Lipid oxidation during instrumented dynamic in vitro digestion of marine oil-enriched milk

Meynier, A.; Jacobsen, Charlotte; Thomsen, Birgitte Raagaard; Brestaz, P.; Ribourg, L.; Viau, M.; Genot, C.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The health benefits of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are well recognized. Foods enriched in n-3 LC-PUFA, are now available for the consumers. However, PUFA are prone to oxidation during processing and storage of the enriched-foods, but also during their digestion, and deleterious compounds can be formed both during both gastric and intestinal steps [1].

The aim of this study was to evaluate the formation of toxic aldehydes: malondialdehyde (MDA), 4-hydroxy-2-hexenal (4-HHE), 4-hydroxy-2-nonenal (4-HNE) during the in vitro digestion of marine oil enriched milk.

Material & Methods

Fish oil 0.5 % (w/w)

\[PV = 2.4 \text{ meq/kg} ; AV = 7.55 \]

MDA: 68 nmol/g oil

4-HHE: 0.8 nmol/g oil

4-HNE: 0.18 nmol/g oil

Tocopherols: 890 µg/g oil

EPA + DHA: 11 % total fatty acids

n-6/n-3 PUFAs: 0.26

Milk enrichment

Homogenized pasteurized milk

1% fat

Homogenization (300 bars, 2.5 min)

Marine-oil enriched milk

1% milk fat, 0.5% fish oil

Lipid oxidation during in vitro digestion of marine oil-enriched milk

Three digestions were performed independently on three marine oil-enriched milks prepared separately.

MDA, 4-HHE and 4-HNE were measured on the samples from the 3 experiments. The individual data obtained for MDA (left), 4-HHE (middle) and 4-HNE (right) during the gastric (blue symbols, G1, G2, G3) and intestinal steps (red symbols, I1, I2, I3) of each digestion are shown. The blue and red lines locate the mean values.

Results & Discussion

Lipid oxidation in the stomach compartment

MDA can result from the oxidation of both n-6 and n-3 PUFAs. It is toxic for cells (2,3). It was produced in fairly high concentrations (75 µM at the end of the gastric phase) which corresponds to around 4 nmoles in the total digestive fluid and 1.2 nmoles/g ingested lipids

MDA results from oxidation of n-3 PUFAs. It is very reactive and binds to proteins. It can be absorbed by the intestinal cells and provokes oxidative stress (2,4). It was produced continuously in the acid gastric environment. It represented up to 7 µM digestive medium, meaning total of 400 nmoles and around 800 nmol/g lipids.

MDA and 4-HHE concentrations increased continuously in the intestinal conditions. However, their concentrations were lower than in the gastric medium. It could result from the dilution by the digestive fluids and from the binding of the reactive aldehydes to the components of the medium, including the hydrolyzed milk proteins. The decrease of MDA and 4-HHE total amounts at the end of the intestinal step is linked to the decrease of the fluid volume (emptying). 4-HHE was not appreciably produced during intestinal digestion of marine oil-enriched milk.

Oxidation and production of MDA and 4-HHE continued during the intestinal simulated digestion.

Conclusions

Toxic aldehydes (MDA >> 4-HHE >> 4-HNE) were formed during the gastric and intestinal steps of the in vitro digestion of the marine oil-enriched milk. Tocopherols were consumed mostly during the gastric step. Results must be confirmed by in vivo studies, to evaluate in the case of n-3 LC-PUFA enriched-foods, the health effects of the oxidative reactions during digestion.

References