2008) (DHL) and Baldacci et al. (in press)
(BMR) on six classes of instances (C1, RC1, R1, C2, RC2 and R2) (see Solomotech, 1987).
BMR was run on an IBM Intel Xeon X7350 Server (2.93 GHz–16 GB of RAM). According to SPEC (http://www.spec.org/benchmarks.html), the machine used by BMR is three times faster than the Intel Pentium 4 3.0-GHz PC of JPSP and twice as fast as the Linux PC Dual Core AMD Opteron at 2.6 GHz of DHL. For each class, Table 2 reports the class name (Class), the number of customers (n), the number of instances (NP), the number of instances solved by each of the three methods (Solved) and the average computing time in seconds (Time) (n.a. means data is not available). The table shows that BMR solved all but one Solomon instance and closed four open instances. Moreover, BMR outperforms JPSP and DHL: all instances solved by the other methods were solved by BMR and the average time is significantly lower. Instances of classes C2, RC2 and R2 involving 100 customers are more difficult than instances of classes C1, RC1 and R1 of the same dimension as they feature wide time windows.

4. Conclusions

In the last decade, some innovative exact approaches for vehicle routing problems have been proposed, producing a significant improvement on the size of the instances that can be solved to optimality. Indeed, these algorithms have brought more than one hundred the number of customers that may be handled. The key factor of the success of these approaches is the effective combination of the set partitioning formulation with families of cuts into column generation based algorithms. This approach has significantly improved the quality of the lower bounds that are now very close to the optimal solution values. Furthermore, set partitioning based approaches proved quite general as they are easily able to incorporate additional constraints arising in practical applications.

References