Persistent spatial clusters of prescribed porcine antimicrobials

Fertner, Mette Ely; Sanchez, Javier; Stryhn, Henrik; Boklund, Anette; Toft, Nils

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Persistent spatial clusters of prescribed porcine antimicrobials

Mette Fertner¹, Javier Sanchez², Henrik Stryhn², Anette Boklund¹, Nils Toft¹

¹ Section for Epidemiology, National Veterinary Institute, Technical University of Denmark
² Department of Health Management, University of Prince Edward Island, Canada

Repeated multivariate scanning statistics revealed three persistent clusters (551 farms) in the amount of consumed antimicrobials. Production type, herd type and herd size were found to explain some of the clustering.

Emergence of antimicrobial resistance has increased the public awareness of the use of veterinary antimicrobials. It is hypothesized that farms with a persistently high antimicrobial use are spatially clustered, due to the clustering of disease, demographic characteristics, management and medication practices.

The objective of this study was to identify the geographical distribution of Danish indoor commercial pig farms prescribing significantly more antimicrobials throughout the two years study period. A register based cross-sectional study with repeated measurements on antimicrobial use from 6,143 Danish indoor commercial pig producing farms was executed.

Data from 2012-2013 were extracted from the national registers; VetStat (prescribed antimicrobials) and Central Husbandry Register, CHR (herd characteristics). Antimicrobials prescribed for each age group of swine at the farm were aggregated at a six-month scale and standardized as: Animal Daily Doses/100 swine registered/day. 551 farms were included in a significant cluster in all four consecutive time periods.

A purely spatial cluster detection algorithm for continuous outcomes was run in SaTScan and repeated four times (for each time period). All three analyses including covariates reduced the size of the persistent clusters. Production type, herd type and herd size were added as categorical covariates one at a time in the multivariate scanning statistics. Influence of other risk factors is speculated; e.g. affiliated veterinarian, herd infection status or herd density in the region.

Map of the multivariate constant clusters. Individual ellipses indicate significant clusters for a specific time period (p<0.05). Areas included in a significant cluster for each of the four consecutive time periods, define a persistent cluster, where n is the number of herds included.

Corresponding author:
Mette Ely Fertner
PhD student
Phone +45 35 88 71 10
E-mail memun@vet.dtu.dk

DTU VET
National Veterinary Institute
Section for Epidemiology
Technical University of Denmark
Bülowsvej 27
1870 Frederiksberg C

Picture: Danish Pig Research Centre